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Summary: The Petri net is a very efficient mode to describe and andyse the behaviour of Discrete
Event Systems. However, faced to the complexity, modular design is needed to ded with large
sysems. The coverahility graph is a useful tool dlowing to anadyse system’'s properties. But its
capacities are limited to finite coverability graph merging for modular design. This paper sudies the
tempord complexity of finite coverability graph congruction using the minima coverability graph
agorithm. It focuses on modular design using shared transitions and concludes on the advantages and
drawbacks of this class of approach.
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1. Introduction

The Petri net is an efficient modd to describe and analyse Discrete Events Systems. Very important
properties like boundedness and quasi-liveness can be sudied by usng dgorithms dlowing to
generate the reachability graph of a Petri net describing a system behaviour. Faced to the dtate
exploson problem, many techniques have been developed. Some of them try to reduce the
complexity of the initid net by using reduction rules [1] [2]. Others use structurd analysis [3] [4] or
limited unfolding approaches[5] [6] [7]. However, the coverability graph due to its smple dgorithms
remans alargdy used technique [8].

The classca coverability graph agorithm has been proposed by Karp and Miller [9]. It has been
optimised latter by Finke [10] who has proposed an dgorithm alowing to congtruct the minima
coverability graph.

This paper focuses on the asymptotic tempora complexity (the worst case complexity), which dlows
to estimate the maxima duration of the computation of the minima coverability graph. We revist this
problem, rarely studied as far as we know, taking into account the size of the studied net (P Places
and T Trangtions) but dso consdering the number of nodes N of the find coverability tree.
Furthermore we more precisely andyse the temporad complexity generated when a modular design
using shared trangtions is needed to describe strongly connected systems. In this case, from sub-



systems Petri nets, only finite coverability graph can be merged to andyse the globd system. Then
we study the advantages and drawbacks of this "divide and conquer” gpproach in terms of design
fadilities, memory Sze complexity and tempora complexity.

We firgly remind the necessity of modular design to ded with systems complexity. Then we present
the minima coverability graph and point out the limitation of coverability grgph merging when
unbounded systems are associated. The asymptotic tempora complexity of the minima coverability
graph is then sudied for finite reachability graph. To ded with modular design, a merging dgorithm is
presented and its associated tempora complexity estimated. Finaly the obtained results and the
relevance of a "divide and conquer” gpproach usng modular design and shared trangtions are
discussed.

2. Modular Design to deal with complexity

Despite its exceptiona capacities to ded with Discrete Events Systems by modeling easily and
graphicaly sequentidlity, concurrency, rendez-vous, eic., behaviours, and anadysing efficiently the
modelled systems, Petri nets remain difficult to use when large and complex systems must be
moddled. Then, the problem is not a problem of the mode capacities but a problem of Human
handling of world complexity. It is difficult to consiruct, understand and more generdly consder a
Petri net which cannot be drawn on a A4 format page. To deal with this menta limitation, a classca

mean is to use modular design.

A first class of modular design concerns the top-down gpproaches. In thiskind of design, each place
(trangition) can be associated to a complex operation. A multi-leve refinement mechaniam dlows to
describe more and more deeply the operations complexity. The main advantage of this class of
modular approach is to preserve easly the system properties by using well formed nets for place
refinement [11] [12] [13] or trangtion refinement [14] [12]. However, it presents also two main
drawbacks. On the first hand, the designer is limited in his desgn because the sub-level nets must be
well-formed nets. On the second hand, the complexity power of description is limited because the

sub-systems cannot be interconnected due to the refinement mechanism.



A second class of modular design concerns the bottom up approaches. Then each sub-system is
moddled by a sub-nets of limited complexity. These different nets are merged together by using
shared places or trangtions. This gpproach has been largely used to mode flexible manufacturing
systems [15] [16] [17] or to facilitate the globd invariant computing [18] [19] [20]. The man
advantage of the sharing design isthat it alows to modd strongly connected systems. Unfortunately,
the andydsfadilities are limited and the local results cannot aways dlow the full analysis of the globa

design.

In the following we dedl with bottom-up modular design of complex system. Furthermore, we focus
on shared trangtions techniques due to its synchronising capatilities.

3. The Minimal Coverability Graph and Modular Design

A. The minimal coverability graph algorithm

Kap and Miller have proposed in 1969 [9] an dgorithm alowing to congtruct a Petri Net
coverability graph. This graph is obtained from the coverability tree by merging the identical nodes.
This dgorithm has been improved later by Finkd [10] who has developed an agorithm alowing to
generate the unigue minima coverability graph. This new agorithm uses properties depending on the
monotonic behaviour of nets, to reduce and compact the Karp and Miller graph during its

generation.

With these dgorithms the following problems can be decided [10]:
finiteness of the reachaiility tree;
the boundedness of the Petri net places;
the quas- liveness of the Petri net trangtions.

The Figure 1 presents the minima coverability tree agorithm dructure. In this procedure mi
denotes the marking of anode ni, and n represents the node currently trested with its marking m.

Four cases are distinguished. Cases 1 and 2 stop a useless development of the coverability tree.
They refine the equivaent configuration consdered in the Karp and Miller dgorithm. Case 3 detects
a non bounded node by consdering the entire tree and removing usdess sub-trees if possble.

Finally, case 4 generates new tree nodes.

B. Modular design and coverability graph limitation



We congder now a system divided into two sub-systems. The coverability graph of each sub-net
can be obtained independently. Then, if we suppose that a bottom-up modular desgn using shared
trangitions is used, then it seems a first Sght that the globa coverability graph can be obtained by
compoasition of the two sub-nets coverability graphs.

Unfortunately, this reasoning cannot be employed when non boundedness sub-nets are considered.
For exampleit iseasy to note that in Figure 2 the smple globa Petri net PNO can be considered as
the result of the merging of the two sub-nets PN1 et PN2.

It is clear that the globa net PNO is bounded. However, if we consder the Finkd agorithm the
merging of the non bounded coverability graphs CG1 and CG2 of PN1 and PN2 leads to a hon
bounded coverability graph CGO for PNO (Figure 3).

The same kind of result is aso obtained if we consider the classica coverability graph congtruction
agorithm proposed by Karp and Miller (Figure 4).

These fase results are due to the loss of information induced in the coverability graph when the
symbol w is introduced to dedl with non bounded nets. Due to this important limitation we consider
in the following, the generation of finite coverahility graphs and their merging within a bottom-up
modular design using shared trangtions.

4. The Minimal Coverability Graph temporal complexity

A. Study assumptions
We suppose in the following that the number of places P and tranditions T of the studied Petri net is
much smaller than the number of nodes N of the generated finite coverability tree.

The tempora complexity evauates the duration T(n) of an agorithm execution by counting the
number of executed ingructions for some data of sze n. A condant a dlows to integrate the

computer influence. The notation O(.) is used to express the agorithmic complexity.

In the following we congder that basic operations like reading, writing, or marking comparison have
an dgorithmic complexity in O(1).

Findly, we suppose that during its execution, the considered agorithm suppresses K nodes.
B. Thefinite minimal coverability tree temporal complexity

In the following we congider independently the tempora complexity of each case of the agorithm



before evauating the minima coverability tree complexity. Let Ti(n) be the total amount of time spent
in Case i during an execution of the dgorithm, given that the underlying coverability treeis of Sze N.

1. Case1l: m =ml - Detection of an identical known marking

The associated complexity is limited because it depends only on the input test. In the worst case less
than N+K nodes can be considered to detect if the marking of the current node is equal to another
one. The complexity can be expressed by EQ.(1).

N+K
Tirne(N) =a § a(n)=a. A N+K-1=a (N+K).(N+K-1) Eq.(2)
n X

n=l

In Eq.(1) n represents the currently treated node, X the set of al the tree nodes (of size less than
N+K), an) the set of the previoudy generated nodes (of size lessthan N+K-1), and a the computer
dependent coefficient.

From the previous expression it is easy to conclude that the complexity of case 1 is O((N+K)).
Tlrinkel(N) = O(N+K)?) Eq.(2)
2. Case2: m <ml - Detection of a higher known marking

This case is not tregted in the Karp and Miller algorithm. It presents to develop unnecessaily the
coverability tree and permits to remove the current node. For a bounded net, which is the studied
configuration, the K removals are redlised in this part of the agorithm. For the case 2 the complexity
depends on the input test complexity and on the complexity of the remova operation.

For the input test complexity, it is easy to remark that it is equivaent to the case 1 complexity
(Eq.(3)).
T2rinkel(input test) = O((N+K)?) Eq.(3)

For the remove operation complexity, if b represents the cost of a remova (supposed to be
independant of N) and a the computer depending factor, then the globa cost of the K removing can
be expressed by Eq.(4).

T2rinkel(removing operations) = a.K. b Eq.(4)

It is evident that the remova complexity can be neglected, compared with the input test one. So,
findly, case 2 complexity is Eq.(5).

T2rinkel(N) = O((N+K)?) Eq.(5)
3. Case 3: non boundedness detection

Since we congder in this paper a bounded net, during the agorithm execution thereis only evaluation



of the input test. This test detectsif the marking of node under trestment is lower than the marking of
one the tree nodes.

Likefor cases 1 or 2 this complexity can be expressed by :
T3rinkel (N) = O((N+K)?) Eq.(6)
4. Case4: New nodes generation

For thislast case, the fireable trangtions must be detected for each tree marking. The corresponding
complexity can be evaduated by the following equation:

T 4rnke(N) =a é (t+C(n) Eq.(7)

n X
In this equation C(n) corresponds to the nodes generation complexity from node n. Thesum S C(n)
is the total number of nodes generated and is therefore less than N+K, and t the complexity
associated to the consideration of al the possible firegble trangitions (less than T).

Findly, this complexity can be esimated by Eq.(8):
T4rinkel(N) = O((N+K)+(N+K).T) = O((N+K).T)  Eq.(8)
5. Finite coverability tree temporal complexity
Table 1 summarises the previoudy obtained results:
The complexities of cases 1, 2 and 3 are equivaent and higher than the complexity of case 4 whichiis

linear. So, it is easy to conclude that the tempord complexity of the finite minima coverability tree
congdiruction is quadratic with the number of tree nodes (Eq.(9)).

T(Finkel_tree) = O(N+KY) Eq. (9)
C. Thefinite minimal coverability graph temporal complexity

From the finite minima coverability tree, the coverability graph is condructed by identifying and
merging identical nodes. It can be proved, that this kind of transformation can be redised with a
linear tempora complexity estimated by Eq.(10) [21].

T(tree/graph) = O(N.P) Eg. (10)
Moreover, the Finke graph agorithm removes the useless arcs. However this operation does not

change the tempora complexity transforming the tree in a graph.

Findly, since the complexity of graph transformation can be neglected compared with the complexity

of the tree congtruction we can conclude that:



T(Finkel finite coverability graph) = O(N+K)) Eq. (11)
5. Modular Analysisusing Minimal Coverability Graph Merging

A. The merging algorithm

The merging agorithm proposed by Finkd [22] is directly inspired by the previous developed
verson for the global coverability graph construction [10]. However, the author has not taken into
account the congtruction limitation shown previoudy. Figure 5 presents a restricted version alowing
to merge two finite sub-coverability graphs FCGL et FCG2, to congtruct a globd finite coverability
graph FCGO. These graphs correspond to sub-Petri nets R1 and R2 having shared trangtions to
design aglobd Petri net RO.

This dgorithm uses the following notation rules:
N represents the node under trestment and m its marking;
MO1 (M02) istheinitid marking of R1 (R2);

T1(T2) isthe st of trangtions of R1 (R2) not shared with R2 (R1) and Tsthe set of shared

trangtions,
mer ge(ml,m2) permits to merge a marking ml1 of R1 with a marking m2 of R2 in a unique
marking m = m1m2 corresponding to the marking of RO.

B. Thetemporal complexity

To edimate the tempord complexity of this dgorithm we suppose, as previoudy, that the badc
agorithm functions (merging, node creation and removing) can be executed efficiently with an O(1)

complexity.
1. Casel: m=ml- Detection of an identical known marking
The dructure of this part of the merging agorithm is drictly equivdent to globa form. Then its
complexity can be expressed by the same expression Eqg. (12).
Tlmerging_Finkel (N) = O((N+K)?) Eq. (12)
2. Case2: m <ml- Detection of a higher known marking

The same remark can be done for this part of the merging agorithm. The corresponding complexity



isthen Eq. (13):
T2 merging Finkel(N) = O((N+K)?) Eq. (13)
3. Case 3: New nodes creation

This case needs to detect the firegble trandtions from a least one sub-coverability graph FCG1
and/or FCG2. The tempora complexity associated to each of the relevant configurations (iregble
trangtion belonging to FCG1, FCG2 or shared) isidenticd to the one estimated for the same case of
node cregtion in the globd Finke dgorithm (Eg. (6)). So, we can write Eq. (14):

T3 merging Finkel(N) = @ g (t+C(n)) Eq. (14)

nwW
In Eq.(14) W represents the set of nodes of FCGO, C(n) the complexity of nodes creation from the
treated node. Since finally, there was N+K created nodes, SC(n) is necessarily lower than N+K.

Finaly, t corresponds to the tempora complexity of trangtion taking into account from one node.
Globdly in the dgorithm this complexity is lower than (N+K)T.

Then the complexity of nodes creation for the merging agorithm can be estimated by:
T3merging_Finke| (N) = O((N + K) + (N + K)T) = O((N + K)T) Eq (15)
4. Finite coverability graph temporal complexity
Table 2 summarises the previous obtained results.
Therefore the temporal complexity of the coverability congtruction with merging or globa gpproach

have the same quadratic expresson. Since the tempora cost of graph congtruction from a tree
gructureis linear with the number of nodes, and can be neglected, we can finaly conclude thet:

Treeo(N) = O((N+K)?)  Eq. (16)
C. The modular approach : global temporal complexity

The previoudy obtained expression corresponds only to the tempora complexity of the construction
of the fina graph FCGO from the two sub-graphs. In fact, to estimate the red tempora complexity of
the modular approach, the caculus must include the tempora cost of the congtruction of FCG1 and
FCG2.

The globa expresson of the modular approach isthen Eq. (17):
TmopuLar FINKEL = Treao(N) + Tree1(N1) + Tree2(N2)  Eq. (17)

This expresson supposes that the finite coverability trees of the nets R1 and R2 have N1 and N2



nodes respectively.
By explaining dl the terms of the previous equation we obtain Eq. (18):
Tuooutar Ainkee = ((N+K))) + (N1+K 1))+ (N2+K2)?)  Eq. (18)

Where K1 and K2 represent the number of removing nodes during FCG1 and FCG2 construction
respectively.
Finaly, if we suppose that generdly N is greater than N1 and N2 the final expression of the tempora

complexity of finite coverability graph congtruction using modular gpproach with shared trangtions is
Eq. (19):

Tmooutar_inker = ((N+K)?)  Eq. (19)

Then, unfortunately, the use of a modular bottom-up agpproach leads to the same tempord
complexity than the direct approach.

6. Conclusion

In this paper we have sudied the temporal complexity of finite minima coverability graph using the
Finke’s dgorithm. We have demondrated that this complexity is quadratic with respect to the find
number of nodes in the finite minima coverability tree. Moreover, we have discussed the advantages
and drawbacks of a modular design. The top down approach facilitates the congtruction of well-
formed nets. However the possihilities of design are limited for the user. We have focused on
modular design usng a bottom up approach with shared trangtion. In this case, the user can
construct very complex structures highly interconnected. But the vaidation capacities are weak. Then
we have investigated the impact of modular design on modular finite coverability congtruction. Our
hope was that the divide and conquer approach like modular design would have a positive effect in
pace or time with regards to the globa approach. Unfortunately, it is obvious tha the space
complexity of the modular goproach is higher than the globa one, snce the find (global) coverability
graph and each of the sub-coverability graphs must be present in the computer memory. We have
adso demondrated that the tempora complexity of the merging dgorithm is equivdent to the
complexity of the direct gpproach generating the globa coverability graph. This demondration
implies that, in fact, a modular approach needs more time than a globa one since moreover the time
logt to construct each sub-coverability graph must be added. Then, we can conclude that the main
but very important advantage of a modular design with shared trangtions is that it permits to design
sep by sep, while usng the naturd system partitions. But these design capacities cannot be
exploited to generate afinite coverability graph more efficiently than adirect and globa approach.
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Tablesand Figures

Procedure Tree F(PN : Petri net ; var FT : tree)
begin
unprocessednodes ;= { create_node(r,M0)} ;
processednodes := /;
while unprocessednodest /A do
Select some node ni unprocessednodes;
unprocessednodes = unprocessednodes—{ n} ;
Casen:[1,4] of
Casel:thereisanodenli processednodes suchthat m=ml
processednodes = processednodes + { n} ;
exit;
Case2: thereisanodenli processednodes such that m<ml
remove_node(n;FT);
exit;
Case3: thereisanodenli processednodes such that m1<m
m2 :=m; ancestor := false;
for all ancestorsnl of n such that m1 <m do
for all places p such that m1(p) < m(p) do m2(p) :=w;
end for
end for
if nlisthefirst ancestor such that m1 < m2 then
ancestor ;= true;
ml=m2;
remove_tree(nl;FT); * removes the subtree(nl) whoserootisnlin FT*
remove in unprocessednodes + unprocessednodes all nodes of subtree(nl);
unprocessednodes := unprocessednodes + { nl};
endif
for every n17 processednodes such that m1 < m2 do
remove in unprocessednodes + unprocessednodes all nodes of subtreg(nl);
remove_tree(n1,FT) ;
end for
if ancestor = false Then
unprocessednodes := unprocessednodes + {n};
endif

exit;

12



Case4: otherwise
for every transition t such that m(t>m' do
create_new_node(n,t,n’);
unprocessednodes := unprocessednodes + {n'} ;
end for
processednodes = processednodes + { n};
exit;
endwhile
end

Figure 1 : The minimal coverability algorithm structure
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Figure2: Theglobal Petri net PNO and its sub-nets PN1 and PN2
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Figure 3 : Finke Algorithm : coverability graphs CG1, CG2 and CGO
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Figure4 : Karp and Miller Algorithm : coverability graphs CG1, CG2 and CGO
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ProcedureMerging_FCG (FCG1, FCG2 : Finite Coverability Graphs; T1, T2 : set of no shared

transitions ;Ts: set of shared transitions, var FCGO : global Finite Coverability Graph)
begin
unprocessednodes := { create_node(r, merge(M01,M02))} ;* (MO = M01|M02) *
processednodes ;= /;
While unprocessednodes?® A do
Select some node n with amarking m=miljm21 unprocessednodes;
unprocessednodes = unprocessednodes—{ n} ;
Casen:[1..3] of
Casel:thereisanoden'] processednodessuchasm=m'
processednodes = processednodes + { n} ;
exit;
Case?2: thereisanoden'] processednodessuch asm<m'
remove_node(n,FCGO);
exit;

Case 3 : otherwise:

ncl := nodes of FCG1 having amarking mcl equivalent toml;
nc2 := nodes of FCG2 having amarking mc2 equivalenttom2 ;
for every transitiont] T1 such asthereisan arc mcl [t> mcl' in FCG1
andml ft>ml do
create_node(n’, merge(m1',m2)) ;
unprocessednodes = unprocessednodes + {n'} ;
create in FCGO an arc connecting n and n' with the label t;
and for
for every transitiont] T2 such asthereisan arc me2 [t> mc2' in FCG2
and m2 [t>m2' do
create_node(n’, merge(m1,m2));
unprocessednodes = unprocessednodes + {n'};
create in FCGO an arc connecting n and n' with the label t;
end for
for every transitiont] Tssuch asthereisan arc mcl [t> mcl'in FCG1
and an arc mc2 |t>mc2' in FCG2 and ml t>m1 and m2 [t> m2' do
creaste_node(n', merge(m1',m2)) ;
unprocessednodes = unprocessednodes + {n'};
create in FCGO an arc connecting n and n' with the label t;
end for
processednodes = processednodes + { n} ;
exit;
end while
I dentify the nodes having the same label;
end

Figure5: The merging algorithm
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Finite minima coverability tree
tempora complexity
Casel O((N+K)?)
Case 2 O((N+K)?)
Case 3 O((N+K)?)
Case 4 O((N+K).T)

Table1: Coverability tree cases temporal complexity

Finite minima coverahility tree
merging tempora complexity

Casel O((N+K)?)
Case2 O((N+K)?)
Case 3 O((N+K).T)

Table 2: Merging cover ability tree cases temporal complexity
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