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Efficiency of pregroups and the French noun phrase 

 
ABSTRACT: 

 We study mathematical and algorithmic properties of Lambek’s pregroups and illustrate them by the 

French noun phrase.  An algorithm of complexity 3n  to solve the reduction problem in an arbitrary free pregroup 

as well as recognition by a pregroup grammar is presented.  This algorithm is then specified to run in linear time.   

A sufficient condition for a language fragment that makes the linear algorithm complete is given.   

 

Introduction  

Pregroups are a recent mathematical tool introduced in [Lambek 99] for natural language 

processing.  They arose as a simplification of the Lambek calculus, first published under the name of 

Syntactic Calculus in [Lambek 58].  A pregroup grammar consists of a free pregroup and a pregroup 

dictionary, i.e. a finite relation which associates finitely many elements of the pregroup, the so-called 

types, to each word.  [Buszkowski] has shown that pregroup grammars are weakly equivalent to 

context-free grammars.  Well known algorithms like [CYK] or [Earley] for context-free grammars 

solve the problem of the grammaticality of strings of words in time proportional to the cube of the 

length of the string.  However, it would not only be clumsy and inefficient to translate a pregroup 

grammar to a context-free grammar (this grammar would include the whole dictionary in its set of 

rules), but it would also go against the pregroups spirit.  Indeed, pregroups were conceived as a tool 

which “processes the words as you hear them”.  For each word you hear, you choose a type from the 

(mental) dictionary.  The grammaticality of a string of words from the dictionary is then decided by 

performing computations on the corresponding string of types in the pregroup.  So far, much of the 

work with pregroups has been aimed at establishing the universality of the rules, which are the same 

whatever the language - only the dictionary changes.  Fragments of Arabic, Japanese, Latin [Math-

Ling], Polish [Kislak], English [Lambek 99, 03], French [Barg Lamb], German [Lamb-Prel NP, SE], 

Italian [Cas-Lamb] among others have been analysed with the help of pregroups. 
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This paper presents an algorithm which solves the decision problem of the theory of pregroups 

as well as recognition by a pregroup grammar in time proportional to the cube of the length n  of the 

input string.1  As this algorithm combines type assignment and type checking, the constant of 3n  

depends on a bound for the number of types per word and a bound for their length, but not on the 

number of rules or symbols, which may even be infinite.  This is still an improvement on known 

algorithms for context-free grammars, where the constant depends on the size of the dictionary.  Since 

“type checking” is a special case of the recognition algorithm, the former is then simplified to run in 

linear time.  This linear algorithm is generally not complete, so a simple condition on the set of input 

types is given, making the linear algorithm complete.  This linearity condition is not satisfied by all 

dictionaries, but its violation is linked to certain grammatical constructs, e.g. post-nominal adjectives 

of a French noun phrase. 

In the second part of the paper, representing the starting point of this work, we extend the 

dictionary given in [Barg-Lamb] to include agreement and structure of the noun phrase. This is 

achieved by adding several new basic types, organised according to features. Our extension is 

conservative in the sense defined in Section 1, i.e. the new constructs and new words can be added 

without changing the previous analysis conducted for the smaller grammar.  A proliferation of basic 

types does not affect efficiency, but a proliferation of types per word does.  Unification of features can 

be used to increase the type assignment efficiency, without effecting the pregroup grammar. 

The small part of the French noun phrase covered here illustrates how the linearity condition is 

violated.  In English or German, relative clauses specifying noun phrases would have the same effect.   

It also shows that features can be used in pregroup grammars, but only as a device to balance the 

increase in complexity due to an increased number of types per word.  The dictionary presented here is 

the starting point to ongoing work ([Degeilh], [Preller]) on the efficiency and expressive power of 

pregroup grammars. 

Finally, we would like to thank two anonymous referees for their constructive criticism.  We 

have tried to address most of their concerns. 

 

 

1.  Mathematical properties 

 

We briefly review the definitions. 

 

Definition 1:  A pregroup is a partially ordered monoid in which each element a  has both a left adjoint 

a�  and a right adjoint ra  satisfying 

                                                 
1 After submitting this paper, we learned that [Oehrle] independently found a cubic time algorithm tailored to 
pregroups. 
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 (Contraction) 1a a⋅ →�  

1ra a⋅ →  

 

(Expansion) 1 ra a→ ⋅  

   1 a a→ ⋅ � . 

 

The following are immediate consequences: 

Properties: 

1. 1 1a a a= =        (1 is the unit of the monoid) 

2. (ab)c a(bc)=        (multiplication is associative) 

3. a b→  and c d→  implies ac bd→     (order is compatible with multiplication).  

4. 1ab ba→ →  implies a b= �  and rb a=     (adjoints are unique)   

5. ( )ab b a=� � � , ( )r r rab b a=      (adjunction is quasi-distributive) 

6. a b→  implies b a→� � and r rb a→   (adjunction reverses the order). 

7. r ra a a= =� �      (no mixed adjoints) 

8. a b→  if and only if 1a b →�  if and only if 1rab →  

 

Properties 1. – 3. are part of  the definition of a partially ordered  monoid, while the Properties 4. - 7. 

can be easily derived from Definition 1.  For example, to derive that rb b= �  (Property7), use 

1b b bb→ →� �  and 4. with a b= � .  Similarly, 5. follows from 4.  Indeed, r r(ab)(b a )  = 

r ra(bb )a → 1 ra a = raa  Æ  1 → rb b = 1rb b → r rb (a a)b  = r r(b a )(ab) .  Hence, by 4., ( )r r rab b a= . 

Finally Property 8. is shown as follows:  If  a b→ , then   1b a b b→ →� �  by 3. and Contraction.  If   

1b a →� , then a bb a b→ →� , using 3. and Expansion. 2 

 

Important additional properties apply in free pregroups.  First of all, they are non-commutative and the 

iterated adjoints of basic types are all different.  The most important result is expressed in the 

Switching Lemma [Lambek 99, Proposition 2], which we shall include here for completeness sake. 

 

The free pregroup generated by a partially ordered set of  basic types 

{ }B a,b, ...= . 

is characterised in [Lambek 99] as the ordered free monoid generated from the set of simple types Σ  

consisting of the basic types and their iterated adjoints: 

                                                 
2  We are grateful to Joachim Lambek for having drawn our attention to this. 
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 Σ  = { 2 1 0 1 2a a a a a( ) ( ) ( ) ( ) ( )... , , , , ,...− −  , 2 1 0 1 2b b b b b( ) ( ) ( ) ( ) ( )... , , , , ,...− − } 

where 

 2 1 0 1 2a a a a a( ) ( ) ( ) ( ) ( )... , , , , ,...− −  

stands for 

 a a a a ar rr... , , , , ,...�� � . 

In particular, 0( )a  stands for a .  Unit 1 denotes the empty string (thus is not an element of Σ ), 

multiplication is the same as concatenation.  Let n  be an integer.  Declare a b(n) (n)→ , if either n  is 

even and a b→  or n  is odd and b a→ .  By definition, every type that differs from 1  has the form  

 1
1

k(n )(n )
k...a a  

where 1 k,...,a a  are basic types and 1 kn ,...,n  are integers.  The adjoints of a type are defined by 

 1 11 1
1 1:k k(n ) (n )(n ) (n )

k k( ... ) ...a a a a− −=�  

 1
1

k(n )(n ) r
k( ... )a a : = 11 1

1
k(n ) (n )

k ...a a+ +  

The order on types a b→  is now read as “ a  reduces to b ”.  It is defined as the transitive closure of the 

union of the following three relations  

(Induced step) 

 (n) (n)c d c da b→ , if either n  is even and a b→  or n  is odd and b a→ . 

(Generalised contraction) 

 1(n) (n )c d cda b + → , if either n  is even and a b→  or n  is odd and b a→ . 

(Generalised expansion) 

 1(n ) (n)cd c da b+→ , if either n  is even and a b→  or n  is odd and b a→ . 

where c,d  are arbitrary types and ,a b  are basic. 

 

In the following, a substring of 1 na ...a  always means a substring 
1
...

mi ia a  in which the symbols appear 

in the same order as in the original string: 11 ... mi i n≤ < < ≤ . 

Switching Lemma [Lambek 99]:  Let 1 na ,...,a  and 1 mb ,...,b  be simple types.  Then 1 na ...a →  1 mb ...b  if 

and only if there is a substring 
1 ki ia ...a  of 1 na ...a  and a substring 

1 ki ib ...b  of 1 mb ...b  such that  

 1 na ...a →  
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 1
p pi ia b , p k→ ≤ ≤ , 

where 
1 ki ia ...a  is obtained from 1 na ...a  by generalised contractions only, 1 mb ...b  is obtained from 

1 ki ib ...b  by generalised expansions only and 
1 ki ib ...b  is obtained from 

1 ki ia ...a  by induced steps only. 

 

Corollary [Lambek 99]:  Suppose  that 1 na ,...,a  and b  are simple types.  Then 1 na ...a b→  holds if and 

only if there is a simple type b' b→  such that one can obtain b'  from 1 na ...a  by repeatedly omitting 
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pairs of contractible adjacent types, i.e. there is a sequence 1 1 2n mX a a X X b= =... , , ..., '  such that 

1i iX X +→  is a generalised contraction for 1 i m≤ < .  Similarly, 1 na ...a 1→  if and only if the empty 

string can be obtained by repeatedly omitting pairs of contractible adjacent types. 

 

An immediate consequence of the Switching Lemma is the decidability of the theory of 

pregroups,  i.e. the problem whether a b→  is decidable for arbitrary types a  and b  in an arbitrary 

free pregroup.  We call this the reduction problem for free pregroups.  Any decision procedure of this 

problem is called a type checking algorithm.  By Property 8, Section 1, any decision procedure of the 

particular problem 1a →  also yields a decision procedure for the general problem. 

 

Finally, here some more consequences of the Switching Lemma which will be useful in the 

following sections:  

 

Proposition 1: (Conservativity of extensions) : Let B  be an ordered subset of 'B , i.e. B  is a subset of 

'B  and a → b  in B  if and only if a,b B∈  and a → b  in 'B .  Then the free pregroup 'P  generated 

by 'B  is conservative over the free pregroup P  generated by B .  That is to say, for all elements e, f  

of P  such that e f→  holds in 'P , e f→  holds already in P . 

 

Proof:  Let e, f  be elements of P  such that e f→  holds in 'P .  First consider the special case where 

e f→  is a generalised contraction.  Then there are basic types a,b B∈  and an integer n  such that 

1(n) (n )e c da b += , f cd=  and either a → b  in 'B  and n  is even or b → a  in 'B  and n  is odd.  By 

hypothesis, this implies a → b  in B  and n  even, or b → a  in B  and n  odd.  Therefore e f→  is a 

generalised contraction in P .  By a similar argument, a generalised expansion (respectively induced 

step) in 'P  also is a generalised expansion (respectively induced step) in P . 

In the general case, there are simple types 1 na ,...,a  and 1 mb ,...,b of P  such that 1 ne a ...a= , 1 mf b ...b=  

and 1 na ...a →  1 mb ...b  in 'P .  Apply the Switching Lemma.  There is a substring 
1 ki ia ,...,a  of 1 na ,...,a  

and a substring 
1 ki ib ,...,b  of 1 mb ,...,b  such that  

 1 na ...a →  
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , 
p pi ia b→  in 'P , 1 p k≤ ≤ , 

where 
1 ki ia ...a  is obtained from 1 na ...a  by repeated generalised contractions and 1 mb ...b  is obtained 

from 
1 ki ib ...b  by repeated generalised expansions.  Now for every generalised contraction c d→ , from 

c P∈  follows d P∈ .  Indeed, d  is obtained from c  by omitting two simple types.  Similarly, for 

every generalised expansion c d→ , from d P∈  follows c P∈ .  Hence 
1 ki ia ...a  and 

1 ki ib ...b  are in P  

and all the generalised contractions establishing 1 na ...a →  
1 ki ia ...a , induced steps used 
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for
1 ki ia ...a →

1 ki ib ...b and generalised expansions intervening in the derivation of 
1 ki ib ...b → 1 mb ...b , take 

place in P .  By the first part of the proof, this implies that 1 na ...a →
1 ki ia ...a →

1 ki ib ...b → 1 mb ...b , and 

p pi ia b→ , 1 p k≤ ≤ , already hold in .P  

Starting from the same string, different choices may lead to different results.  For example, 
ra aa� → a�  and ra aa� → ra , indeed, r r= →� � �a aa a (aa ) a  (contract raa ) and r r r= →� �a aa (a a)a a  

(contract a a� ).  Generally, parentheses are a useful device for suggesting the generalised contractions 

justifying a reduction: 1r r= →�� � �� �a a aa (a a )(aa )  (contract the left most and the right most pair) and 

r r r= →�� � �� � ��a a aa a (a a)a a a  (contract the central pair).  Both times we end up with a string where we 

can “go no further”.  Hence,  

Definition 2:  A pair of simple types ( ,c d ) is contractible, if 1(n) (n )c , da b += =  and either a → b and n  

even or b a→  and n  odd.  A string of simple types is irreducible, if it has no adjacent simple types 

which are contractible.  An irreducible form of 1 na ...a  is a substring that is irreducible.  A string of 

three simple types abc  is called a critical triple, if 1ab →  and 1bc → .  A string of simple types 1 ... na a  

is linear, if no substring 
1 2 3i i ia a a  is a critical triple.   

For example, ra aa�  is linear, but ra aa�  is not linear.  Or if a b→/ , then r�cb aa d  is linear, but 

if a b→ , then r�cb aa d  is not linear.  Linearity is a sufficient condition for a type to have a unique 

irreducible form.  For such types, every algorithm which produces some irreducible form will have 

found all irreducible forms and thus will be a type checking algorithm.  Obviously, the amount of 

work needed to find one irreducible form is much lower than to find them all. 

 

Proposition 2:  Every linear type has a unique irreducible form.   

Proof:  Suppose 1 na ...a  is linear.  Use induction on n , the length of the string.  If 1n = , the property is 

obvious.  For the induction step, note that every substring of 1 na ...a  is again linear.  Moreover, 

whenever 1i ia a +  and 1j ja a +  are different contractible pairs, indices 1 1i,i , j, j+ +  are all different.  

Suppose 1 na ...a  has k  pairs of contractible adjacent types.  Omitting them in 1 na ...a  corresponds to k  

simultaneous contractions.  They can be done in any order without changing the result.  If 0k = , then 

1 na ...a  is irreducible.  Otherwise, the unique substring resulting from the k  contractions is less than n  

in length and we may conclude by the induction hypothesis. 

 

Finally, an almost self-evident property, which we retain for later use. 

Lemma 1:  Suppose 1 1... na a → .  Then there is an index j n<  such that 1j na a → , 1 1 1...j na a+ − →  and 

1 1 1... ja a − → . 



 7

Proof:  Let 1 1 2 1... , , ...,n mX a a X X= =  be a reduction of 1 ... na a  to the empty string obtained by 

generalised contractions only, i.e. 1i iX X +→  is a generalised contraction for 1 i m≤ < . Let i  be the 

index such that na  occurs in iX  but not in 1iX + .  Then iX  and 1iX +  have the form i j nX Ua a= , 

1iX U+ = .  Generalised contractions involving at least one simple type ka  strictly between ja  and na  

appear before iX  and therefore ka  is contracted with a type which is also strictly between ja  and na .  

Hence 1 1 1...j na a+ − → .  The argument for 1 1 1... ja a − →  is similar. 

 

2. Linguistic applications  

A linguist will work with a free pregroup. The partially ordered set of basic types B  generating the 

free pregroup is tailored to the language fragment under consideration.  As a first step, the language 

fragment has to be described in common grammatical terms. We select words that are supposed to be 

in the mental or electronic dictionary, e.g. nouns, adjectives etc.  Grammatical concepts describing 

grammatical constructs of the fragment will help to choose the basic types and the ordering.  Finally, 

one or several types are associated with every word of the fragment, thus constituting a dictionary.  

Meta-rules serve to organise the content of the dictionary.  Instead of explicitly writing the type(s) of a 

word in the dictionary, it (they) may be described by a meta-rule. 

The dictionary must be designed in such a way that a sequence of words is a grammatical 

construct (sentence, noun phrase, etc) if and only if one of the corresponding strings of types reduces 

to a basic type.  If a word has more than one type, then it is sufficient that one of the possible choices 

(type assignments) yields a string reducing to the basic type in question.   

Every dictionary that respects this equivalence is said to be correct (it recognises only 

grammatical constructs) and complete (it recognises all grammatical constructs) of the fragment.  

However, correctness and completeness are generally not proven, but only illustrated on examples and 

counter-examples, unless the  language fragment is already given by a formal grammar. 

 

A correct and complete dictionary satisfies the principle of substitution and certain robustness 

properties: 

Principle of substitution:  If a word is replaced by another word with the same type, then a 

grammatical string of words remains grammatical.  Indeed, being a grammatical string of words is 

equivalent to having a string of types reducible to a given basic type and, by assumption, the string of 

types is the same before and after substitution. 

 

Robustness a):  Assigning new types to words: 

Suppose a word w  has type d  and we also give it type c  such that c d→ , then every string of words 

that is accepted using d  for w  is also accepted using c . 
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Robustness b):  Extensions by new basic types. 

This means that one can extend a given set B  of basic types, by declaring new types and adding 

inequalities involving the new types, thus obtaining a larger set of basic types B' .  Then the free 

pregroup 'P  generated by B'  includes the free pregroup P  generated by B .  Whenever both a  and 

b  belong to the smaller pregroup P  and a b→  can be derived in P , then this also holds in the larger 

'P .  By Proposition 1 above,  the converse also holds, provided that the order in B  remains 

unchanged:  if a b→  can be derived in the larger pregroup 'P  and both a  and b  belong to the 

smaller pregroup, then the whole reduction can be done in the smaller pregroup.  

The linguistic significance of this is that the language fragment can be increased by adding 

new basic types and/or new types to the dictionary, without having to repeat verification of correctness 

and completeness performed before the extension. It also simplifies the task of verifying that a typing 

is correct and complete.  One can proceed step by step, extend the fragment by adding new basic types 

and assigning new types.  Then to show that the typing is correct and complete with respect to the 

larger fragment, only the sequences of words with new types have to be considered.  The only 

prerequisite is not to change the order between the old basic types.  For example, suppose B B c' [ ]=  

where c  is a new basic type.  We may declare a c→  and/or c b→  for some “old” basic types 

a,b B∈ .  However, we must take care not to declare both a c→  and c b→ , unless a → b  already 

holds in B .  Note that this step by step approach is normally taken for granted.  This is not as trivial as 

one might think.  Obviously, a sequence of words that is a grammatical construct of the smaller 

fragment remains so in the larger fragment.  Just use the typing and the reduction in the smaller 

pregroup P , which remains a reduction in the bigger one P' .  It is, however, not so obvious that a 

sequence of words which is not grammatical in the smaller fragment does not become grammatical in 

the bigger fragment, even if no new types are involved.  Indeed, suppose that a sequence of words gets 

assigned a type c  in the smaller fragment, but is not grammatical.  As the typing in P  is correct and 

complete with respect to the smaller fragment, we have ac →  where a  is the basic type 

corresponding to the grammatical notion under investigation.  A priori, it could not be excluded that 

c d→  and ad → , where d  is a new type in P' .  But then, it would follow that ac →  in P' .  From 

this we would have to conclude that the sequence of words is now well-formed, because its type 

reduces to a .  Conservativity ensures that this cannot happen, as from ac →  in P'  it would follow 

that ac →  in P , contradicting ac → . 

This property is actually used continuously and most of the time without saying so.  We will do so in 

Section 4. 

We will sum up the mathematically relevant facts of the discussion above: 
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Definition 3:  1) Let V  be a non-empty set, B  a partially ordered set and P  the free pregroup 

generated by B .  A dictionary  of vocabulary V  with types in P , is a map D  from V  to the set of 

subsets of P . 

  2) A dictionary D  is bounded if there are constants k  and l  such that for every word 

Vv ∈  the set D( )v  has at most k  elements, and each type in D( )v  has at most length l .  A dictionary 

D  is locally finite, if  D( )v  is finite for all Vv ∈ . It is said to be finite, if  the sets V , B  and D( )v  

are finite. 

  3) A type-assignment for a string 1 ... nv v  of elements in V  is  a sequence 1 ... nt t  of types 

in P  such that D( )i it v∈ , for 1 i n£ £ . 

4)  Let a  be a simple type in P .  A string 1 ... nv v  of elements in V  is a -grammatical, 

if it has a type assignment 1 ... nt t  such that 1 ... nt t a→ .  A sequence 1 ... nv v  is grammatical if it is a -

grammatical for some simple type a .  Finally, 1 ... nv v  is well-formed if there is a type assignment 1 ... nt t  

such that 1 1... nt t → . 

 

3. Algorithmic Properties 

Dictionaries defined for natural language fragments are generally assumed to be finite, i.e. sets V , B  

and D( )v  are finite.  Such a finite dictionary together with a finite number of generalised contractions 

and induced steps involving types from the dictionary has been called a pregroup grammar in 

[Buszkowski].  It is shown in [loc.cit.] that pregroup grammars are weakly equivalent to context-free 

grammars.  However, the context-free grammar associated with a pregroup grammar would include 

the whole dictionary in its set of rules.  The complexity estimates of the algorithms in [CYK] or 

[Earley] use a constant factor for 3n  which must bound the number of symbols and rules of the 

grammar.  However, there is no need to restrict oneself to finite dictionaries, the algorithm defined 

below works  for an infinite number of rules and symbols. 

 

In the following, we assume that D  is locally finite, i.e. the sets D( )v  are finite, but not 

necessarily V or B .  For example, suppose that V  is equal to Σ , the set of simple types generated by 

B , and D  equal to the identity map on Σ .  Note that this dictionary is infinite, but bounded with 

bounds 1k l= = .  Moreover, the problem of grammaticality for this dictionary is the same as the 

decision problem for free pregroups, i.e. a recognition algorithm for this dictionary is also a type 

checking algorithm.   

On the other hand, a type checking algorithm provides a solution to the problem of grammaticality for 

every dictionary D  in which the sets D( )v  are finite.  Indeed, try the type checking algorithm on all 

possible type assignments of the string 1 ... nv v .  An algorithm which provides 1 ... nv v  with associated 

strings of types from the dictionary is called a type assignment algorithm.  To enumerate all type 
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assignments would not be very efficient:  If ik  is the number of elements in D( )iv , then there are 

1 2 ... nk k k  different type assignments for 1 ... nv v .   The recognition algorithm given below combines type 

assignment and type checking, it works for all dictionaries, independent of the pregroup, grammar or 

language.  

Note that an algorithm which solves the problem of well-formed strings for arbitrary 

dictionaries implies a decision procedure for the problem of a -grammaticality for arbitrary simple 

types a .  Indeed, add to the vocabulary V  a new element v  and extend D  to v  by letting 

{ }D( ) rv a= . Then a sequence 1 ... nv v  from V  is a -grammatical if and only if 1 ... nv v v  is well-formed.  

This follows from Property 8 of Section 1 and the fact that the only possible type assignment for v  is 
ra .   

The intuitive idea underlying the algorithm is as follows:  We process the string of symbols  

W = 1 ... nv v  from left to right, proceeding by stages.  At each stage, we choose a symbol iv  represented 

by its index i , a type t  in D( )iv  and a position p  in t .  We examine the simple type(s) placed just to 

the left of this position in some type assignment and store it (them) in the memory, where they are kept 

as a left “parenthesis” awaiting contraction with a simple type that might come later.  Moreover, each 

of them could also be a “right parenthesis” to some earlier simple type, a “left parenthesis” ready for 

contraction.  In this case, the two types are contracted, which means that the “left parentheses” 

awaiting contraction at the earlier stage become available again, i.e. are stored in the memory at the 

present stage.  Only the “nearest left parentheses” available for contraction has to be remembered.  

This defines a function DWNlp  on the set of stages, which takes subsets of DWS  as values.  Context 

permitting, we omit the subscripts. 

 

We first look at an example, in the case where the vocabulary is the set of simple types and the 

dictionary is the identity map:  Let cb aa drW = �  where we assume a b, d b→ →  
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Stage 

s  

Predecessor 

's  

Type  read 

'sa  

Test ( )Nlp s Corresponding choice(s) of contractions

1 0 none none {0} initialising 

2 1 c   

none 

{1} (c   

3 2 b�   
1cb →� , no 

{2} (c(b�   

4 3 a   
1b a →� , yes

3
1




 (c(b (a� , 
(c(b a)�   

5 4 ar   
1aar → , yes
1car → , no 

4
2







 
(c(b (a(ar� , (c(b a)(ar� , 
(c(b (aa )r�  

6 5 d   
1a dr → , no 
1b d →� , yes

5

1







 
(c(b (a(a (dr� , (c(b a)(a (dr� , (c(b (aa )(dr�  
 
(c(b (aa )d)r�  
 

 

Note that this function does not remember the intermediary contractions already made.   It only 

remembers the nearest not yet contracted type to the left. 

 

Definition 4  (Nearest left parentheses function Nlp):  Let D  be a dictionary and 1 ... nW v v=  a non-

empty string of elements from the vocabulary.  The stages associated to W  form a set  

{ }1 1D ( , , ) : , D( ), ( )W iS i t p i n t v p length t= ≤ ≤ ∈ ≤ ≤ { }0 0 0 1 0 0( , , ), ( , , )n∪ + . 

ordered alphabetically, i.e. 

 ( ', ', ')i t p ( , , )i t p≤  if and only if either 'i i<  or else ' , ' , 'i i t t p p= = ≤ .   

In general, this order is not total, a stage may have several predecessors or successors.  For example, 

the set of predecessors of ( , , )i t p  satisfies 

 
{ }
{ }1

1   if 1

1   else

( , , ) ,
( , , )

( , ', ( ')) : ' D( ) ,i

i t p p
Predecessor i t p

i t length t t v −

 − >= 
− ∈

 

However, if 1' D( )it v −∈  is chosen, then ( , , )i t p  has a unique predecessor compatible with this type 

assignment, namely  1( , , )i t p −  if 1p >  and 1( , ', ( '))i t length t−  if 1p = .   If the context makes the type 

assignment clear, we denote this predecessor by ( )pred s , and similarly for successors. 

Finally, let sa  denote the simple type occupying position p  in the type t  of s = D( , , ) Wi t p S∈ .  The 

Nearest left parentheses function is defined on the set of states as follows:  

0 0 0D ( , , )WNlp = ∅  

 { } ( 1 0 0 0" 'D ' ) " ( '), , " ( , , )( ) ' ( ")( )
s sW s Predecessor s s Nlp s a a sNlp s s Nlp s∈ ∈ → ≠= ∪� � .  
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When the vocabulary is the set of simple types and the dictionary is the identity map, a state has the 

form 1( , , )ii a .  As the string 1 ... nW a a=  is given state 1( , , )ii a  can be identified with the integer i .  The 

definition above simplifies to  

0D ( )WNlp = ∅  

 { } 1 01D ( ), ,( ) ( )
j iW j Nlp i a a jNlp i i Nlp j∈ → ≠+ = ∪ ○ . 

 

Proposition 3:  There is a recognition algorithm which decides for every locally finite dictionary D  

and every string of symbols  in the vocabulary, whether it is grammatical.  If the dictionary is bounded 

with bounds k  and l , then the complexity is 3( )o n  where n  is the length of the string.  The constant 

factor of 3n is equal to 3 3k l . 

 

Proof:  The proof consists of showing that 

 1) W = 1 ... nv v  is well-formed if and only if 0 0 0 1 0 0( , , ) ( , , )Nlp n∈ +  

 2) 1 0 0( , , )Nlp n +  can be calculated in at most 3 3k l 3n  steps. 

 

This follows from the next 5 lemmas. 

 

Lemma 2 :  * ( )s Nlp s∈ implies *s s< .  In particular, if ( , , )s i t p= , then ( )Nlp s  has at most ikl  

elements, where k  bounds the number of types associated to 1,jv j n≤ ≤ , and l  the length of the 

corresponding types. 

This follows immediately from the definition. 

 

Lemma 3 :  Let ( , , )s i t p= , * ( *, *, *)s i t p= , 1 ... lt a a=  and 1 ** * ... *lt a a= .  If * ( )s Nlp s∈ , then there is a 

type assignment 1 1* **, , ..., ,i i i it t t t t t+ −= =  for 1 1* * ...i i i iv v v v+ −  such that  

X = 1 1 1( *) * * ( )* *succ s l i i pred sa a t t a a 1+ −... ... ... Æ ,  

i.e. *sa  is “a left parenthesis ready for contraction with sa ”. 

Indeed, use induction on s .  If 0 0 0( , , )s =  there is nothing to prove.  Assume * ( )s Nlp s∈ .  By 

definition, *s  is either itself a predecessor of s  or there is a predecessor 's  of s  and an element 

'' ( ')s Nlp s∈  such that * ( '')s Nlp s∈  and 1" 's sa a → .  In the former case, 1 1*i i+ > − , X  is the empty 

string and we are done.  Assume the latter.  The induction hypothesis applies to "s  and 's .  Hence 

there are type assignments 1 1* * " "*, , ..., , "i i i it t t t t t+ −= =  and 1 1" " ' '", , ..., , 'i i i it t t t t t+ −= =  such that  

Y  = 1 1 1( *) * * " ( ")* * " "succ s l i i pred sa a t t a a 1+ −... ... ... Æ , Z = 1 1 1( ") " " ' ( ')" " ' 'succ s l i i pred sa a t t a a 1+ −... ... ... Æ  

and  

1" 's sa a → .   
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Finally, let it t= .  As 's  is a predecessor of s  either 1'i i= −  or else 'i i=  and 't t= .  In both cases, 's  

is the predecessor of s  compatible with the type assignment 1 1* **, , ..., ,i i i it t t t t t+ −= = .  Therefore, 

" 's sX Ya Za 1= Æ . 

 

Lemma 4:  Let ( , , )s i t p= , * ( *, *, *)s i t p= , 1 ... lt a a= , 1 ** * ... *lt a a=  and 1 1* **, , ..., ,i i i it t t t t t+ −= =  be a 

type assignment for 1 1* * ...i i i iv v v v+ −  such that X = 1 1 1( *) * * ( )* *succ s l i i pred sa a t t a a 1+ −... ... ... Æ .  Then 

* ( )s Nlp s∈ .   

 Again proceed by induction on s .  If *s  is a predecessor of s , then * ( )s Nlp s∈  by definition.  

Otherwise, let 's  be the predecessor of s  compatible with the given type assignment.  As the string X  

reduces to the empty string, its last simple type, 'sa , is contracted with some simple type occurring to 

before 'sa  in X , see Lemma 1 in Section 1.  Hence, there is a stage "" ( ", " , ")is i t t p= =  such that 

1" 's sa a → , 1 1 1( ") " " ' ( ')" " ' 'succ s l i i pred sa a t t a a 1+ −... ... ... Æ  and 1 1 1( *) * * " ( ")* * " "succ s l i i pred sa a t t a a 1+ −... ... ... Æ .  By 

the induction hypothesis, this implies that " ( ')s Nlp sŒ  and * ( ")s Nlp sŒ .  So, * ( )s Nlp sŒ  by 

definition. 

 

Lemma 5:  
1

0 0 0 1 0 0...( , , ) ( , , )
nv vNlp n∈ +  if and only if there is some type assignment 1 , ..., nt t  for 1 ... nv v  

such that  1 ... nt t 1Æ . 

Apply Lemma 3’ and Lemma 4’to 0 0 0* ( , , )s = , 1 0 0( , , )s n= + . 

 

Lemma 6:  Let k  bound the number of types and l  the length of the types in 1D( ),jv j n≤ ≤ .  Then 

( , , )Nlp i t p  can be calculated from the previous values in at most 2 2 2i k l  steps.  If ,k l  are bounds for 

the dictionary, then 1( )Nlp n +  is of complexity 3( )o n  where the constant factor of 3n  is 3 3k l .   

Proof:  There are at most ikl  stages less or equal to s .  For each stage "s  less than s , we compare it 

with the predecessor(s) 's  of s .  If it is a predecessor, we add it to ( )Nlp s  and are done.  Otherwise, 

we check if it belongs to the set ( ')Nlp s .  If this is not the case, we go to the next predecessor.  If "s  

belongs to ( ')Nlp s , we check if 1" 's sa a → .  If this is not the case, we go to the next predecessor.  If, on 

the contrary, 1" 's sa a → , we add the elements of ( ")Nlp s  to ( )Nlp s  and are done.  By Lemma 2, there 

are at most iikl k−  stages in ( ")Nlp s , where ik  is the number of predecessors of s .   On the whole, we 

have executed at most ikl  steps for "s , counting comparisons and copying as one-step operations.  As 

we do this for every "s  less than s , it takes at most 2 2 2i k l  operations to calculate ( )Nlp s .  Finally, to 

calculate 1 0 0( , , )Nlp n + , we must calculate all sets ( )Nlp s .  Hence the whole number of steps can be 

bounded by 3 3 3n k l .  
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Corollary:  If there is a bound K  such that 
1 ... ( )

nv vNlp s K<  for all stages s  and strings 1 ... nv v , then the 

complexity of Nlp  is proportional to n .  

 

In the case of the free pregroup reduction problem, where 1k l= = , the constant factor of 3n  is 

1 .  In the case of dictionaries for a natural language fragment, the length of a type l  assigned to a 

word generally does not exceed 4  or 5 .  The number k  of types assigned to a word may go up to 12 

or more.  Though this constant is generally considerably smaller than the size of the dictionary, any 

algorithm of complexity 3( )o n is unlikely to be used without a machine.  Using the corollary, a linear 

strategy for type checking can be obtained by a slight modification of Nlp .  The idea is to open a new 

left parenthesis, only if necessary, i.e. if the considered position cannot be an expected “right 

parenthesis”.  Call the corresponding function Llp , the “lazy left parentheses” function.  Recall that 

stages are of the form 1( , , )ii a , 0 1i n≤ ≤ +  and identify with the integers in { }0 1 1, , ...,n +  as 1k l= = . 

 

Definition 5 (Lazy left parenthesis function Llp):   

 

0( )Llp = ∅  

{ }
if

1
 else

( )
( ), ( )

( ) j Link i
Llp j Link i

Llp i
i

 ≠ ∅+ = 


�
Œ  

where { }:  1  1( ) ( ) , j iLink i j Llp i j a a= ∈ ≤ → . 

 

It is clear that 1( )Llp i +  is included in 1( )Nlp i +  and has exactly one element.  Moreover, Llp  defines 

a reduction and ( )j Link iŒ  means that ja  is contracted with ia  in this reduction.  More precisely, say 

that i  and j  are linked, if ( )j Link iŒ  or ( )i Link jŒ .  Then 

 

Lemma 7 :  1) If 1( )k Llp i∈ + , then 1k ia a 1+ ... Æ  and for all m  such that 1k m i+ ≤ ≤  there is a p  with 

1k p i+ ≤ ≤ , linked to m .   

2) If ( )j Link iŒ , then j ia a 1... Æ .   

3) ( )m Link pŒ  implies, for all i p>  and all ( )j Llp iŒ , that j p>  or j m< .   

4) Every index p  is linked to one index m  at most. 

Proof: 1)  If k i= , there is nothing to show.  Assume 1( )k Llp i∈ +  and 1k m i+ ≤ ≤ .  As k i< , there is 

( )j Link iŒ  such that ( )k Llp jŒ .  As ( ) ( )Link i Llp i⊆ , the induction hypothesis applies to i j−  and to 

j k− .  Note that if  or  m j m i= = , then m  is indeed linked to some p  with 1k p i+ ≤ ≤ .  2) is an 

immediate consequence of 1).  3) Suppose ( )m Link pŒ , i p>  and ( )j Llp iŒ .  Use induction on i p− .  
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In the case of 1i p= + , we have ( )j Llp mŒ , as ( )Link p ≠ ∅ .  Hence j m< .  If 1i p> + , then either 

1j i p= − >  or 1( )j Llp i −Œ  and therefore, by the induction hypothesis, j p>  or j m< .  To see 4), 

note first that an index p  cannot be linked to two different smaller indices, as ( )Link p  has at most 

one element.  By 3) an index m  cannot be linked to two larger ones, say p  and i  with p i< .  And it 

also cannot be linked to a smaller and a larger one, as ( )m Link pŒ , ( )p Link iŒ  would also contradict 

property 3).   

 

Finally, the next and last Lemma confirms that the unlinked simple types of the string form an 

irreducible substring.   

 

Lemma 8 :  Let Unlinked  = { }1 , ..., qi i  be the set of unlinked indices in increasing order.  Then  the 

following holds  

I) every index less than 1i  (respectively between i
�
 and 1i +� , respectively larger than qi ) is linked to 

some index below 1i  (respectively between i
�
 and 1i +� , respectively larger than qi ). 

II) ia
�

 and 
1ia

+�
 are not contractible.   

Proof:  Assertion I) follows from Lemma 7, 1) and 2).  To show II), assume 1i i +=
�

 and let ( )j Llp iŒ .  

By choice of i , r
i ja a≤/ , i.e. ja  and ia  are not contractible.  Hence, it is sufficient to show that j i=

�
.  

In view of Lemma 7, 1), we only must show that j  is not linked to any index.  If j  were linked to a 

smaller index, this would contradict Lemma 7, 3).  If j  were linked to an index greater than i , this 

would imply that i  is linked by Lemma 7, 1).  Finally, j  cannot be linked to a larger index which 

would be less than i , because of Lemma 7, 1) and 4).   

 

Thus the lazy left parenthesis function finds an irreducible form of a string, but generally, strings have 

more than one irreducible form.  Below we give a sufficient condition for types to have a single 

irreducible form. 

 

Definition 5:  The typing of a language fragment is said to be linear if all strings of types 

corresponding to strings of words in the dictionary are linear. 
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Proposition 4:  The type checking problem of a linear fragment can be decided by a linear algorithm. 

Proof:  By Proposition 3, it is suuficient to find an algorithm which is linear in the length of the string 

and produces an irreducible form of the string.  For this all we have to do is add a new step at stage 

1i + : erase j  and i  from { }1, ...,n , whenever the test ( )j Link iŒ  succeeds.  Together with the two 

steps to calculate 1( )Llp i + , at most four operations are performed at stage 1i + . 

In the next section, the French noun phrase, when formed from determiners, prenominal adjectives and 

nouns only, is a linear fragment, hence is recognised by the “lazy” linear algorithm.  Postnominal 

adjectives introduce critical triples, hence other linear strategies must be found. 

 

4.  French noun phrase 

 Agreement in gender and number was ignored in [Barg-Lamb].  Pregroup grammars handle 

those “features” by a proliferation of basic types.  This does not increase the running time of the 

recognition algorithm, as we have seen in Section 3.  For example, we introduce the basic type ngn  to 

denote a complete noun phrase, depending on its gender g and number n.  We postulate gnn n→ , 

where n  is a type used in [loc.cit.].  By Proposition 1, the typing proposed below is a conservative 

extension of the typing in [Barg-Lamb]. 

 The noun phrases analysed below are either names or a determiner followed by a noun3.  

Adjectives may occur between the determiner and the noun or follow the latter. The prenominal 

adjectives precede the noun, while the postnominal adjectives follow it.  A noun with correctly 

declined and correctly placed adjectives forms an incomplete noun phrase.  A determiner transforms 

an incomplete noun phrase into a complete noun phrase, which may be a subject or an object in a 

sentence.  The notion of determiner follows [Le bon usage], it includes the indefinite article un, une, 

the definitive article, le, la, l’, les and its contracted forms with de namely du, des, the possessive and 

demonstrative pronouns son, sa, ses, ce(t), cette, ces, etc. as well as the preposition de preceded by an 

adverb of degree like beaucoup, peu, or of negation like pas, point, etc.   

 

4.1 Nouns and Adjectives 

Nouns as well as adjectives vary in gender and number.  Therefore the type of a noun is 

indexed by g , which stands for 1 = masculine or 2 = feminine, and by n , where n  =  1 means 

singular and n  = 2 means plural.  The gender of a noun is given in the dictionary.  The plural is in 

most cases formed by appending the letter s to the singular form, but we will not discuss this here and 

assume that the plural form is given in the dictionary.  Nouns are count nouns like chat, pomme or 

                                                 
3   To keep the paper within reasonable limits, we ignore situations where the noun alone is a complete noun 
phrase:  Elle était institutrice, je vous en fais juge, nous venons en train etc. 
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mass nouns like eau, pain, vent, etc. but also courage, beauté and so on.  A count noun has type 0 gnc , 

a mass noun has type 0 1gm , for example 

 chats :  012c  

 pomme : 021c  

 vin  : 011m  

 eau : 021m  

Count nouns generally have both a singular and a plural.  Many mass nouns have no plural,  for 

example riz .  If a mass noun has a plural, we treat the plural form as count noun.  For example 

 vins : 012c  

 eaux : 022c  

 

 The first index in the types above serves to distinguish a bare noun from the incomplete noun 

phrases formed from a noun embellished by adjectives.  Indeed, adjectives are divided into prenominal 

adjectives and postnominal adjectives 4, for example (un) bon vin blanc, versus (un) *blanc vin bon.  

The great majority are postnominal, but most prenominal adjectives are very common, like beau, petit, 

mauvais, jeune, etc.  More than one adjective may precede or follow a noun.  They must respect a 

certain hierarchy, e.g. (le) beau petit chat, (un) autre beau petit chat, but *le petit beau chat.  The 

postnominal adjectives are also divided into classes which cannot be interchanged, compare un vin 

blanc pétillant, with *un vin pétillant blanc.  If two adjectives should occupy the same position, they 

must be linked by a copula 5.  We assume that the classification of the adjectives into prenominal and 

postnominal hierarchy classes is known and can be looked up in the dictionary.  We use Arabic digits 

for the prenominal classes 1 2, , ...C C , Roman ones for the postnominal classes , , ...I IIC C , i.e. we have 

classes hC where { } { }1 2h , ,... I,II,...∈ ∪ .  The lower the number of its class, the closer the adjective will 

be to the noun.  

 

We introduce basic types xhgn  where { } { } { }1 2 0h , ,... I,II,...∈ ∪ ∪ and x  stands for c  or m : 

chat:    011c  

chat noir  : 11Ic  

petit chat, petit chat noir: 111c  

 beau ( petit) chat:  211c  

Moreover, a maximal type g nx  is convenient in cases where the hierarchy does not matter: 

                                                 
4   Some adjectives may belong to both classes, especially if classic French or regional variations are also to be 
covered. 
5 This can be done with the usual polymorphic typing of the copula.  To keep the paper within reasonable limits, 
we ignore this case. 
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h gn gnx x→ , for all h . 

Determiners and certain adjectives vary in form according to whether the following word 

starts with a vowel6 or not.  For example, l’arbre, cet arbre, bel arbre, mon eau, but *le arbre, ce 

arbre, *beau arbre, *ma eau.7  Every type x  will have a copy 'x  used for words or sequences of 

words of which the first letter is a vowel.  For example, arbre, respectively eau has type 011
'c  

respectively 021
'm .  Similarly, the masculine singular of a few adjectives like beau, vieux has a variant 

bel, vieil to be used if the next word starts with a vowel. 8  The typing of beau, bel, etc. is therefore 

beau, vieux, … : 211 11x xh
� , for 1 0, , , , ...h I II=  

bel, vieil, … :  211 11x x h'
� , 1 0, , , , ...h I II=  

where x c= , x m= . 

The feminine singular and plural forms of these special adjectives have no such variant, most other 

adjectives only have masculine singular.  The following meta-rule applies to them and to the feminine 

singular and plural forms of the special adjectives: 

  

Meta-Rule (Adjectives):   

Let A be an adjective and gnA  its declined form of gender g  and number n . 

1) If A  belongs to the prenominal hierarchy class Ci ,  1 2, , ...i =  , then  

  gnA  : x yi gn hgn
� , 1 0, ..., , , , ...h i I II= − ,  

where  

 either x c= and , 'y c c=  or x m=  and , 'y m m= , if A  starts with a consonant, 

either 'x c= , , 'y c c=  or 'x m= , , 'y m m= , if A  starts with a vowel.  

 

2) If A belongs to the postnominal hierarchy class iC ,  , , ...i I II= , then  

 gnA  : x xr
h gn i gn , where , ', , 'x c c m m= , 0 h i≤ < . 

 

 

Examples: 

vin   : 011m  

blanc   : 011 11
r

Ic c , 011 11m mr
I    

vin blanc 

                                                 
6  The initial silent h is assimilated to an initial vowel. 
7  This phenomenon  is even more pervasive in the spoken language where the otherwise silent terminal 
consonant of a word is pronounced, if the following word starts with a vowel.   
8  In the spoken language, every adjective ending in a silent consonant has a variant form with an audible last 
letter if followed by a word starting with a vowel. 
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011m 011 11m mr
I   → 11mI  

 

amande   : 021c     

blanche   : 021 21c cr
I , 021 21m mr

I ,  

amande blanche 

021c 021 21c cr
I   → 21cI  

 

pétillant  : 011 11c cr
II , 11 11c cr

I II , 011 11m mr
II , 11 11m mr

I II , 

vin    pétillant 

 011m 011 11m mr
II   → 11IIm  

vin   blanc       pétillant 

011m  011 11m mr
I  11 11m mr

I II →  11IIm  

 

bon   :  211 011c c � , 211 11Ic c � , 211 11IIc c � , …, 211 011m m � , 211 11Im m � , 211 11IIm m � , … 

 bon          vin   blanc       pétillant 

 211 11IIm m �  011m  011 11m mr
I  11 11m mr

I II →  211 11IIm m �  11IIm  →  211m . 

 

A comment on our use of indices is warranted:  Note that the types of *petite chat or *chat 

petit will not reduce to a simple type.  Types which differ “only” by the value of an index, say 011c  and 

111c , are actually just as different as n  and  012c .  The use of indices is convenient, when defining the 

dictionary, i.e. when assigning types to the words of the language fragment.  Each index in the 

subscript of a type symbol represents a “feature” of the concept, like gender, number, position of the 

adjective.  The fact that a (sequence of) word(s) starts with a vowel or consonant should also 

reasonably be called a feature.  This feature has here been placed in superscript, expressed by the 

presence or absence of the symbol ‘ (prime).  The pregroup grammar does not include unification of 

features, but a good type assignment algorithm will. 

For example, when checking whether bon vin is a well-formed construct of the language, we 

must try all possible type assignments of this sequence of two words until we hit one which reduces to 

the appropriate basic type.  Only one of the possible types for bon, namely 211 011m m � , will result in a 

string which reduces the type of bon vin to 211m .  Note that another type for bon must be used in bon 

vin blanc pétillant.  Type assignment can be made more efficient by keeping the variable h  as long as 

possible instead of immediately replacing it by its possible values.  The Meta-rule describes types for 

bon as 211 11x xh
� , for 1 0, , , , ...h I II= , x c, m= .  This corresponds to eight or more types, depending on 

the number of hierarchy classes. As a first step, the improved type assignment algorithm would assign 
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the string 211 11x xh
�

011m  to bon vin and at a second step make x m=  and 0h = .   Hence, a simple 

calculation of equality of “features” is part of an efficient type assignment algorithm, by far exceeding 

the efficiency of the general recognition algorithm. 

 

 

4.2. Determiners 

 The complete noun phrase, introduced by a possessive or demonstrative pronoun, definite or 

indefinite article, can be a subject or attribute or direct object.  It has type gnn .  A complete noun 

phrase formed with a mass noun can be preceded by the proposition de and become a partitive 

complete noun phrase.  Therefore we introduce new basic ngnq , and require n ngnq gn→ , where 

{ }1 2,q ∈ .  Here 1 stands for complete noun phrases formed with a mass noun, 2 stands for complete 

noun phrases formed with a count noun .  

 

General complete noun phrase  

Roughly speaking, names are complete noun phrases and so are nouns, with or without adjectives, if 

preceded by an article or a demonstrative or possessive pronoun. 

 

 Albert :  111n'  

 Marie  :   211n  

 le     : 11 11n x � , ,x c m=  

les     : 2 2n xg g
� , x c c, '= , 1 2g ,=  

ce, mon, ton, son, notre, votre, leur    : 11 11n xq
� ,  either 2x c, q= =  or 1x m, q= =  

la, cette, ma, ta etc.   : 21 21n xq
� , either 2x c, q= =  or 1x m, q= =   

cette, mon, ton,  etc.   : 21 21n xq ' � , either 2x c, q= =  or 1x m, q= =  

l’     : 1 1n xg q g'
� , 1 2g ,= , either 2x c, q= =  or 1x m, q= =  

cet     : 11 11n xq ' � , either 2x c, q= =  or 1x m, q= =  

ces, mes,…,    : 21 2n xg g
� , 1 2g ,= , x c c, '=  

 un     : 11 11n' xq
� , either 2x c c, ', q= =  or 1x m,m' q= =  

 une     : 21 21n' xq
� , either 2x c c, ', q= =  or 1x m,m' q= =  

 

The difference between the types of le, les and the other determiners lies in the fact that prepositions 

like de, à contract with le, les to yield a new word: du, ( *de le ), des ( *de les ), etc. 
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Recalling that n' n'gnq gn→  and m mhgn gn→ , we use generalised contractions to analyse the following 

example: 

 un  bon vin blanc 

 111 11n' m �      211m           Æ 111 11n' m �

11m   Æ 111n'  Æ  11n'  

 

Note that these determiners yield complete noun phrases which can be a subject, object or attribute:  

un bon vin blanc me plait, j’aime un bon vin blanc, c’est un bon vin blanc.  

 

Partitive complete noun phrase 

 French has complete noun phrases formed with the partitive article, du, de la, de l’, de, etc.  

Functioning as a partitive 9, de transforms an incomplete noun phrase into a complete one.  This 

partitive noun phrase can be a direct object of a verb (Il mange du pain), attribute (C’est du sable) or 

even subject (des enfants jouent dans la rue), i.e. the partitive article is understood as an indefinite 

article.  In everyday French, however, a noun phrase with the partitive article in the singular is rarely 

used as the subject of a sentence:  *Du pain est sur la table,  ?De l’eau s’est infiltrée dans les 

fondements,  *Du sable gêne l’engrenage are replaced by Il y a du pain sur la table.  Il y a de l’eau qui 

s’est infiltrée.  Il y a du sable qui gêne l’engrenage. 

 

We introduce a new type gnn� , 1 2 1 2g , ; n ,= = , together with a super-type n� , such that 

gnn n→� � .  This is the type of complete noun phrases which generally will not be used as subject.  The 

plural partitive article des transforms a plural count noun into a complete noun phrase.  The same 

holds for the singular partitives du, de la, de l’, when preceding a mass noun phrase.   

Hence the types 

 des : 2 2n x x c cg g , , '=��   10  

 du : 11 11n m ��  

 de : 1 11n ng g
��    

 

                                                 
9  i.e. which selects out of a mass or a group 
10  This implies that des jolies fleurs is considered as a complete noun phrase.   
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Examples 

 (Je mange) des  pommes    (Je mange) du   pain  
    22 22n c ��  022c   Æ 22n�      11 11n m ��

011m Æ 11n̂  
 

(Il vend)   du     vin   blanc  
 11 11n m ��

011m 011 11m mr
I Æ  11n̂   

The type of du vin blanc contains a critical triple and is identical to our running example cb aa dr� . 

 

Note that the introduction of a new basic type for partitive complete noun phrases makes it 

possible to define different semantical interpretations for 

 (1)  Des gens vous demandent. 

(2) *Des nombres pairs sont divisibles par deux. 

(3) Les nombres pairs sont divisibles par deux. 

 

The first sentence is generally accepted, see [Le bon usage], [Carlier], [Kleiber], whereas the second is 

rejected (because of the “wrong” meaning) and replaced by the third.  Our analysis assigns different 

types to the noun phrases des nombres pairs and les nombres pairs, namely 12n�  and 12n .  By an 

appropriate type of the French verb, it will therefore be possible to accept (1) and (3) and to reject (2). 

 

 

5. Conclusion 

We have shown that pregroup grammars are efficient and language independent from a computational 

view point, by giving a recognition algorithm running in time 3( )o n  with a constant which is 

independent of the number of symbols or rules of the grammar.  One way how pregroup grammars 

gain in expressive power is by introducing a higher number of primitive categories (basic types) than 

do the more classical categorial grammars.  To increase efficiency of type assignment, the basic types 

may be organized by features.   Ongoing work will show that unification of features can be used as a 

strategy combine type assignment and type checking in linear the time.  The starting point for this is 

the linear “lazy” type checking algorithm obtained as a special case of the general algorithm.   
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