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ABSTRACT
Motivation: In yeast, methionine and phosphate metabolism are
regulated by the complexes Met4p/Met28p/Cbf1p and Pho4p, respect-
ively. The binding sites for these factors share a common core
CACGTG. We evaluate our capability to discriminate phosphate- and
methionine-responding genes on the basis of putative regulatory
elements, despite the similarity between Met4p/Met28p/Cbf1p and
Pho4p consensus.
Results: We scanned upstream regions of methionine, phosphate
and control genes with position-specific weight matrices for Pho4p,
Met4p/Met28p/Cbf1p and Met31p/Met32p, and applied discriminant
analysis to classify genes according to matrix matching scores. This
analysis showed that matrix scores provided a good discrimination
between phosphate, methionine and control genes. The optimal para-
meters have then been used to predict phosphate and methionine
regulation at a genome scale. The genome-scale analysis predicts 37
genes as methionine-regulated and 40 as phosphate-regulated. We
compare the predictive results with high throughput data and discuss
the difference.
Availability: The programs for sequence retrieval and analysis, as
well as the complete data and results, are available on the website on
regulatory sequence analysis tools (http://rsat.scmbb.ulb.ac.be/rsat/).
Contact: jvanheld@scmbb.ulb.ac.be
Supplementary information: The complete datasets and results
are available at http://rsat.scmbb.ulb.ac.be/rsat/data/published_data/
Gonze_MET_PHO/

INTRODUCTION
Living cells respond to changes in their environment by activating or
repressing the expression of selected genes. For example, when the
intracellular concentration of a given metabolite is too low, a specific
transcription factor starts activating the expression of enzymes and
transporters involved in the biosynthesis and uptake of this meta-
bolite. Each factor binds to specific sites on the chromosomes and
interacts with RNA polymerase to modify the level of expression of
the neighbour gene. The specificity of protein–DNA binding is thus
the key for restricting the transcriptional response to the appropriate
target genes.

∗To whom correspondence should be addressed.

The binding specificity of a transcription factor can be described
by a pattern, which can be used to detect putative binding sites
in new sequences. On the basis of a set of known binding sites,
a position-specific scoring matrix (PSSM) can be built to repres-
ent the binding specificity of a given transcription factor, and this
matrix can be used to scan new sequences to predict putative bind-
ing sites (Hertz et al., 1990; Hertz and Stormo, 1999; Wasserman
and Sandelin, 2004). However, not all matches correspond to effect-
ive regulatory elements. Indeed, binding motifs are generally short
(typically 5–10 conserved positions) so that, when scanning large
sequences, many spurious matches are expected by chance. In addi-
tion, the highest specificity does not always correspond to the highest
regulatory activity.

A particularly challenging case is the recognition of phosphate-
and methionine-responding genes in the yeast Saccharomyces
cerevisiae. Methionine metabolism is regulated by several tran-
scription factors, with distinct binding sites. The main regulator
is the Met4p/Met28p/Cbf1p complex, whose binding consensus is
TCACGTGA. Two additional transcription factors have been isol-
ated, Met31p and Met32p, on the basis of their binding to the motif
AAACTGTGG (Thomas and Surdin-Kerjan, 1997; Blaiseau et al.,
1997). Phosphate metabolism is regulated by the transcription factor
Pho4p, whose binding sites show two variants : high affinity binding
sites are centred on the core CACGTG followed by a short GC-
rich region (2–3 nt), whereas medium affinity binding sites have a
CACGTT motif followed by a T-rich region (Oshima et al., 1996).
These two variants of Pho4p binding sites can be summarized with
the consensus CACGTKkk, where K means ‘G or T’, and the two
last letters are in lowercase to highlight the fact that they are less
conserved.

Thus, Pho4p and Met4p share a common core, CACGTG, and their
mutual specificity relies on the flanking bases of this core. Due to
this similarity of their consensi, one could expect cross-predictions
between Met4p and Pho4p targets. However, we can take benefit
from our additional knowledge of phosphate and methionine reg-
ulation to establish multi-variate criteria, taking into account the
following aspects of the regulation: (1) binding diversity (specificity
of the core-flanking bases, two variants of Pho4p binding sites); (2)
self-synergy (many genes contain multiple binding sites for either
Pho4p or Met4p); (3) heterologous synergy (cooperative regulation
by Met4p and Met31p).
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In this paper, we apply a discriminant analysis to test whether
phosphate- and methionine-responding genes can be discriminated
on the basis of putative Met4p, Met31p and Pho4p binding sites.
We optimize the parameters on the basis of a set of genes known
to be submitted to phosphate and methionine regulation, as well as
a control group. Optimal parameters are then used for predicting
phosphate and methionine regulation for each gene of the genome.
The results of this genome-scale prediction are compared with high-
throughput data from ChIP–chip and microarray experiments.

SYSTEMS AND METHODS

Position-specific scoring matrices
Binding sites were collected from TRANSFAC, SCPD and the literature.
Altogether, we obtained 21 binding sites for Pho4p, 16 for Met4p and 18 for
Met31p. The sizes of the binding sites varied between 16 and 22 bp. The
complete data and the sources are provided in the Supplementary material.

PSSMs were constructed by aligning the binding site sequences with the
program consensus (matrix width w = 15, include both strands as a single
sequence) (Hertz et al., 1990; Hertz and Stormo, 1999). The resulting matrix
M indicates the counts nr ,j of each residue r at each position j of the aligned
binding sites. This count matrix is automatically converted into weights Wr ,j

by patser:

Wr ,j = ln

(
f ′

r ,j

pr

)
= ln

(
nr ,j + prk

(
∑

i∈{A,C,G,T} ni,j + k)pr

)
,

where f ′
r ,j = is the relative frequency, corrected with a pseudo-count k, and

pr is the background frequency of the residue r . The position–weight matrix
is then used to assign a score Xi to each segment Si,i+w−1 of the sequence S.

Xi =
w∑

j=1

Wri+j−1,j ,

where ri+j−1 is the residue found at position i + j − 1 of the sequence S.
High-scoring segments (large Xi ) correspond to putative binding sites for

the transcription factor. Matrix-based pattern matching was performed with
patser (Hertz and Stormo, 1999). This program takes as input a sequence S and
a PSSM M of width w, and assigns a score to each position of the sequence
as described in Hertz and Stormo (1999). The search was performed on both
strands, and the program returned the three top scores per sequence.

DNA–chip data and ChIP–chip data
The phosphate microarray data published by Ogawa et al. (2000) was
downloaded from http://cmgm.stanford.edu/pbrown/phosphate/ (October
2000). A list of target genes for 106 transcription factors found by a
ChIP–chip experiment (Lee et al., 2002) were downloaded from http://
web.wi.mit.edu/young/regulator_network/ (October 2002). The dataset from
Harbison et al. (2004) were downloaded from http://web.wi.mit.edu/young/
regulatory_code/ (September 2004).

Composition of the training sets
For training and evaluation, we selected 16 genes known to respond to a stress
in methionine (MET family), 8 genes submitted to phosphate regulation (PHO
family) and a control family (CTL family) containing 80 genes, which are
supposed to respond neither to methionine nor to phosphate (Table 1). Note
that there are less training genes than binding sites for each transcription
factor. This is due to the fact that a promoter generally contains multiple
binding sites for the same factor (for example, the 21 sites used for building
the Pho4p matrix belong to not more than 8 genes).

Discriminant analysis
Leave-one-out evaluation. Before using the discriminant function for pre-
dicting phosphate and methionine regulation for all the genes of a genome

Table 1. Gene families used as training set for discriminant analysis

Family Genes

MET ECM17, MET1, MET10, MET14, MET16, MET17, MET2, MET28,
MET3, MET30, MET6, MET8, MUP3, SAM1, SAM2, ZWF1

PHO PHO5, PHO8, PHO84, PHO81, PHO11, PHO89, PHO86, SPL2
CTL ASN1, BAR1, CAR1, CAR2, CDC19, CHO1, CHO2, CIT1, COX5A,

CTT1, CYB2, CYC1, CYC7, CYT1, DAL5, DMC1, ERG11, FAS1,
FAS2, GAL1, GAL2, GAL7, GAL80, GAP1, GCY1, GDH1,
HEM13, HEM3, HMG1, HOP1, HSF1, HXT9, ILV1, ILV2,
IME1, IME2, INO1, LEU1, LEU2, LEU4, LYS1, LYS2, LYS20,
LYS21, LYS4, LYS9, MEK1, MEP1, MEP2, MEP3, MER1, OPI3,
PDR10, PDR15, PDR3, PDR5, PET9, PUT1, PUT2, REC102,
REC114, RED1, RME1, ROX1, SKI8, SNQ2, SOD2, SPO11,
SPO13, SPO16, TOP1, UGA1, UGA2, UGA4, URA1, URA3,
URA4, YBR184w, YOR1, ZIP1

Note that the composition of the control (CTL) family could not be based on direct
evidences of an absence of response to phosphate or methionine, since scientific articles
generally report positive rather than negative results. For this family, we selected genes
involved in some well characterized pathways, and which had no apparent reason to
interact with phosphate or methionine metabolism. A gene might of course be involved
in multiple pathways, and our CTL family is likely to contain some errors.

it is essential to evaluate its accuracy. Classically, the evaluation relies on
a testing set, which must be independent from the training set. Given the
restricted number of genes with known class membership (8 PHO and 16
MET genes) splitting them into even smaller subsets would strongly bias the
training. To circumvent this, we applied the leave-one-out (LOO) procedure
(Huberty, 1994): one element is discarded from the training set, a discrimin-
ant function is built on the basis of the remainders and this function is used
to predict the class of the discarded element. The predicted class is compared
with the training class, and the procedure is iterated over all the elements of
the training set.

Variable selection. Another classical problem, when working with a
very small training set, is the risk of over-fitting: the accuracy of predic-
tion decreases when the number of variables increases [see Huberty (1994)
for a detailed discussion]. With our datasets, there is a risk of over-fitting
since the number of variables (15 matrix scores, see Results) is higher than
the number of elements in some training classes (8 genes in the PHO group).
To circumvent this problem, we implemented a forward stepwise proced-
ure, which selects a subset of variables by optimizing the hit rate (Huberty,
1994): the program first compares the rate of error obtained by using each
variable alone and selects the most discriminating one. Additional variables
are then successively incorporated by selecting, at each step, the variable that
returns the smallest rate of error when combined to the variables retained in
the preceding steps. For the evaluation of error rates, the forward stepwise
variable selection was performed inside the LOO loop in order to prevent a
possible bias on the selected variables. For genome-scale prediction, variable
selection was performed with all the training objects.

Linear versus quadratic discriminant analyses. We systematically com-
pared the results obtained with the linear discriminant analysis (LDA) and the
quadratic discriminant analysis (QDA). Both methods rely on an hypothesis of
multinormality, and LDA (but not QDA) assumes that the training classes have
the same covariance matrix. Although these hypotheses are rarely satisfied
with real data (and certainly not in the case of pattern counts), discriminant
analysis generally gives good results, especially LDA, which requires very
few parameter estimates.

Principal component analysis. Since we suspected a problem of over-
dimensionality, we compared the results of variable selection in the original
data space (matrix scores) and in the principal component analysis (PCA)-
transformed data. PCA includes the transformation of a p-dimensional
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space of variables into a p-dimensional space of components, where each
component is a linear combination of the original variables. The contribution
(weight) of each variable to each component is calculated in order to maxim-
ize the variance associated with the first component. PCA is often used as a
method to reduce the dimensionality of a variable space.

Permutation test. The error rate by itself is not sufficient to evaluate the
benefit of the discriminant analysis. Indeed, even a random assignation of
class membership would still lead to a certain percentage of correct classific-
ation by chance. The random expectation depends on the dataset (relative size
of the training groups) and on the parameters of the analysis (linear versus
quadratic, selected variables). We performed a permutation test to evaluate
the random expectation for the error rate. For this test, we randomly per-
muted the group labels and applied the same discriminant procedure as with
the real labels. For each condition, 100 independent permutation tests were
performed and the average error rates were calculated.

Availability and supplementary material
Multivariate analysis and figure drawings were performed with the free-
ware statistical package R (http://cran.r-project.org/). The programs for
sequence retrieval and analysis are available on the web site on regulat-
ory sequence analysis tools (http://rsat.scmbb.ulb.ac.be/rsat/) (van Helden
et al., 2000; van Helden, 2003). The complete datasets and results are avail-
able on the same site (http://rsat.scmbb.ulb.ac.be/rsat/data/published_data/
Gonze_MET_PHO/).

RESULTS

Position-specific scoring matrices
A position-based matrix was built for each transcription factor:
Met4p [Table 2(A)], Met31p [Table 2(B)] and Pho4p [Table 2(C)].
In addition, we made a specific treatment for the Pho4p factor, which
shows two variants of binding sites: high affinity sites, contain-
ing a CACGTG core, and medium-affinity sites, centred around a
CACGTT core (Oshima et al., 1996).

Generally, CACGTG-based sites are followed by a short GC-
rich region (2–3 bp), whereas CACGTT-based sites are followed
by several other Ts (see Supplementary material). Such dependen-
cies between neighbouring positions are not taken into account by
PSSM. As a consequence, a matrix built with all the CACGTG- and
CACGTT-based sites [Table 2(x)] would assign a very high score
to a sequence like CACGTGTTT, despite the fact that this sequence
contains a CACGTG core followed by a T-rich region, a situation
which has not yet been observed in any experimentally-proven sites.

In order to better reflect the dependency between the core and
the flanking region, we built two separate matrices, regrouping
the CACGTG-based [Table 2(D)] and CACGTT-based [Table 2(E)]
sites, respectively. The drawback is that each of these matrices is
based on a very small number of observations, which might reduce
its capability to recognize new sites. We thus combined information
obtained with the generic (Pho4p, combining all sites) and the two
specific (Pho4p.g and Pho4p.t) matrices. This induces some redund-
ancy, and correlations are to be expected between the matching scores
obtained with the generic and each specific matrix. Fortunately,
inter-column correlations are taken into account by the discrimin-
ant analysis, and should thus not provoke any bias. The utilization
of three matrices for Pho4p also increases the number of variables,
which increases the risk of over-fitting, but this is not problematic
since we apply a forward stepwise variable selection.

Each alignment matrix was converted by patser to a weight matrix
and used to scan the whole set of yeast upstream sequences for putat-
ive matches. Upstream sequences of all yeast genes were retrieved

Table 2. PSSMs used to describe the transcription factor binding sites

(A) met4p matrix
A 7 9 0 0 16 0 1 0 0 11 6 9 6 1 8
C 5 1 4 16 0 15 0 0 0 3 5 5 0 2 0
G 4 4 1 0 0 0 15 0 16 0 3 0 0 2 0
T 0 2 11 0 0 1 0 16 0 2 2 2 10 11 8

V R Y C A C G T G A M M W T W
(B) met31p matrix

A 3 6 9 6 14 18 16 18 2 0 0 0 1 3 8
C 8 3 3 2 3 0 1 0 13 2 0 1 0 3 6
G 4 3 4 8 0 0 1 0 2 0 17 1 17 11 1
T 3 6 2 2 1 0 0 0 1 16 1 16 0 1 3

C W A R A A A A C T G T G G M
(C) pho4p matrix

A 0 4 4 1 1 21 0 0 0 0 2 2 6 1 7
C 2 7 12 6 20 0 20 0 1 0 5 5 8 4 6
G 5 1 2 11 0 0 0 21 0 15 8 7 2 11 2
T 14 9 3 3 0 0 1 0 20 6 6 7 5 5 6

T Y C S C A C G T K K K M G H
(D) pho4p.g matrix

A 3 0 2 3 2 0 14 0 0 0 0 2 1 5 0
C 2 3 4 7 2 14 0 13 0 0 0 4 5 6 5
G 3 3 1 2 8 0 0 0 14 0 14 8 6 1 5
T 6 8 7 2 2 0 0 1 0 14 0 0 2 2 4

T T Y C G C A C G T G S S M B
(E) pho4p.t matrix

A 6 0 3 2 1 0 7 0 0 0 0 1 2 1 2
C 0 2 2 5 2 7 0 7 0 1 0 0 0 2 1
G 0 0 0 0 4 0 0 0 7 0 0 2 1 2 3
T 1 5 2 0 0 0 0 0 0 6 7 4 4 2 1

A Y H M S C A C G T T K W B R

The matrix Pho4p.g. is restricted to the Pho4p binding sites containing the CACGTG
core. The matrix Pho4p.t. is restricted to the Pho4p binding sites containing the CACGTT
core. Below each matrix is indicated the IUPAC consensus.

over 800 bp from the start codon. For each PSSM, the three top scores
were collected in order to detect multiple binding sites for the same
transcription factor. Each upstream sequence is thus characterized
by a 15-dimensional (3 scores × 5 matrices) vector of scores.

Comparison of matrix scores on upstream
sequences of the training set
Figure 1 plots the scores assigned to the training genes with the differ-
ent matrices. A simple visual inspection already reveals interesting
properties of the PSSM.

Most PHO genes have a high score (≥10) with the Pho4p matrix
(Fig. 1A), whereas such a score is observed only once for a MET gene.
Reciprocally, most MET genes have a high Met31p score, which is
rarely observed in PHO genes. The Pho4p and Met31p matrix thus
provide a reasonably good, but not perfect, separation between PHO
and MET genes. A few MET genes are mixed with the CTL genes.
Figure 1B shows that there is no apparent correlation between Pho4p
and Met4p scores, despite the fact that they share the same binding
core CACGTG. The difference between flanking residues (compare
Table 2A and C) are thus informative.

Figure 1C shows that most MET genes have a high scoring match
for both Met31p and Met4p, highlighting the cooperative effect of
the two factors. However, some MET genes seem to have binding
sites for Met4p alone, or Met31p alone. As expected, PHO genes
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Discrimination of methionine and phosphate genes

Fig. 1. Comparisons of PSSM scores for upstream sequences of the training set. The letter indicates the gene family (P, PHO; M, MET; C, CTL).

are mixed with CTL as shown in Figure 1C. The combination of
Met4p and Met31p matrices separates thus reasonably well MET
from non-MET genes.

Figure 1D–F show the two top scoring matches obtained with the
Pho4p, Met4p and Met31p matrices, respectively, on each sequence
of the training set. It is striking that seven of the eight PHO genes have
two very high-scoring matches (Fig. 1D), suggesting the presence of
multiple Pho4p binding sites in their upstream sequences. Similarly,
most MET genes have at least two very good matches for the Met4p
matrix (Fig. 1E). The effect is less pronounced for the Met31p matrix
(Fig. 1F): the majority of the MET genes have a very high (>10) first
score, but a low (<7) second score.

In summary, PSSMs seem reasonably specific for their expected
gene families (Met31p and Met4p matrices are specific for MET
genes, and the Pho4p matrices for PHO genes), but each matrix only
provides a partial information on the way a gene is regulated. Thus,
for classifying genes on the basis of their upstream sequence motifs,
one would like to combine information provided by all the matrices.
The problem is obviously to find an optimal criterion for weighting
the different matrix scores. This can be done with the discriminant
analysis, as shown in the next section.

Discriminant analysis with matrix scores
In order to evaluate whether PHO, MET and CTL genes can be
discriminated on the basis of upstream motifs, we applied LDA and
QDA. We performed two separate analyses for predicting phosphate
(PHO against MET + CTL), and methionine (MET against PHO +
CTL) regulation, respectively. The evaluation was performed with a
LOO test. To prevent the risk of over-fitting, we applied a forward
stepwise variable selection.

Error rates were calculated as a function of the number of variables,
with different discriminant methods (linear or quadratic). We also
tested the effect of data transformation by PCA.

Figure 2 summarizes the results of this evaluation. Each curve
represents the rate of error for one discriminant method as a function
of the number of selected variables.

For both PHO and MET predictions, better results are obtained
with LDA than with QDA. Let us consider the PHO against
CTL + MET classification (Fig. 2A): with LDA, the error rate
decreases when the 5 first variables are incorporated, after which
it remains constant until the 10th variable is incorporated. Optimal
discrimination (1% errors) is obtained with 5–9 variables. Under the
same condition, a random classification would return 7.7% of errors
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Fig. 2. Error rates obtained with different discriminant analysis approaches
(LDA or QDA), on real and permuted data, as a function of the number
of variables selected by the forward stepwise procedure. (A) PHO against
MET + CTL. (B) MET against PHO + CTL. Symbols: open circles, LDA on
real data; open triangles, LDA on PCA-tranformed data; plus signs, LDA on
real data with permuted labels; crosses, LDA on PCA-tranformed data with
permuted labels; open diamonds, QDA on real data; open inverted triangles,
QDA on PCA-transformed data; squares, QDA on real data with permuted
labels; asterisks, QDA on PCA-transformed data with permuted labels.

(LDA permutation curve). The increases of the error rate with the
last variables suggests an effect of over-fitting. This is not surpris-
ing since the training uses more variables (15) than objects in the
PHO training group (eight genes). A similar behaviour is observed
for the error curves of the MET against PHO + CTL discrimination
(Fig. 2B). It is interesting to note that the error rate increases with the
number of variables even with the permuted dataset, which is typical
of a situation of over-fitting: when the training is done with more
variables than objects, the discriminant function is over-fitted to the
training set, even if there is nothing to be learned from it (permuted
dataset), and tends to misclassify new objects.

The order of incorporation of the variables is indicative of the
information contained in the matrix scores. Not suprisingly, for the
PHO against MET + CTL discrimination, the seven first variables
correspond to the different scores of Pho4 matrices [Table 3(A)].
The eighth and ninth variables (which neither decrease nor increase
the error rate) are the second and third top scores of the Met31
matrix. Consistently, a different subset of variables is used for the
MET against PHO + CTL discrimination [Table 3(B)]: the first three

Table 3. Variables selected by the stepwise forward procedure

Rank Matrix Score

(A) PHO against MET + CTL
1 Pho4p 1st
2 Pho4p.t 2nd
3 Pho4p 2nd
4 Pho4p.g 2nd
5 Pho4p.g 1st
6 Pho4p.g 3rd
7 Pho4p.t 3rd
8 Met31p 2nd
9 Met31p 3rd

(B) MET against PHO + CTL
1 Met4p 1st
2 Met31p 1st
3 Met31p 3rd
4 Pho4p 3rd
5 Pho4p 1st
6 Met31p 2nd
7 Pho4p 2nd
8 Pho4p.t 2nd
9 Pho4p.g 1st

10 Pho4p.t 1st

selected variables are the top scores for the Met4 matrix and the first
and third scores of Met31. The next variables are mostly Pho4 scores.

In general, QDA is more powerful than LDA, but in our case
the results are opposite. This probably results from the over-fitting
problem: the dimensionality of the discrimination criterion increases
quadratically with the number of selected variables. QDA could not
incorporate more than five variables due to the restricted size of the
smallest training class (eight genes for the PHO group). With QDA,
over-fitting is already perceptible in the permutation test when the
second (Fig. 2A) or third (Fig. 2B) variable is incorporated.

Beyond the raw error rate, it is important to evaluate the types
of prediction errors. Table 4 summarizes the number of correct and
wrong assignations obtained by LDA for each class of the training
set. For the two-group classifications (PHO against MET + CTL and
MET against PHO + CTL), all errors consist of ‘false negatives’, i.e.
one PHO and three MET genes are assigned to the CTL group, giving
error rates of 1.0 and 2.9%, respectively.

We also tested the direct three-group classification (PHO against
MET against CTL), but this raised an error rate of 5.8% [Table 4(E)].
In addition, from the biological point of view, the regulation of a given
gene might be achieved by multiple transcription factors. There is
thus no reason to impose a priori that a gene belongs to only one
class. Indeed, from their experimental observations, O’Connell and
Baker (1992) have postulated a possible cross-regulation between
phosphate and sulfate metabolism in yeast.

The permutation test shows that the random expectation for
the error rate is markedly higher for the three-group classification
(23.1%) than for the two-group classifications (15.4% for MET
and 7.6% for PHO). The confusion tables [Table 4(B, D and F)]
show that when the program is trained with randomly permuted
labels the classifier tends to assign all objects to the most frequent
class (CTL).
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Table 4. Confusion tables on the training set with the optimal linear
discriminant functions

Pred (A)a Training (B)b Training (permuted)

CTL + PHO MET CTL + PHO MET

CTL + PHO 88 3 87.56 ± 0.76 15.17 ± 1.33
MET 0 13 0.44 ± 0.76 0.83 ± 1.33

Pred (C)c Training (D)d Training (permuted)

CTL + MET PHO CTL + MET PHO

CTL + MET 96 1 95.84 ± 0.48 7.74 ± 0.58
PHO 0 7 0.16 ± 0.48 0.26 ± 0.58

Pred (E)e Training (F)f Training (permuted)

CTL MET PHO CTL MET PHO

CTL 79 4 0 80 16 8
MET 1 12 1 0 0 0
PHO 0 0 7 0 0 0

Permutation tests were repeated 100 times and the confusion tables indicate
average ± SD.
aMET against PHO + CTL; Error rate: 2.9%.
bPermutation test (MET against PHO + CTL); Error rate: 15% ± 0.8%.
cPHO against MET + CTL discrimination; Error rate: 1.0%.
dPermutation test (PHO against MET + CTL); Error rate: 7.6% ± 0.3%.
eThree-group classification (PHO against MET against CTL); Error rate: 5.8%.
f Permutation test (PHO against MET against CTL); Error rate: 23.1%.

The types of errors returned by QDA (Table 5) show similar trends
as with LDA (Table 4), but the results are slightly poorer.

Data transformation by PCA did not improve the performances of
the classification (Fig. 2).

In summary, two-group classifications with LDA provides a quite
stringent discrimination criterion (few false positives), which is
essential for the genome-scale prediction.

Genome-scale prediction of methionine and
phosphate responding genes
We used the optimal method (LDA) and the variables selected by
the stepwise procedure for predicting methionine and phosphate
regulation in all yeast genes. This resulted in the prediction of 40
phosphate- and 37 methionine-regulated genes.

Among the PHO-predicted genes (Table 6), all training genes
but PHO8 are recovered. The non-training gene predicted with the
highest probability is STB3. Almost nothing is known about this
gene except that its product binds to Sin3p, a global transcription
factor affecting expression of many genes including INO1, which
itself is involved in phospholipid biosynthesis (Slekar and Henry,
1995). Also predicted with a high probability are VTC4, which was
recently proposed as a target for PHO4 (Huang et al., 2002), PHO87,
coding for a phosphate permease, PHM6, which might have a role
in phosphate metabolism and is regulated by phosphate (Standford
Genome Database) and PMP2, coding for an H+-ATPase subunit.
These genes are interesting candidates for the experimental analysis.

Among the MET-predicted genes (Table 7), 11 of the 16 train-
ing genes are recovered. There are thus five false negatives in the

Table 5. Confusion tables on the training set with the optimal quadratic
discriminant functions

Pred (A)a Training (B)b Training (permuted)

CTL + PHO MET CTL + PHO MET

CTL+PHO 86 4 87.32 ± 1.00 15.27 ± 1.14
MET 2 12 0.68 ± 1.00 0.73 ± 1.14

Pred (C)c Training (D)d Training (permuted)

CTL + MET PHO CTL + MET PHO

CTL + MET 94 1 95.8 ± 0.49 7.71 ± 0.7
PHO 2 7 0.2 ± 0.49 0.29 ± 0.7

Pred (E)e Training (F)f Training (permuted)

CTL MET PHO CTL MET PHO

CTL 79 3 0 79 15 8
MET 1 12 1 1 1 0
PHO 0 1 7 0 0 0

aMET against PHO + CTL; Error rate: 5.8%.
bPermutation test (MET against PHO + CTL); Error rate: 15.3% ± 0.6%.
cPHO against MET + CTL discrimination; Error rate: 2.8%.
dPermutation test (PHO against MET + CTL); Error rate: 7.6% ± 0.5%.
eThree-group classification (PHO against MET against CTL); Error rate: 5.8%.
f Permutation test (PHO against MET against CTL); Error rate: 23.1%.

genome-scale prediction, i.e. two more than in the LOO evaluation.
This is due to a change in prior probabilities: for the evaluation,
the frequencies of training classes were used as priors, whereas dur-
ing genome-scale predictions we intentionally reduced MET prior
probability to 1% in order to minimize false positives.

Some of the predicted genes are interesting targets to look for
in effective binding to MET4 and/or MET31/MET32. In particular,
genes predicted with a high probability include CYS3 and CYS4, both
involved in cystathionine metabolism, MUP1, coding for a methion-
ine permease and MET32. This latter gene is particularly interesting
since it codes for a transcription factor involved in methionine reg-
ulation. Its classification among MET genes suggests that it is itself
regulated at the transcriptional level, and this might be mediated
by Met4p, Met31p or by auto-activation. We did not find any evid-
ence for such a regulation in the literature, but the MET32 upstream
sequence contains a high scoring site for Met31p/Met32p. In con-
strast, the gene MET31 is not classified in the MET group by the dis-
criminant procedure and its upstream region does not seem to contain
any match for Met31p/Met32p or Met4p. This raises the intriguing
hypothesis that the two homologous genes MET31 and MET32 could
be regulated differently, and this might enable the cell to activate
methionine biosynthesis in response to different conditions.

Comparison with experimental genome-scale
detection of transcription factor target genes
In order to assess the reliability of our predictions, we compared
the results of the discriminant procedures with high-throughput
experiments reporting the binding of transcription factors to DNA
(Lee et al., 2002) and the transcriptional response to phosphate
stress (Ogawa et al., 2000).
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Table 6. Predicted PHO genes

ORF Train proba.PHO Name Description

YML123C PHO 9.999987e−1 PHO84 High-affinity inorganic phosphate/H+ symporter
YDR169C NA 9.995144e−1 STB3 SIN3 protein-binding protein
YAR071W PHO 9.984716e−1 PHO11 Secreted acid phosphatase
YHR215W NA 9.984716e−1 PHO12 Secreted acid phosphatase
YBR296C PHO 9.975738e−1 PHO89 Na+-coupled phosphate transport protein, high affinity
YAR070C NA 9.961708e−1 YAR070c Hypothetical protein
YBR093C PHO 9.946229e−1 PHO5 Repressible acid phosphatase precursor
YHR168W NA 9.944950e−1 YHR168w Similarity to GTP-binding proteins
YJL012C NA 9.916370e−1 VTC4 Similarity to YPL019c and YFl004w
YCR037C NA 9.814537e−1 PHO87 Member of the phosphate permease family
YEL017C-A NA 9.780367e−1 PMP2 H+-ATPase subunit, plasma membrane
YAL002W NA 9.587233e−1 VPS8 Vacuolar sorting protein, 134 kD
YKR050W NA 9.540507e−1 TRK2 Moderate-affinity potassium transport protein
YKR048C NA 9.535089e−1 NAP1 Nucleosome assembly protein I
YHR137W NA 9.434697e−1 ARO9 Aromatic amino acid aminotransferase II
YGR233C PHO 9.404826e−1 PHO81 Cyclin-dependent kinase inhibitor
YCR098C NA 9.394289e−1 GIT1 Glycerophosphoinositol transporter
YHR136C PHO 9.347150e−1 SPL2 Suppressor of plc1-delta
YDR281C NA 9.324760e−1 PHM6 Hypothetical protein, has a role in phosphate metabolism
YJL209W NA 9.176324e−1 CBP1 Apo-cytochrome b pre-mRNA processing protein
YJL211C NA 9.176324e−1 YJL211c Questionable ORF
YER073W NA 9.035125e−1 ALD5 Aldehyde dehydrogenase (NAD+), mitochondrial
YEL017W NA 8.647403e−1 YEL017w Hypothetical protein
YDR041W NA 8.505285e−1 RSM10 Component of the mitochondrial ribosomal small subunit
YPL068C NA 8.354381e−1 YPL068c Hypothetical protein
YNL064C NA 8.287782e−1 YDJ1 Mitochondrial and ER import protein
YER017C NA 8.124987e−1 AFG3 Protease of the SEC18/CDC48/PAS1 family of ATPases (AAA)
YNL061W NA 7.846272e−1 NOP2 Nucleolar protein
YDR054C NA 7.668280e−1 CDC34 E2 ubiquitin-conjugating enzyme
YER019W NA 7.472275e−1 ISC1 Weak similarity to human and mouse neutral sphingomyelinase
YDR310C NA 7.243479e−1 SUM1 Suppressor of SIR mutations
YDR311W NA 7.243479e−1 TFB1 TFIIH subunit (transcription initiation factor), 75 kD
YNL063W NA 6.909194e−1 YNL063w Weak similarity to Mycoplasma protoporphyrinogen oxidase
YAR064W NA 6.075119e−1 YAR064w Hypothetical protein
YFL004W NA 6.052613e−1 VTC2 Putative polyphosphate synthetase
YJL117W PHO 5.368084e−1 PHO86 Inorganic phospate transporter
YML121W NA 5.348837e−1 GTR1 GTP-binding protein
YDR055W NA 5.197217e−1 PST1 Strong similarity to SPS2 protein
YEL045C NA 5.166707e−1 YEL045c Weak similarity to cytochrome c oxidase III of Trypanosoma brucei kinetoplast
YDR303C NA 5.137511e−1 RSC3 Similarity to transcriptional regulator proteins

Lee et al. (2002) applied a ChIP–chip approach to detect binding
between 106 yeast transcription factors and all the yeast intergenic
regions, and characterized the reliability of each measurement by a
P -value. From this dataset, we selected the ChIP–chip experiment
P -values for Pho4p, Met4p and Met31p.

Ogawa et al. (2000) performed eight DNA chip experiments to
test the transcriptional response of yeast to various phosphate stress
conditions (low concentrations or PHO mutants) and selected 21
genes showing a consistent transcriptional response (at least 2-fold
regulation in at least five of the eight experiments).

We first compared microarray data from Ogawa et al. (2000)
with ChIP–chip provided by Lee et al. (2002). Suprisingly, the
comparison reveals a striking discrepancy between these two datasets
(Fig. 3A): genes showing transcriptional response are not detected
by the ChIP–chip experiment, and reciprocally. Some PHO training

genes appear among the regulated genes, but none of them is detected
in the ChIP–chip experiment.

A closer analysis of the ChIP–chip experiment reveals that 62
genes have a P -value < 10−3, but that none of these genes corres-
ponds to known Pho4p target genes (Zhu and Zhang, 1999), and,
in addition, the upstream sequences of the genes detected by ChIP–
chip do not contain the Pho4p binding motif (Simonis et al., 2004).
The most likely reason for the absence of PHO genes is that Lee
and co-workers used the same rich medium for all their experiments.
Since it is well known that, in presence of phosphate, Pho4p is inac-
tivated by sequestration in the cytoplasm (Oshima et al., 1996) there
was not much chance to detect real Pho4p targets in the experimental
conditions used, and the 62 reported genes are thus likely to be
experimental artefacts. For a similar reason, the Met4p ChIP–chip
experiment should also be considered with caution since Met4p
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Table 7. Predicted MET genes

ORF Train proba.MET Name Description

YNL277W MET 9.996774e−1 MET2 Homoserine O-acetyltransferase
YJR010W MET 9.994956e−1 MET3 Sulfate adenylyltransferase
YKL001C MET 9.993998e−1 MET14 ATP adenosine-5′-phosphosulfate 3′-phosphotransferase
YLR303W MET 9.976683e−1 MET17 O-acetylhomoserine sulfhydrylase
YGR155W NA 9.950779e−1 CYS4 Cystathionine beta-synthase
YDR502C MET 9.945377e−1 SAM2 S-adenosylmethionine synthetase 2
YGR154C NA 9.928820e−1 YGR154c Strong similarity to hypothetical proteins YKR076w and YMR251w
YAL012W NA 9.901753e−1 CYS3 Cystathionine gamma-lyase
YER125W NA 9.852316e−1 RSP5 hect domain E3 ubiquitin-protein ligase
YIL074C NA 9.554347e−1 SER33 3-phosphoglycerate dehydrogenase
YIR017C MET 9.524668e−1 MET28 Transcriptional activator of sulfur amino acid metabolism
YDR253C NA 9.470668e−1 MET32 Transcriptional regulator of sulfur amino acid metabolism
YDR254W NA 9.416109e−1 CHL4 Chromosome segregation protein
YHL036W MET 9.082197e−1 MUP3 Very low affinity methionine permease
YHL038C NA 9.082197e−1 CBP2 Apo-cytochrome b pre-mRNA processing protein 2
YGR055W NA 9.036226e−1 MUP1 High affinity methionine permease
YIR018W NA 8.547088e−1 YAP5 Involved in transcription activation
YOR284W NA 8.228867e−1 YOR284w Weak similarity to Methanococcus jannaschii hypothetical protein MJ0694
YPL250C NA 8.090201e−1 ICY2 Weak similarity to YMR195w
YJL186W NA 7.677502e−1 MNN5 Putative mannosyltransferase
YJL187C NA 7.677502e−1 SWE1 Ser/tyr dual-specifity protein kinase
YNL259C NA 7.503313e−1 ATX1 Antioxidant protein and metal homeostasis factor
YAR064W NA 7.140508e−1 YAR064w Hypothetical protein
YFR030W MET 6.990142e−1 MET10 Sulfite reductase flavin-binding subunit
YFR049W NA 6.579113e−1 YMR31 Ribosomal protein, mitochondrial
YOR367W NA 6.502742e−1 SCP1 Similarity to mammalian smooth muscle protein SM22 and chicken calponin alpha
YMR061W NA 6.471349e−1 RNA14 Component of pre-mRNA 3′-end processing factor CF I
YNL260C NA 6.046290e−1 YNL260c Weak similarity to hypothetical protein Schizosaccharomyces pombe
YER091C MET 5.899951e−1 MET6 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase
YER092W NA 5.899951e−1 IES5 Weak similarity to tryptophan synthase beta subunit—Aquifex aeolicus
YDL208W NA 5.322103e−1 NHP2 Nucleolar rRNA processing protein
YKR068C NA 5.281643e−1 BET3 Involved in targeting and fusion of ER to golgi transport vesicles
YKR069W MET 5.280325e−1 MET1 Siroheme synthase
YOR136W NA 5.078566e−1 IDH2 Isocitrate dehydrogenase (NAD+) subunit 2, mitochondrial
YIL046W MET 5.066017e−1 MET30 Involved in regulation of sulfur assimilation genes and cell cycle progression
YIL047C NA 5.066017e−1 SYG1 Member of the major facilitator superfamily
YMR301C NA 5.010956e−1 ATM1 ATP-binding cassette transporter protein, mitochondrial

is inactivated by methionine (Kuras and Thomas, 1995; Thomas
and Surdin-Kerjan, 1997). These ChIP–chip data also show a large
inconsistency between target genes detected for Met4p and Met31p
(Supplementary material).

In a more recent study, Harbison et al. (2004) detected the binding
regions of yeast transcription factors in different culture media. This
study includes detection of PHO4 targets in phosphate-poor medium
(Pi−) and of MET4 targets in methionine-poor medium (SM).
Figure 3B shows a better consistency between ChIP–chip detec-
tion (Pho4p targets in Pi- medium) and expression data, although
many genes are detected with ChIP–chip but not by microarray
experiments.

Not suprizingly, we found not a single common gene between our
PHO predicted genes and the Pho4p targets detected by Lee et al.
(2002) in the rich medium (Fig. 3C). The comparison with Harbison
et al. (2004) results is more informative: several genes are detected by
both our motif-based PHO predictions and the ChIP–chip detection

(Fig. 3D), among which a good fraction is of the annotated Pho4p
targets.

The comparison between our PHO predictions and the gene
expression data (Fig. 3E) shows that almost all the genes show-
ing a high transcriptional response are detected by the discriminant
analysis (top-right corner). These genes include most of the train-
ing genes (PHO12, PHO84, PHO86, SPL2, PHO89, PHO5 and
PHO11) as well as some of our de novo predictions (VTC2, VTC4
and PHM6). However, many other predicted genes do not show any
response to phosphate in Ogawa’s experiments. These genes include
one of the training genes, PHO81, suggesting that some real phos-
phate genes can escape detection in Ogawa’s experiment. However,
motif-based predictions also contain a certain rate of false positive
(see Discussion).

Genes classified as MET by the discriminant procedure poorly
correspond to those detected by the ChIP–chip data in methionine-
poor medium (Fig. 3F). Only five genes are detected by both our
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Fig. 3. Comparison of matrix score based predictions with high-throughput data on DNA binding (Lee et al., 2002) and on transcriptional response to phosphate
Ogawa et al. (2000). Genes used in the training set are labelled (P, PHO; M, MET; C, CTL). Note that some training genes are missing on the graph because
the ChIP–chip dataset contains 3295 genes and Ogawa’s data 5783 genes among the 6345 genes in the complete yeast genome.
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Fig. 4. Error rates obtained with the expanded training groups. See Figure 2
for legends.

predictions and the ChIP–chip experiment, including two of the MET
training genes. Nine other training genes are detected by our predic-
tions but not in the ChIP–chip experiment, whereas one is detected
by the ChIP–chip and not predicted by our method.

Discriminant analysis with an expanded training set
It is somewhat surprising to notice that the simplest method (LDA)
gives better performances than more elaborate treatments (QDA,
PCA-transformation before LDA or QDA) (Fig. 2). This effect might
result from the small number of training objects, in particular for
the PHO group (eight genes). In order to test this possibility, we
performed the same analysis with a larger training set, regrouping
the original training set (proven PHO and MET genes) with those
predicted by our LDA procedure.

On the error curves obtained with the expanded training set (Fig. 4),
QDA indeed gives better results than with the small training sets, and
its performances are similar to LDA. The differences between PCA-
transformed and non-transformed data are also less sensitive with the
expanded dataset, and, for PHO against CTL + MET classification,
the best results are obtained with LDA on the PCA-transformed data.

DISCUSSION
The first question addressed in this paper was whether PSSMs would
allow us to distinguish PHO and MET genes, despite the high similar-
ity between the consensus of their main regulator (TCACGTGA for
Met4p and CACGTKkk for Pho4p). Discriminant analysis using the

LOO evaluation shows that there is no confusion between the training
PHO and MET genes. The PSSMs are thus sufficiently informative,
despite the small number of sites used for building them (no more
than seven sites for Pho4p.t). An essential reason for the absence
of cross-predictions is the integration of multiple criteria. For the
MET family, two distinct PSSMs were used to reflect the syner-
gic regulation by multiple transcription factors (Met4p and Met31p,
respectively). The comparison of scores obtained with Met31 and
Met4 matrices shows that some genes are essentially regulated by
Met4p, some by Met31p and some by both factors. The combina-
tion of matrices thus provides better information to distinguish MET
sequences from the PHO and CTL groups. We also used multiple
scores to reflect the binding diversity due to the specificity of the core-
flanking bases (e.g. Pho4p.t and Pho4p.g matrices) and self-synergy
assured by multiple binding sites (selection of the three top scores for
each sequence). This multi-variate representation gives better clas-
sification than any matrix taken alone. However, it is essential to
restrict the number of predictive variables in order to avoid the trap
of over-fitting (Fig. 2).

The second question was whether the classification based on putat-
ive binding motifs would allow to predict phosphate or methionine
response at a genome-scale. These genome-scale predictions should
be taken with caution, for various reasons. (1) The number of genes
is so large (6345) that even a small risk of error would result in many
misclassifications. To avoid this, we deliberately chose low prior
probabilities (1%) for PHO and MET classes, and this has a cost in
terms of sensitivity (we miss 5 out of the 16 MET genes). The predic-
tions can thus certainly not be considered as exhaustive. (2) When two
neighbour genes are transcribed in divergent directions they share the
same intergenic region. In such cases, we cannot predict whether the
binding sites are involved in the regulation of the gene at their left,
at their right, or both. (3) The binding of a transcription factor is not
always sufficient to confer a transcriptional regulation. Note that the
restrictions (2) and (3) also apply for the interpretation of ChIP–chip
data, since this method detects the binding of a transcription factor
to an intergenic region.

Having in mind all the restrictions above, genome-scale predic-
tions can nevertheless give some useful information. It is interesting
to note that among the 6345 yeast genes not a single one is predicted
as both phosphate and methionine regulated. Another observation is
that, despite the simplicity of its underlying model, LDA gives better
results than QDA. Paradoxically, our attempts to use more sophist-
icated methods (SVM) resulted in a lower hit rate (not shown). It
is well known that each classifier has its own range of applications,
and apparently with the type of data treated here good results can
be obtained with one of the simplest classifiers. It is likely that the
accuracy of LDA observed in this case comes from the very small
size of the training set. In cases where larger training sets are avail-
able, other methods that rely on the estimation of more parameters
(SVM, QDA) might become more efficient. This hypothesis seems
to be supported by our observation that the differences between LDA
and QDA are reduced when the classification is performed with the
expanded training set combining annotated and predicted genes.

The comparison between our predictions and the gene expression
and ChIP–chip data suggests that pattern-based prediction of gene
regulation can be very helpful as a complement to high-throughput
data. The high rate of false-positives returned by some methods
can be reduced by selecting the most consistent results (intersec-
tion between sets of genes detected by the different methods).
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Alternatively, sequence-based predictions could be used to detect
potential targets, which for some biological (culture conditions) or
technical (noise) reason escaped the detection by high-throughput
methods. These predicted targets could then be submitted to a more
precise experimental characterization.
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