
HAL Id: lirmm-00105318
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105318

Submitted on 11 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficiency of Pregroups and the French Noun Phrase
Sylvain Degeilh, Anne Preller

To cite this version:
Sylvain Degeilh, Anne Preller. Efficiency of Pregroups and the French Noun Phrase. Journal of Logic,
Language and Information, 2005, 14 (4), pp.423-444. �10.1007/s10849-005-1242-2�. �lirmm-00105318�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105318
https://hal.archives-ouvertes.fr

 1

Sylvain Degeilh
LIRMM/CNRS

Montpellier
France

degeilh@lirmm.fr

Anne Preller
LIRMM/CNRS

Montpellier
France

preller@lirmm.fr

Efficiency of pregroups and the French noun phrase

ABSTRACT:

 We study mathematical and algorithmic properties of Lambek’s pregroups and illustrate them by the

French noun phrase. An algorithm of complexity 3n to solve the reduction problem in an arbitrary free pregroup

as well as recognition by a pregroup grammar is presented. This algorithm is then specified to run in linear time.

A sufficient condition for a language fragment that makes the linear algorithm complete is given.

Introduction

Pregroups are a recent mathematical tool introduced in [Lambek 99] for natural language

processing. They arose as a simplification of the Lambek calculus, first published under the name of

Syntactic Calculus in [Lambek 58]. A pregroup grammar consists of a free pregroup and a pregroup

dictionary, i.e. a finite relation which associates finitely many elements of the pregroup, the so-called

types, to each word. [Buszkowski] has shown that pregroup grammars are weakly equivalent to

context-free grammars. Well known algorithms like [CYK] or [Earley] for context-free grammars

solve the problem of the grammaticality of strings of words in time proportional to the cube of the

length of the string. However, it would not only be clumsy and inefficient to translate a pregroup

grammar to a context-free grammar (this grammar would include the whole dictionary in its set of

rules), but it would also go against the pregroups spirit. Indeed, pregroups were conceived as a tool

which “processes the words as you hear them”. For each word you hear, you choose a type from the

(mental) dictionary. The grammaticality of a string of words from the dictionary is then decided by

performing computations on the corresponding string of types in the pregroup. So far, much of the

work with pregroups has been aimed at establishing the universality of the rules, which are the same

whatever the language - only the dictionary changes. Fragments of Arabic, Japanese, Latin [Math-

Ling], Polish [Kislak], English [Lambek 99, 03], French [Barg Lamb], German [Lamb-Prel NP, SE],

Italian [Cas-Lamb] among others have been analysed with the help of pregroups.

 2

This paper presents an algorithm which solves the decision problem of the theory of pregroups

as well as recognition by a pregroup grammar in time proportional to the cube of the length n of the

input string.1 As this algorithm combines type assignment and type checking, the constant of 3n

depends on a bound for the number of types per word and a bound for their length, but not on the

number of rules or symbols, which may even be infinite. This is still an improvement on known

algorithms for context-free grammars, where the constant depends on the size of the dictionary. Since

“type checking” is a special case of the recognition algorithm, the former is then simplified to run in

linear time. This linear algorithm is generally not complete, so a simple condition on the set of input

types is given, making the linear algorithm complete. This linearity condition is not satisfied by all

dictionaries, but its violation is linked to certain grammatical constructs, e.g. post-nominal adjectives

of a French noun phrase.

In the second part of the paper, representing the starting point of this work, we extend the

dictionary given in [Barg-Lamb] to include agreement and structure of the noun phrase. This is

achieved by adding several new basic types, organised according to features. Our extension is

conservative in the sense defined in Section 1, i.e. the new constructs and new words can be added

without changing the previous analysis conducted for the smaller grammar. A proliferation of basic

types does not affect efficiency, but a proliferation of types per word does. Unification of features can

be used to increase the type assignment efficiency, without effecting the pregroup grammar.

The small part of the French noun phrase covered here illustrates how the linearity condition is

violated. In English or German, relative clauses specifying noun phrases would have the same effect.

It also shows that features can be used in pregroup grammars, but only as a device to balance the

increase in complexity due to an increased number of types per word. The dictionary presented here is

the starting point to ongoing work ([Degeilh], [Preller]) on the efficiency and expressive power of

pregroup grammars.

Finally, we would like to thank two anonymous referees for their constructive criticism. We

have tried to address most of their concerns.

1. Mathematical properties

We briefly review the definitions.

Definition 1: A pregroup is a partially ordered monoid in which each element a has both a left adjoint

a� and a right adjoint ra satisfying

1 After submitting this paper, we learned that [Oehrle] independently found a cubic time algorithm tailored to
pregroups.

 3

 (Contraction) 1a a⋅ →�

1ra a⋅ →

(Expansion) 1 ra a→ ⋅

 1 a a→ ⋅ � .

The following are immediate consequences:

Properties:

1. 1 1a a a= = (1 is the unit of the monoid)

2. (ab)c a(bc)= (multiplication is associative)

3. a b→ and c d→ implies ac bd→ (order is compatible with multiplication).

4. 1ab ba→ → implies a b= � and rb a= (adjoints are unique)

5. ()ab b a=� � � , ()r r rab b a= (adjunction is quasi-distributive)

6. a b→ implies b a→� � and r rb a→ (adjunction reverses the order).

7. r ra a a= =� � (no mixed adjoints)

8. a b→ if and only if 1a b →� if and only if 1rab →

Properties 1. – 3. are part of the definition of a partially ordered monoid, while the Properties 4. - 7.

can be easily derived from Definition 1. For example, to derive that rb b= � (Property7), use

1b b bb→ →� � and 4. with a b= � . Similarly, 5. follows from 4. Indeed, r r(ab)(b a) =

r ra(bb)a → 1 ra a = raa Æ 1 → rb b = 1rb b → r rb (a a)b = r r(b a)(ab) . Hence, by 4., ()r r rab b a= .

Finally Property 8. is shown as follows: If a b→ , then 1b a b b→ →� � by 3. and Contraction. If

1b a →� , then a bb a b→ →� , using 3. and Expansion. 2

Important additional properties apply in free pregroups. First of all, they are non-commutative and the

iterated adjoints of basic types are all different. The most important result is expressed in the

Switching Lemma [Lambek 99, Proposition 2], which we shall include here for completeness sake.

The free pregroup generated by a partially ordered set of basic types

{ }B a,b, ...= .

is characterised in [Lambek 99] as the ordered free monoid generated from the set of simple types Σ

consisting of the basic types and their iterated adjoints:

2 We are grateful to Joachim Lambek for having drawn our attention to this.

 4

 Σ = { 2 1 0 1 2a a a a a() () () () ()... , , , , ,...− − , 2 1 0 1 2b b b b b() () () () ()... , , , , ,...− − }

where

 2 1 0 1 2a a a a a() () () () ()... , , , , ,...− −

stands for

 a a a a ar rr... , , , , ,...�� � .

In particular, 0()a stands for a . Unit 1 denotes the empty string (thus is not an element of Σ),

multiplication is the same as concatenation. Let n be an integer. Declare a b(n) (n)→ , if either n is

even and a b→ or n is odd and b a→ . By definition, every type that differs from 1 has the form

 1
1

k(n)(n)
k...a a

where 1 k,...,a a are basic types and 1 kn ,...,n are integers. The adjoints of a type are defined by

 1 11 1
1 1:k k(n) (n)(n) (n)

k k(...) ...a a a a− −=�

 1
1

k(n)(n) r
k(...)a a : = 11 1

1
k(n) (n)

k ...a a+ +

The order on types a b→ is now read as “ a reduces to b ”. It is defined as the transitive closure of the

union of the following three relations

(Induced step)

 (n) (n)c d c da b→ , if either n is even and a b→ or n is odd and b a→ .

(Generalised contraction)

 1(n) (n)c d cda b + → , if either n is even and a b→ or n is odd and b a→ .

(Generalised expansion)

 1(n) (n)cd c da b+→ , if either n is even and a b→ or n is odd and b a→ .

where c,d are arbitrary types and ,a b are basic.

In the following, a substring of 1 na ...a always means a substring
1
...

mi ia a in which the symbols appear

in the same order as in the original string: 11 ... mi i n≤ < < ≤ .

Switching Lemma [Lambek 99]: Let 1 na ,...,a and 1 mb ,...,b be simple types. Then 1 na ...a → 1 mb ...b if

and only if there is a substring
1 ki ia ...a of 1 na ...a and a substring

1 ki ib ...b of 1 mb ...b such that

 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 1
p pi ia b , p k→ ≤ ≤ ,

where
1 ki ia ...a is obtained from 1 na ...a by generalised contractions only, 1 mb ...b is obtained from

1 ki ib ...b by generalised expansions only and
1 ki ib ...b is obtained from

1 ki ia ...a by induced steps only.

Corollary [Lambek 99]: Suppose that 1 na ,...,a and b are simple types. Then 1 na ...a b→ holds if and

only if there is a simple type b' b→ such that one can obtain b' from 1 na ...a by repeatedly omitting

 5

pairs of contractible adjacent types, i.e. there is a sequence 1 1 2n mX a a X X b= =... , , ..., ' such that

1i iX X +→ is a generalised contraction for 1 i m≤ < . Similarly, 1 na ...a 1→ if and only if the empty

string can be obtained by repeatedly omitting pairs of contractible adjacent types.

An immediate consequence of the Switching Lemma is the decidability of the theory of

pregroups, i.e. the problem whether a b→ is decidable for arbitrary types a and b in an arbitrary

free pregroup. We call this the reduction problem for free pregroups. Any decision procedure of this

problem is called a type checking algorithm. By Property 8, Section 1, any decision procedure of the

particular problem 1a → also yields a decision procedure for the general problem.

Finally, here some more consequences of the Switching Lemma which will be useful in the

following sections:

Proposition 1: (Conservativity of extensions) : Let B be an ordered subset of 'B , i.e. B is a subset of

'B and a → b in B if and only if a,b B∈ and a → b in 'B . Then the free pregroup 'P generated

by 'B is conservative over the free pregroup P generated by B . That is to say, for all elements e, f

of P such that e f→ holds in 'P , e f→ holds already in P .

Proof: Let e, f be elements of P such that e f→ holds in 'P . First consider the special case where

e f→ is a generalised contraction. Then there are basic types a,b B∈ and an integer n such that

1(n) (n)e c da b += , f cd= and either a → b in 'B and n is even or b → a in 'B and n is odd. By

hypothesis, this implies a → b in B and n even, or b → a in B and n odd. Therefore e f→ is a

generalised contraction in P . By a similar argument, a generalised expansion (respectively induced

step) in 'P also is a generalised expansion (respectively induced step) in P .

In the general case, there are simple types 1 na ,...,a and 1 mb ,...,b of P such that 1 ne a ...a= , 1 mf b ...b=

and 1 na ...a → 1 mb ...b in 'P . Apply the Switching Lemma. There is a substring
1 ki ia ,...,a of 1 na ,...,a

and a substring
1 ki ib ,...,b of 1 mb ,...,b such that

 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b ,
p pi ia b→ in 'P , 1 p k≤ ≤ ,

where
1 ki ia ...a is obtained from 1 na ...a by repeated generalised contractions and 1 mb ...b is obtained

from
1 ki ib ...b by repeated generalised expansions. Now for every generalised contraction c d→ , from

c P∈ follows d P∈ . Indeed, d is obtained from c by omitting two simple types. Similarly, for

every generalised expansion c d→ , from d P∈ follows c P∈ . Hence
1 ki ia ...a and

1 ki ib ...b are in P

and all the generalised contractions establishing 1 na ...a →
1 ki ia ...a , induced steps used

 6

for
1 ki ia ...a →

1 ki ib ...b and generalised expansions intervening in the derivation of
1 ki ib ...b → 1 mb ...b , take

place in P . By the first part of the proof, this implies that 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , and

p pi ia b→ , 1 p k≤ ≤ , already hold in .P

Starting from the same string, different choices may lead to different results. For example,
ra aa� → a� and ra aa� → ra , indeed, r r= →� � �a aa a (aa) a (contract raa) and r r r= →� �a aa (a a)a a

(contract a a�). Generally, parentheses are a useful device for suggesting the generalised contractions

justifying a reduction: 1r r= →�� � �� �a a aa (a a)(aa) (contract the left most and the right most pair) and

r r r= →�� � �� � ��a a aa a (a a)a a a (contract the central pair). Both times we end up with a string where we

can “go no further”. Hence,

Definition 2: A pair of simple types (,c d) is contractible, if 1(n) (n)c , da b += = and either a → b and n

even or b a→ and n odd. A string of simple types is irreducible, if it has no adjacent simple types

which are contractible. An irreducible form of 1 na ...a is a substring that is irreducible. A string of

three simple types abc is called a critical triple, if 1ab → and 1bc → . A string of simple types 1 ... na a

is linear, if no substring
1 2 3i i ia a a is a critical triple.

For example, ra aa� is linear, but ra aa� is not linear. Or if a b→/ , then r�cb aa d is linear, but

if a b→ , then r�cb aa d is not linear. Linearity is a sufficient condition for a type to have a unique

irreducible form. For such types, every algorithm which produces some irreducible form will have

found all irreducible forms and thus will be a type checking algorithm. Obviously, the amount of

work needed to find one irreducible form is much lower than to find them all.

Proposition 2: Every linear type has a unique irreducible form.

Proof: Suppose 1 na ...a is linear. Use induction on n , the length of the string. If 1n = , the property is

obvious. For the induction step, note that every substring of 1 na ...a is again linear. Moreover,

whenever 1i ia a + and 1j ja a + are different contractible pairs, indices 1 1i,i , j, j+ + are all different.

Suppose 1 na ...a has k pairs of contractible adjacent types. Omitting them in 1 na ...a corresponds to k

simultaneous contractions. They can be done in any order without changing the result. If 0k = , then

1 na ...a is irreducible. Otherwise, the unique substring resulting from the k contractions is less than n

in length and we may conclude by the induction hypothesis.

Finally, an almost self-evident property, which we retain for later use.

Lemma 1: Suppose 1 1... na a → . Then there is an index j n< such that 1j na a → , 1 1 1...j na a+ − → and

1 1 1... ja a − → .

 7

Proof: Let 1 1 2 1... , , ...,n mX a a X X= = be a reduction of 1 ... na a to the empty string obtained by

generalised contractions only, i.e. 1i iX X +→ is a generalised contraction for 1 i m≤ < . Let i be the

index such that na occurs in iX but not in 1iX + . Then iX and 1iX + have the form i j nX Ua a= ,

1iX U+ = . Generalised contractions involving at least one simple type ka strictly between ja and na

appear before iX and therefore ka is contracted with a type which is also strictly between ja and na .

Hence 1 1 1...j na a+ − → . The argument for 1 1 1... ja a − → is similar.

2. Linguistic applications

A linguist will work with a free pregroup. The partially ordered set of basic types B generating the

free pregroup is tailored to the language fragment under consideration. As a first step, the language

fragment has to be described in common grammatical terms. We select words that are supposed to be

in the mental or electronic dictionary, e.g. nouns, adjectives etc. Grammatical concepts describing

grammatical constructs of the fragment will help to choose the basic types and the ordering. Finally,

one or several types are associated with every word of the fragment, thus constituting a dictionary.

Meta-rules serve to organise the content of the dictionary. Instead of explicitly writing the type(s) of a

word in the dictionary, it (they) may be described by a meta-rule.

The dictionary must be designed in such a way that a sequence of words is a grammatical

construct (sentence, noun phrase, etc) if and only if one of the corresponding strings of types reduces

to a basic type. If a word has more than one type, then it is sufficient that one of the possible choices

(type assignments) yields a string reducing to the basic type in question.

Every dictionary that respects this equivalence is said to be correct (it recognises only

grammatical constructs) and complete (it recognises all grammatical constructs) of the fragment.

However, correctness and completeness are generally not proven, but only illustrated on examples and

counter-examples, unless the language fragment is already given by a formal grammar.

A correct and complete dictionary satisfies the principle of substitution and certain robustness

properties:

Principle of substitution: If a word is replaced by another word with the same type, then a

grammatical string of words remains grammatical. Indeed, being a grammatical string of words is

equivalent to having a string of types reducible to a given basic type and, by assumption, the string of

types is the same before and after substitution.

Robustness a): Assigning new types to words:

Suppose a word w has type d and we also give it type c such that c d→ , then every string of words

that is accepted using d for w is also accepted using c .

 8

Robustness b): Extensions by new basic types.

This means that one can extend a given set B of basic types, by declaring new types and adding

inequalities involving the new types, thus obtaining a larger set of basic types B' . Then the free

pregroup 'P generated by B' includes the free pregroup P generated by B . Whenever both a and

b belong to the smaller pregroup P and a b→ can be derived in P , then this also holds in the larger

'P . By Proposition 1 above, the converse also holds, provided that the order in B remains

unchanged: if a b→ can be derived in the larger pregroup 'P and both a and b belong to the

smaller pregroup, then the whole reduction can be done in the smaller pregroup.

The linguistic significance of this is that the language fragment can be increased by adding

new basic types and/or new types to the dictionary, without having to repeat verification of correctness

and completeness performed before the extension. It also simplifies the task of verifying that a typing

is correct and complete. One can proceed step by step, extend the fragment by adding new basic types

and assigning new types. Then to show that the typing is correct and complete with respect to the

larger fragment, only the sequences of words with new types have to be considered. The only

prerequisite is not to change the order between the old basic types. For example, suppose B B c' []=

where c is a new basic type. We may declare a c→ and/or c b→ for some “old” basic types

a,b B∈ . However, we must take care not to declare both a c→ and c b→ , unless a → b already

holds in B . Note that this step by step approach is normally taken for granted. This is not as trivial as

one might think. Obviously, a sequence of words that is a grammatical construct of the smaller

fragment remains so in the larger fragment. Just use the typing and the reduction in the smaller

pregroup P , which remains a reduction in the bigger one P' . It is, however, not so obvious that a

sequence of words which is not grammatical in the smaller fragment does not become grammatical in

the bigger fragment, even if no new types are involved. Indeed, suppose that a sequence of words gets

assigned a type c in the smaller fragment, but is not grammatical. As the typing in P is correct and

complete with respect to the smaller fragment, we have ac → where a is the basic type

corresponding to the grammatical notion under investigation. A priori, it could not be excluded that

c d→ and ad → , where d is a new type in P' . But then, it would follow that ac → in P' . From

this we would have to conclude that the sequence of words is now well-formed, because its type

reduces to a . Conservativity ensures that this cannot happen, as from ac → in P' it would follow

that ac → in P , contradicting ac → .

This property is actually used continuously and most of the time without saying so. We will do so in

Section 4.

We will sum up the mathematically relevant facts of the discussion above:

 9

Definition 3: 1) Let V be a non-empty set, B a partially ordered set and P the free pregroup

generated by B . A dictionary of vocabulary V with types in P , is a map D from V to the set of

subsets of P .

 2) A dictionary D is bounded if there are constants k and l such that for every word

Vv ∈ the set D()v has at most k elements, and each type in D()v has at most length l . A dictionary

D is locally finite, if D()v is finite for all Vv ∈ . It is said to be finite, if the sets V , B and D()v

are finite.

 3) A type-assignment for a string 1 ... nv v of elements in V is a sequence 1 ... nt t of types

in P such that D()i it v∈ , for 1 i n£ £ .

4) Let a be a simple type in P . A string 1 ... nv v of elements in V is a -grammatical,

if it has a type assignment 1 ... nt t such that 1 ... nt t a→ . A sequence 1 ... nv v is grammatical if it is a -

grammatical for some simple type a . Finally, 1 ... nv v is well-formed if there is a type assignment 1 ... nt t

such that 1 1... nt t → .

3. Algorithmic Properties

Dictionaries defined for natural language fragments are generally assumed to be finite, i.e. sets V , B

and D()v are finite. Such a finite dictionary together with a finite number of generalised contractions

and induced steps involving types from the dictionary has been called a pregroup grammar in

[Buszkowski]. It is shown in [loc.cit.] that pregroup grammars are weakly equivalent to context-free

grammars. However, the context-free grammar associated with a pregroup grammar would include

the whole dictionary in its set of rules. The complexity estimates of the algorithms in [CYK] or

[Earley] use a constant factor for 3n which must bound the number of symbols and rules of the

grammar. However, there is no need to restrict oneself to finite dictionaries, the algorithm defined

below works for an infinite number of rules and symbols.

In the following, we assume that D is locally finite, i.e. the sets D()v are finite, but not

necessarily V or B . For example, suppose that V is equal to Σ , the set of simple types generated by

B , and D equal to the identity map on Σ . Note that this dictionary is infinite, but bounded with

bounds 1k l= = . Moreover, the problem of grammaticality for this dictionary is the same as the

decision problem for free pregroups, i.e. a recognition algorithm for this dictionary is also a type

checking algorithm.

On the other hand, a type checking algorithm provides a solution to the problem of grammaticality for

every dictionary D in which the sets D()v are finite. Indeed, try the type checking algorithm on all

possible type assignments of the string 1 ... nv v . An algorithm which provides 1 ... nv v with associated

strings of types from the dictionary is called a type assignment algorithm. To enumerate all type

 10

assignments would not be very efficient: If ik is the number of elements in D()iv , then there are

1 2 ... nk k k different type assignments for 1 ... nv v . The recognition algorithm given below combines type

assignment and type checking, it works for all dictionaries, independent of the pregroup, grammar or

language.

Note that an algorithm which solves the problem of well-formed strings for arbitrary

dictionaries implies a decision procedure for the problem of a -grammaticality for arbitrary simple

types a . Indeed, add to the vocabulary V a new element v and extend D to v by letting

{ }D() rv a= . Then a sequence 1 ... nv v from V is a -grammatical if and only if 1 ... nv v v is well-formed.

This follows from Property 8 of Section 1 and the fact that the only possible type assignment for v is
ra .

The intuitive idea underlying the algorithm is as follows: We process the string of symbols

W = 1 ... nv v from left to right, proceeding by stages. At each stage, we choose a symbol iv represented

by its index i , a type t in D()iv and a position p in t . We examine the simple type(s) placed just to

the left of this position in some type assignment and store it (them) in the memory, where they are kept

as a left “parenthesis” awaiting contraction with a simple type that might come later. Moreover, each

of them could also be a “right parenthesis” to some earlier simple type, a “left parenthesis” ready for

contraction. In this case, the two types are contracted, which means that the “left parentheses”

awaiting contraction at the earlier stage become available again, i.e. are stored in the memory at the

present stage. Only the “nearest left parentheses” available for contraction has to be remembered.

This defines a function DWNlp on the set of stages, which takes subsets of DWS as values. Context

permitting, we omit the subscripts.

We first look at an example, in the case where the vocabulary is the set of simple types and the

dictionary is the identity map: Let cb aa drW = � where we assume a b, d b→ →

 11

Stage

s

Predecessor

's

Type read

'sa

Test ()Nlp s Corresponding choice(s) of contractions

1 0 none none {0} initialising

2 1 c

none

{1} (c

3 2 b�
1cb →� , no

{2} (c(b�

4 3 a
1b a →� , yes

3
1




 (c(b (a� ,
(c(b a)�

5 4 ar
1aar → , yes
1car → , no

4
2







(c(b (a(ar� , (c(b a)(ar� ,
(c(b (aa)r�

6 5 d
1a dr → , no
1b d →� , yes

5

1







(c(b (a(a (dr� , (c(b a)(a (dr� , (c(b (aa)(dr�

(c(b (aa)d)r�

Note that this function does not remember the intermediary contractions already made. It only

remembers the nearest not yet contracted type to the left.

Definition 4 (Nearest left parentheses function Nlp): Let D be a dictionary and 1 ... nW v v= a non-

empty string of elements from the vocabulary. The stages associated to W form a set

{ }1 1D (, ,) : , D(), ()W iS i t p i n t v p length t= ≤ ≤ ∈ ≤ ≤ { }0 0 0 1 0 0(, ,), (, ,)n∪ + .

ordered alphabetically, i.e.

 (', ', ')i t p (, ,)i t p≤ if and only if either 'i i< or else ' , ' , 'i i t t p p= = ≤ .

In general, this order is not total, a stage may have several predecessors or successors. For example,

the set of predecessors of (, ,)i t p satisfies

{ }
{ }1

1 if 1

1 else

(, ,) ,
(, ,)

(, ', (')) : ' D() ,i

i t p p
Predecessor i t p

i t length t t v −

 − >= 
− ∈

However, if 1' D()it v −∈ is chosen, then (, ,)i t p has a unique predecessor compatible with this type

assignment, namely 1(, ,)i t p − if 1p > and 1(, ', ('))i t length t− if 1p = . If the context makes the type

assignment clear, we denote this predecessor by ()pred s , and similarly for successors.

Finally, let sa denote the simple type occupying position p in the type t of s = D(, ,) Wi t p S∈ . The

Nearest left parentheses function is defined on the set of states as follows:

0 0 0D (, ,)WNlp = ∅

 { } (1 0 0 0" 'D ') " ('), , " (, ,)() ' (")()
s sW s Predecessor s s Nlp s a a sNlp s s Nlp s∈ ∈ → ≠= ∪� � .

 12

When the vocabulary is the set of simple types and the dictionary is the identity map, a state has the

form 1(, ,)ii a . As the string 1 ... nW a a= is given state 1(, ,)ii a can be identified with the integer i . The

definition above simplifies to

0D ()WNlp = ∅

 { } 1 01D (), ,() ()
j iW j Nlp i a a jNlp i i Nlp j∈ → ≠+ = ∪ ○ .

Proposition 3: There is a recognition algorithm which decides for every locally finite dictionary D

and every string of symbols in the vocabulary, whether it is grammatical. If the dictionary is bounded

with bounds k and l , then the complexity is 3()o n where n is the length of the string. The constant

factor of 3n is equal to 3 3k l .

Proof: The proof consists of showing that

 1) W = 1 ... nv v is well-formed if and only if 0 0 0 1 0 0(, ,) (, ,)Nlp n∈ +

 2) 1 0 0(, ,)Nlp n + can be calculated in at most 3 3k l 3n steps.

This follows from the next 5 lemmas.

Lemma 2 : * ()s Nlp s∈ implies *s s< . In particular, if (, ,)s i t p= , then ()Nlp s has at most ikl

elements, where k bounds the number of types associated to 1,jv j n≤ ≤ , and l the length of the

corresponding types.

This follows immediately from the definition.

Lemma 3 : Let (, ,)s i t p= , * (*, *, *)s i t p= , 1 ... lt a a= and 1 ** * ... *lt a a= . If * ()s Nlp s∈ , then there is a

type assignment 1 1* **, , ..., ,i i i it t t t t t+ −= = for 1 1* * ...i i i iv v v v+ − such that

X = 1 1 1(*) * * ()* *succ s l i i pred sa a t t a a 1+ −... Æ ,

i.e. *sa is “a left parenthesis ready for contraction with sa ”.

Indeed, use induction on s . If 0 0 0(, ,)s = there is nothing to prove. Assume * ()s Nlp s∈ . By

definition, *s is either itself a predecessor of s or there is a predecessor 's of s and an element

'' (')s Nlp s∈ such that * ('')s Nlp s∈ and 1" 's sa a → . In the former case, 1 1*i i+ > − , X is the empty

string and we are done. Assume the latter. The induction hypothesis applies to "s and 's . Hence

there are type assignments 1 1* * " "*, , ..., , "i i i it t t t t t+ −= = and 1 1" " ' '", , ..., , 'i i i it t t t t t+ −= = such that

Y = 1 1 1(*) * * " (")* * " "succ s l i i pred sa a t t a a 1+ −... Æ , Z = 1 1 1(") " " ' (')" " ' 'succ s l i i pred sa a t t a a 1+ −... Æ

and

1" 's sa a → .

 13

Finally, let it t= . As 's is a predecessor of s either 1'i i= − or else 'i i= and 't t= . In both cases, 's

is the predecessor of s compatible with the type assignment 1 1* **, , ..., ,i i i it t t t t t+ −= = . Therefore,

" 's sX Ya Za 1= Æ .

Lemma 4: Let (, ,)s i t p= , * (*, *, *)s i t p= , 1 ... lt a a= , 1 ** * ... *lt a a= and 1 1* **, , ..., ,i i i it t t t t t+ −= = be a

type assignment for 1 1* * ...i i i iv v v v+ − such that X = 1 1 1(*) * * ()* *succ s l i i pred sa a t t a a 1+ −... Æ . Then

* ()s Nlp s∈ .

 Again proceed by induction on s . If *s is a predecessor of s , then * ()s Nlp s∈ by definition.

Otherwise, let 's be the predecessor of s compatible with the given type assignment. As the string X

reduces to the empty string, its last simple type, 'sa , is contracted with some simple type occurring to

before 'sa in X , see Lemma 1 in Section 1. Hence, there is a stage "" (", " , ")is i t t p= = such that

1" 's sa a → , 1 1 1(") " " ' (')" " ' 'succ s l i i pred sa a t t a a 1+ −... Æ and 1 1 1(*) * * " (")* * " "succ s l i i pred sa a t t a a 1+ −... Æ . By

the induction hypothesis, this implies that " (')s Nlp sŒ and * (")s Nlp sŒ . So, * ()s Nlp sŒ by

definition.

Lemma 5:
1

0 0 0 1 0 0...(, ,) (, ,)
nv vNlp n∈ + if and only if there is some type assignment 1 , ..., nt t for 1 ... nv v

such that 1 ... nt t 1Æ .

Apply Lemma 3’ and Lemma 4’to 0 0 0* (, ,)s = , 1 0 0(, ,)s n= + .

Lemma 6: Let k bound the number of types and l the length of the types in 1D(),jv j n≤ ≤ . Then

(, ,)Nlp i t p can be calculated from the previous values in at most 2 2 2i k l steps. If ,k l are bounds for

the dictionary, then 1()Nlp n + is of complexity 3()o n where the constant factor of 3n is 3 3k l .

Proof: There are at most ikl stages less or equal to s . For each stage "s less than s , we compare it

with the predecessor(s) 's of s . If it is a predecessor, we add it to ()Nlp s and are done. Otherwise,

we check if it belongs to the set (')Nlp s . If this is not the case, we go to the next predecessor. If "s

belongs to (')Nlp s , we check if 1" 's sa a → . If this is not the case, we go to the next predecessor. If, on

the contrary, 1" 's sa a → , we add the elements of (")Nlp s to ()Nlp s and are done. By Lemma 2, there

are at most iikl k− stages in (")Nlp s , where ik is the number of predecessors of s . On the whole, we

have executed at most ikl steps for "s , counting comparisons and copying as one-step operations. As

we do this for every "s less than s , it takes at most 2 2 2i k l operations to calculate ()Nlp s . Finally, to

calculate 1 0 0(, ,)Nlp n + , we must calculate all sets ()Nlp s . Hence the whole number of steps can be

bounded by 3 3 3n k l .

 14

Corollary: If there is a bound K such that
1 ... ()

nv vNlp s K< for all stages s and strings 1 ... nv v , then the

complexity of Nlp is proportional to n .

In the case of the free pregroup reduction problem, where 1k l= = , the constant factor of 3n is

1 . In the case of dictionaries for a natural language fragment, the length of a type l assigned to a

word generally does not exceed 4 or 5 . The number k of types assigned to a word may go up to 12

or more. Though this constant is generally considerably smaller than the size of the dictionary, any

algorithm of complexity 3()o n is unlikely to be used without a machine. Using the corollary, a linear

strategy for type checking can be obtained by a slight modification of Nlp . The idea is to open a new

left parenthesis, only if necessary, i.e. if the considered position cannot be an expected “right

parenthesis”. Call the corresponding function Llp , the “lazy left parentheses” function. Recall that

stages are of the form 1(, ,)ii a , 0 1i n≤ ≤ + and identify with the integers in { }0 1 1, , ...,n + as 1k l= = .

Definition 5 (Lazy left parenthesis function Llp):

0()Llp = ∅

{ }
if

1
 else

()
(), ()

() j Link i
Llp j Link i

Llp i
i

 ≠ ∅+ = 


�
Œ

where { }: 1 1() () , j iLink i j Llp i j a a= ∈ ≤ → .

It is clear that 1()Llp i + is included in 1()Nlp i + and has exactly one element. Moreover, Llp defines

a reduction and ()j Link iŒ means that ja is contracted with ia in this reduction. More precisely, say

that i and j are linked, if ()j Link iŒ or ()i Link jŒ . Then

Lemma 7 : 1) If 1()k Llp i∈ + , then 1k ia a 1+ ... Æ and for all m such that 1k m i+ ≤ ≤ there is a p with

1k p i+ ≤ ≤ , linked to m .

2) If ()j Link iŒ , then j ia a 1... Æ .

3) ()m Link pŒ implies, for all i p> and all ()j Llp iŒ , that j p> or j m< .

4) Every index p is linked to one index m at most.

Proof: 1) If k i= , there is nothing to show. Assume 1()k Llp i∈ + and 1k m i+ ≤ ≤ . As k i< , there is

()j Link iŒ such that ()k Llp jŒ . As () ()Link i Llp i⊆ , the induction hypothesis applies to i j− and to

j k− . Note that if or m j m i= = , then m is indeed linked to some p with 1k p i+ ≤ ≤ . 2) is an

immediate consequence of 1). 3) Suppose ()m Link pŒ , i p> and ()j Llp iŒ . Use induction on i p− .

 15

In the case of 1i p= + , we have ()j Llp mŒ , as ()Link p ≠ ∅ . Hence j m< . If 1i p> + , then either

1j i p= − > or 1()j Llp i −Œ and therefore, by the induction hypothesis, j p> or j m< . To see 4),

note first that an index p cannot be linked to two different smaller indices, as ()Link p has at most

one element. By 3) an index m cannot be linked to two larger ones, say p and i with p i< . And it

also cannot be linked to a smaller and a larger one, as ()m Link pŒ , ()p Link iŒ would also contradict

property 3).

Finally, the next and last Lemma confirms that the unlinked simple types of the string form an

irreducible substring.

Lemma 8 : Let Unlinked = { }1 , ..., qi i be the set of unlinked indices in increasing order. Then the

following holds

I) every index less than 1i (respectively between i
�
 and 1i +� , respectively larger than qi) is linked to

some index below 1i (respectively between i
�
 and 1i +� , respectively larger than qi).

II) ia
�

 and
1ia

+�
 are not contractible.

Proof: Assertion I) follows from Lemma 7, 1) and 2). To show II), assume 1i i +=
�

 and let ()j Llp iŒ .

By choice of i , r
i ja a≤/ , i.e. ja and ia are not contractible. Hence, it is sufficient to show that j i=

�
.

In view of Lemma 7, 1), we only must show that j is not linked to any index. If j were linked to a

smaller index, this would contradict Lemma 7, 3). If j were linked to an index greater than i , this

would imply that i is linked by Lemma 7, 1). Finally, j cannot be linked to a larger index which

would be less than i , because of Lemma 7, 1) and 4).

Thus the lazy left parenthesis function finds an irreducible form of a string, but generally, strings have

more than one irreducible form. Below we give a sufficient condition for types to have a single

irreducible form.

Definition 5: The typing of a language fragment is said to be linear if all strings of types

corresponding to strings of words in the dictionary are linear.

 16

Proposition 4: The type checking problem of a linear fragment can be decided by a linear algorithm.

Proof: By Proposition 3, it is suuficient to find an algorithm which is linear in the length of the string

and produces an irreducible form of the string. For this all we have to do is add a new step at stage

1i + : erase j and i from { }1, ...,n , whenever the test ()j Link iŒ succeeds. Together with the two

steps to calculate 1()Llp i + , at most four operations are performed at stage 1i + .

In the next section, the French noun phrase, when formed from determiners, prenominal adjectives and

nouns only, is a linear fragment, hence is recognised by the “lazy” linear algorithm. Postnominal

adjectives introduce critical triples, hence other linear strategies must be found.

4. French noun phrase

 Agreement in gender and number was ignored in [Barg-Lamb]. Pregroup grammars handle

those “features” by a proliferation of basic types. This does not increase the running time of the

recognition algorithm, as we have seen in Section 3. For example, we introduce the basic type ngn to

denote a complete noun phrase, depending on its gender g and number n. We postulate gnn n→ ,

where n is a type used in [loc.cit.]. By Proposition 1, the typing proposed below is a conservative

extension of the typing in [Barg-Lamb].

 The noun phrases analysed below are either names or a determiner followed by a noun3.

Adjectives may occur between the determiner and the noun or follow the latter. The prenominal

adjectives precede the noun, while the postnominal adjectives follow it. A noun with correctly

declined and correctly placed adjectives forms an incomplete noun phrase. A determiner transforms

an incomplete noun phrase into a complete noun phrase, which may be a subject or an object in a

sentence. The notion of determiner follows [Le bon usage], it includes the indefinite article un, une,

the definitive article, le, la, l’, les and its contracted forms with de namely du, des, the possessive and

demonstrative pronouns son, sa, ses, ce(t), cette, ces, etc. as well as the preposition de preceded by an

adverb of degree like beaucoup, peu, or of negation like pas, point, etc.

4.1 Nouns and Adjectives

Nouns as well as adjectives vary in gender and number. Therefore the type of a noun is

indexed by g , which stands for 1 = masculine or 2 = feminine, and by n , where n = 1 means

singular and n = 2 means plural. The gender of a noun is given in the dictionary. The plural is in

most cases formed by appending the letter s to the singular form, but we will not discuss this here and

assume that the plural form is given in the dictionary. Nouns are count nouns like chat, pomme or

3 To keep the paper within reasonable limits, we ignore situations where the noun alone is a complete noun
phrase: Elle était institutrice, je vous en fais juge, nous venons en train etc.

 17

mass nouns like eau, pain, vent, etc. but also courage, beauté and so on. A count noun has type 0 gnc ,

a mass noun has type 0 1gm , for example

 chats : 012c

 pomme : 021c

 vin : 011m

 eau : 021m

Count nouns generally have both a singular and a plural. Many mass nouns have no plural, for

example riz . If a mass noun has a plural, we treat the plural form as count noun. For example

 vins : 012c

 eaux : 022c

 The first index in the types above serves to distinguish a bare noun from the incomplete noun

phrases formed from a noun embellished by adjectives. Indeed, adjectives are divided into prenominal

adjectives and postnominal adjectives 4, for example (un) bon vin blanc, versus (un) *blanc vin bon.

The great majority are postnominal, but most prenominal adjectives are very common, like beau, petit,

mauvais, jeune, etc. More than one adjective may precede or follow a noun. They must respect a

certain hierarchy, e.g. (le) beau petit chat, (un) autre beau petit chat, but *le petit beau chat. The

postnominal adjectives are also divided into classes which cannot be interchanged, compare un vin

blanc pétillant, with *un vin pétillant blanc. If two adjectives should occupy the same position, they

must be linked by a copula 5. We assume that the classification of the adjectives into prenominal and

postnominal hierarchy classes is known and can be looked up in the dictionary. We use Arabic digits

for the prenominal classes 1 2, , ...C C , Roman ones for the postnominal classes , , ...I IIC C , i.e. we have

classes hC where { } { }1 2h , ,... I,II,...∈ ∪ . The lower the number of its class, the closer the adjective will

be to the noun.

We introduce basic types xhgn where { } { } { }1 2 0h , ,... I,II,...∈ ∪ ∪ and x stands for c or m :

chat: 011c

chat noir : 11Ic

petit chat, petit chat noir: 111c

 beau (petit) chat: 211c

Moreover, a maximal type g nx is convenient in cases where the hierarchy does not matter:

4 Some adjectives may belong to both classes, especially if classic French or regional variations are also to be
covered.
5 This can be done with the usual polymorphic typing of the copula. To keep the paper within reasonable limits,
we ignore this case.

 18

h gn gnx x→ , for all h .

Determiners and certain adjectives vary in form according to whether the following word

starts with a vowel6 or not. For example, l’arbre, cet arbre, bel arbre, mon eau, but *le arbre, ce

arbre, *beau arbre, *ma eau.7 Every type x will have a copy 'x used for words or sequences of

words of which the first letter is a vowel. For example, arbre, respectively eau has type 011
'c

respectively 021
'm . Similarly, the masculine singular of a few adjectives like beau, vieux has a variant

bel, vieil to be used if the next word starts with a vowel. 8 The typing of beau, bel, etc. is therefore

beau, vieux, … : 211 11x xh
� , for 1 0, , , , ...h I II=

bel, vieil, … : 211 11x x h'
� , 1 0, , , , ...h I II=

where x c= , x m= .

The feminine singular and plural forms of these special adjectives have no such variant, most other

adjectives only have masculine singular. The following meta-rule applies to them and to the feminine

singular and plural forms of the special adjectives:

Meta-Rule (Adjectives):

Let A be an adjective and gnA its declined form of gender g and number n .

1) If A belongs to the prenominal hierarchy class Ci , 1 2, , ...i = , then

 gnA : x yi gn hgn
� , 1 0, ..., , , , ...h i I II= − ,

where

 either x c= and , 'y c c= or x m= and , 'y m m= , if A starts with a consonant,

either 'x c= , , 'y c c= or 'x m= , , 'y m m= , if A starts with a vowel.

2) If A belongs to the postnominal hierarchy class iC , , , ...i I II= , then

 gnA : x xr
h gn i gn , where , ', , 'x c c m m= , 0 h i≤ < .

Examples:

vin : 011m

blanc : 011 11
r

Ic c , 011 11m mr
I

vin blanc

6 The initial silent h is assimilated to an initial vowel.
7 This phenomenon is even more pervasive in the spoken language where the otherwise silent terminal
consonant of a word is pronounced, if the following word starts with a vowel.
8 In the spoken language, every adjective ending in a silent consonant has a variant form with an audible last
letter if followed by a word starting with a vowel.

 19

011m 011 11m mr
I → 11mI

amande : 021c

blanche : 021 21c cr
I , 021 21m mr

I ,

amande blanche

021c 021 21c cr
I → 21cI

pétillant : 011 11c cr
II , 11 11c cr

I II , 011 11m mr
II , 11 11m mr

I II ,

vin pétillant

 011m 011 11m mr
II → 11IIm

vin blanc pétillant

011m 011 11m mr
I 11 11m mr

I II → 11IIm

bon : 211 011c c � , 211 11Ic c � , 211 11IIc c � , …, 211 011m m � , 211 11Im m � , 211 11IIm m � , …

 bon vin blanc pétillant

 211 11IIm m � 011m 011 11m mr
I 11 11m mr

I II → 211 11IIm m � 11IIm → 211m .

A comment on our use of indices is warranted: Note that the types of *petite chat or *chat

petit will not reduce to a simple type. Types which differ “only” by the value of an index, say 011c and

111c , are actually just as different as n and 012c . The use of indices is convenient, when defining the

dictionary, i.e. when assigning types to the words of the language fragment. Each index in the

subscript of a type symbol represents a “feature” of the concept, like gender, number, position of the

adjective. The fact that a (sequence of) word(s) starts with a vowel or consonant should also

reasonably be called a feature. This feature has here been placed in superscript, expressed by the

presence or absence of the symbol ‘ (prime). The pregroup grammar does not include unification of

features, but a good type assignment algorithm will.

For example, when checking whether bon vin is a well-formed construct of the language, we

must try all possible type assignments of this sequence of two words until we hit one which reduces to

the appropriate basic type. Only one of the possible types for bon, namely 211 011m m � , will result in a

string which reduces the type of bon vin to 211m . Note that another type for bon must be used in bon

vin blanc pétillant. Type assignment can be made more efficient by keeping the variable h as long as

possible instead of immediately replacing it by its possible values. The Meta-rule describes types for

bon as 211 11x xh
� , for 1 0, , , , ...h I II= , x c, m= . This corresponds to eight or more types, depending on

the number of hierarchy classes. As a first step, the improved type assignment algorithm would assign

 20

the string 211 11x xh
�

011m to bon vin and at a second step make x m= and 0h = . Hence, a simple

calculation of equality of “features” is part of an efficient type assignment algorithm, by far exceeding

the efficiency of the general recognition algorithm.

4.2. Determiners

 The complete noun phrase, introduced by a possessive or demonstrative pronoun, definite or

indefinite article, can be a subject or attribute or direct object. It has type gnn . A complete noun

phrase formed with a mass noun can be preceded by the proposition de and become a partitive

complete noun phrase. Therefore we introduce new basic ngnq , and require n ngnq gn→ , where

{ }1 2,q ∈ . Here 1 stands for complete noun phrases formed with a mass noun, 2 stands for complete

noun phrases formed with a count noun .

General complete noun phrase

Roughly speaking, names are complete noun phrases and so are nouns, with or without adjectives, if

preceded by an article or a demonstrative or possessive pronoun.

 Albert : 111n'

 Marie : 211n

 le : 11 11n x � , ,x c m=

les : 2 2n xg g
� , x c c, '= , 1 2g ,=

ce, mon, ton, son, notre, votre, leur : 11 11n xq
� , either 2x c, q= = or 1x m, q= =

la, cette, ma, ta etc. : 21 21n xq
� , either 2x c, q= = or 1x m, q= =

cette, mon, ton, etc. : 21 21n xq ' � , either 2x c, q= = or 1x m, q= =

l’ : 1 1n xg q g'
� , 1 2g ,= , either 2x c, q= = or 1x m, q= =

cet : 11 11n xq ' � , either 2x c, q= = or 1x m, q= =

ces, mes,…, : 21 2n xg g
� , 1 2g ,= , x c c, '=

 un : 11 11n' xq
� , either 2x c c, ', q= = or 1x m,m' q= =

 une : 21 21n' xq
� , either 2x c c, ', q= = or 1x m,m' q= =

The difference between the types of le, les and the other determiners lies in the fact that prepositions

like de, à contract with le, les to yield a new word: du, (*de le), des (*de les), etc.

 21

Recalling that n' n'gnq gn→ and m mhgn gn→ , we use generalised contractions to analyse the following

example:

 un bon vin blanc

 111 11n' m � 211m Æ 111 11n' m �

11m Æ 111n' Æ 11n'

Note that these determiners yield complete noun phrases which can be a subject, object or attribute:

un bon vin blanc me plait, j’aime un bon vin blanc, c’est un bon vin blanc.

Partitive complete noun phrase

 French has complete noun phrases formed with the partitive article, du, de la, de l’, de, etc.

Functioning as a partitive 9, de transforms an incomplete noun phrase into a complete one. This

partitive noun phrase can be a direct object of a verb (Il mange du pain), attribute (C’est du sable) or

even subject (des enfants jouent dans la rue), i.e. the partitive article is understood as an indefinite

article. In everyday French, however, a noun phrase with the partitive article in the singular is rarely

used as the subject of a sentence: *Du pain est sur la table, ?De l’eau s’est infiltrée dans les

fondements, *Du sable gêne l’engrenage are replaced by Il y a du pain sur la table. Il y a de l’eau qui

s’est infiltrée. Il y a du sable qui gêne l’engrenage.

We introduce a new type gnn� , 1 2 1 2g , ; n ,= = , together with a super-type n� , such that

gnn n→� � . This is the type of complete noun phrases which generally will not be used as subject. The

plural partitive article des transforms a plural count noun into a complete noun phrase. The same

holds for the singular partitives du, de la, de l’, when preceding a mass noun phrase.

Hence the types

 des : 2 2n x x c cg g , , '=�� 10

 du : 11 11n m ��

 de : 1 11n ng g
��

9 i.e. which selects out of a mass or a group
10 This implies that des jolies fleurs is considered as a complete noun phrase.

 22

Examples

 (Je mange) des pommes (Je mange) du pain
 22 22n c �� 022c Æ 22n� 11 11n m ��

011m Æ 11n̂

(Il vend) du vin blanc
 11 11n m ��

011m 011 11m mr
I Æ 11n̂

The type of du vin blanc contains a critical triple and is identical to our running example cb aa dr� .

Note that the introduction of a new basic type for partitive complete noun phrases makes it

possible to define different semantical interpretations for

 (1) Des gens vous demandent.

(2) *Des nombres pairs sont divisibles par deux.

(3) Les nombres pairs sont divisibles par deux.

The first sentence is generally accepted, see [Le bon usage], [Carlier], [Kleiber], whereas the second is

rejected (because of the “wrong” meaning) and replaced by the third. Our analysis assigns different

types to the noun phrases des nombres pairs and les nombres pairs, namely 12n� and 12n . By an

appropriate type of the French verb, it will therefore be possible to accept (1) and (3) and to reject (2).

5. Conclusion

We have shown that pregroup grammars are efficient and language independent from a computational

view point, by giving a recognition algorithm running in time 3()o n with a constant which is

independent of the number of symbols or rules of the grammar. One way how pregroup grammars

gain in expressive power is by introducing a higher number of primitive categories (basic types) than

do the more classical categorial grammars. To increase efficiency of type assignment, the basic types

may be organized by features. Ongoing work will show that unification of features can be used as a

strategy combine type assignment and type checking in linear the time. The starting point for this is

the linear “lazy” type checking algorithm obtained as a special case of the general algorithm.

 23

References

[Barg Lamb] Danièle Bargelli, Joachim Lambek, An algebraic approach to the French sentence

structure, in P. de Groote, G. Morrill, C. Retoré (eds.), Logical Aspects of

Computational Linguistics, pp. 95-109, LNAI 2099, Springer, 2001

[Buszkowski] Wojciech Buszkowski, Lambek Grammars based on pregroups, in: P. de Groote, G.

Morrill, C. Retoré (eds.), Logical Aspects of Computational Linguistics, LNAI 2099,

Springer, 2001

[Carlier] Anne Carlier, La Résistance des articles du et des à l’interprétation générique, in D.

Amiot et al., editors, Le syntagme nominal syntaxe et sémantique, Artois Presses

Université, 2001

[Cas-Lamb] Claudia Casadio, An algebraic analysis of clitic pronouns in Italian, in P. de Groote et

al. (eds), Logical aspects of computational linguistics, Springer LNAI 2099, Berlin

2001, 110-124

[CYK] David Younger, Recognition and Parsing of Context-Free Languages in Time n3,

Information and Control, 10:2, 1967

[Degeilh] Linear tagging of agreement in the French verb phrase, preprint, Proceedings of

Categorial Grammars 2004, Montpellier France, 7-11 June, 2004

[Earley] Jay Earley, An efficient context-free parsing algorithm, Communications of the AMC,

Volume 13, Number 2, pp 94-102, 1970

[Kleiber] Georges Kleiber, Indéfinis: lecture existentielle et lecture partitive, in G. Kleiber et al.,

editors, Typologie des groupes nominaux, Presses Universités Rennes, 2001

[Kislak] Alessandra Kislak, Pregroups versus English and Polish Grammar, in: New

Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Bologna, pp. 129-154,

2002

[Lambek 58] Joachim Lambek. The mathematics of sentence structure. American Mathematical

Monthly, 65:154–170, 1958

[Lambek 99] Joachim Lambek, Type Grammar revisited, in A. Lecomte et al., editors, Logical

Aspects of Computational Linguistics, Springer LNAI 1582, pp.1 –27, 1999

[Lambek 03] Joachim Lambek, A computational algebraic approach to English grammar, preprint,

McGill University, Montreal, 2003, to be published in SYNTAX

[Lamb-Prel NP] Joachim Lambek, Anne Preller, An algebraic approach to the German noun

phrase, Linguistic Analysis, Vol. 31, 3-4, 2001

[Lamb-Prel SE] Joachim Lambek, Anne Preller, An algebraic approach to the German sentence,

Linguistic Analysis, Vol. 31, 3-4, 2001

[Le bon usage] Maurice Grevisse, André Goosse, Le bon usage, grammaire française, Duculot, 2001

 24

[Math-Ling] Fields Institute Summer School, Logic and Foundations of Computation, Workshop

on Mathematical Linguistics, University of Ottawa, June 18-19, 2003

Danièle Bargelli, Joachim Lambek: "An algebraic approach to Arabic sentence

structure"

Claudia Casadio, Joachim Lambek: "An algebraic approach to Latin sentence

structure"

Kumi Cardinal: "An algebraic approach to Japanese sentence structure"

[Oehrle] Richard Oehrle, A parsing algorithm for pregroup grammars, preprint, Proceedings of

Categorial Grammars 2004, Montpellier France, 7-11 June, 2004

[Preller] Anne Preller, Pregroups and linear processing of coordinate structures, preprint,

Proceedings of Categorial Grammars 2004, Montpellier France, 7-11 June, 2004

	Efficiency of pregroups and the French noun phrase
	ABSTRACT:
	Introduction
	Proposition 2: Every linear type has a unique irreducible form.
	Proposition 4: The type checking problem of a linear fragment can be decided by a linear algorithm.
	Proof: By Proposition 3, it is suuficient to find an algorithm which is linear in the length of the string and produces an irreducible form of the string. For this all we have to do is add a new step at stage �: erase � and � from �, whenever the test
	Partitive complete noun phrase
	
	
	
	
	
	References

