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Following the pioneer work of Yokoo and colleagues on the ABT (asynchronous backtracking) algorithm, several ABT-based procedures have been proposed for solving distributed constraint networks. They differ in the way they store nogoods, but they all use additional communication links between unconnected agents to detect obsolete information. In this paper, we propose a new asynchronous backtracking algorithm which does not need to add links between initially unconnected agents. To make the description simpler and to facilitate the comparisons between algorithms, we present a unifying framework from which the new algorithm we propose, as well as existing ones, are derived. We provide an experimental evaluation of these algorithms.

Introduction

In the last years, the AI community has shown an increasing interest in distributed problem solving using the agents paradigm. In particular, several works have considered constraint satisfaction in a distributed form. They are motivated by naturally distributed constraint problems, for which it is not convenient to gather the whole problem knowledge into a single agent, and to solve it using centralized algorithms. The cost of collecting all information into a single agent could be taxing. Besides, gathering all information into a single agent could be undesirable for security or privacy reasons.

Considering complete algorithms for distributed constraint satisfaction, we mention the pioneer work of Yokoo and colleagues, who proposed the asynchronous backtracking algorithm (ABT ) [START_REF] Yokoo | Distributed constraint satisfaction for formalizing distributed problem solving[END_REF][START_REF] Yokoo | The distributed constraint satisfaction problem: formalization and algorithms[END_REF]. ABT assumes a variable-based model, where each variable belongs to one agent and constraints are shared between agents. ABT requires a total agent ordering. When a deadend is detected, it may require to add communication links between previously unconnected agents. Nogoods are exchanged among connected agents, and stored. Several extensions were proposed, as its adaptation to dynamic agent re-ordering [START_REF] Silaghi | Hybridizing ABT and AWC into a polynomial space, complete protocol with reordering[END_REF] or consistency maintenance [START_REF] Silaghi | Consistency maintenance for ABT[END_REF]. The distributed backtracking algorithm (DIBT ) [START_REF] Hamadi | Backtracking in distributed constraint networks[END_REF] performs graph-based backjumping without nogood storage. However, DIBT is not complete in its original form [START_REF] Yokoo | [END_REF][START_REF] Bessière | Distributed dynamic backtracking[END_REF]. A different approach is the asynchronous aggregation search algorithm (AAS) [START_REF] Silaghi | Asynchronous search with aggregations[END_REF], that assumes a constraint-based model where each constraint belongs to one agent.

In this paper, we propose ABT not , a new ABT-based algorithm that does not require to add communication links between initially unconnected agents. We first present ABT kernel , a simple procedure that contains the basic features of an asynchronous backtracking algorithm for variable-based distributed constraint satisfaction. We show that ABT kernel is sound but may not terminate, and we identify the condition that has to be accomplished to obtain a complete procedure. Depending on the way this condition is implemented, we obtain already known algorithms (such as Yokoo's ABT or a correct version of DIBT ), or new ones. 1 Among them, we emphasize on ABT not , a new algorithm that behaves like ABT without requiring to add new communication links. This algorithm could be useful for applications where agents are not permitted to establish new communication links (due to a security policy of the site, for instance). In addition, the algorithmic analysis of ABT kernel allows us to understand better the behavior of asynchronous search, clarifying the similarities and differences among ABT-based algorithms. We provide an experimental evaluation of these algorithms, using random problems and distributed meeting scheduling problems.

The rest of the paper is organized as follows. Section 2 contains some basic definitions and a description the asynchronous backtracking algorithm. In Section 3, we introduce ABT kernel and provide the condition to achieve completeness. In Section 4, we implement this condition in several ways, deriving some already known algorithms and new ones like ABT not . Section 5 contains the experimental evaluation. Finally, Section 6 contains some conclusions of this work.

Preliminaries

Classically, constraint satisfaction problems (CSPs) have been defined for a centralized architecture. A constraint network is defined by a triple (X , D, C), where X = {x 1 , . . . , x n } is a set of n variables, D = {D(x 1 ), . . . , D(x n )} is the set of their respective finite domains, and C is a set of constraints specifying the acceptable value combinations for variables. The CSP involves finding values for the variables that satisfy all the constraints. We consider constraints involving two variables only, namely binary constraints. A constraint between x i and x j is denoted by c ij .

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints of the underlying network are distributed among agents. A finite variable-based distributed constraint network is defined by a 5-tuple (X , D, C, A, ϕ), where X , D and C are as before. A = {1, . . . , p} is a set of p agents, and ϕ : X → A is a function that maps each variable to its agent. Each variable belongs to one agent. The distribution of variables divides C in two disjoint subsets, C intra = {c ij |ϕ(x i ) = ϕ(x j )}, and C inter = {c ij |ϕ(x i ) = ϕ(x j )}, called intra-agent and inter-agent constraint sets, respectively. An intra-agent constraint c ij is known by the agent owner of x i and x j , and it is unknown by other agents. Usually, it is considered that an inter-agent constraint c ij is known by the agents ϕ(x i ) and ϕ(x j ) [START_REF] Yokoo | The distributed constraint satisfaction problem: formalization and algorithms[END_REF][START_REF] Hamadi | Backtracking in distributed constraint networks[END_REF]. As in the centralized case, a solution of a DisCSP is an assignment of values to variables satisfying every constraint. DisCSPs are solved by the collective action of agents A, each holding a process of distributed constraint satisfaction.

Agents communicate by sending messages. It is assumed that the delay in delivering a message is finite but random. For a given pair of agents, messages are delivered in the order they were sent. For simplicity, in the rest of the paper we assume that each agent owns exactly one variable. We identify the agent number with its variable index (∀x i ∈ X , ϕ(x i ) = i). From this assumption, all constraints are inter-agent constraints, so C inter = C and C intra = ∅.

Asynchronous backtracking (ABT ) [START_REF] Yokoo | Distributed constraint satisfaction for formalizing distributed problem solving[END_REF][START_REF] Yokoo | The distributed constraint satisfaction problem: formalization and algorithms[END_REF] was a pioneer algorithm to solve DisCSP, its first version dating from 1992. ABT is executed autonomously and asynchronously by each agent in the network. Each agent takes its own decisions, informs other agents about them, and no agent has to wait for decisions of others. It computes a global consistent solution (or detects that no solution exists) in finite time; its correctness and completeness have been proven.

ABT requires constraints to be directed. A constraint causes a directed link between the two constrained agents: the value-sending agent, from which the link departs, and the constraintevaluating agent, to which the link arrives. To make the network cycle-free there is a total order among agents, which is followed by the directed links.

Each agent keeps its own agent view and nogood store. Considering a generic agent self , the agent view of self is the set of values that it believes to be assigned to agents connected to self by incoming links. The nogood store keeps nogoods as justifications of inconsistent values. Agents exchange assignments and nogoods. When self makes an assignment, it informs those agents connected to it by outgoing links. self always accepts new assignments, updating its agent view accordingly. When self receives a nogood, it is accepted if it is consistent with self 's agent view, otherwise it is discarded as obsolete. An accepted nogood is added to self 's nogood store to justify the deletion of the value it targets. When self cannot take any value consistent with its agent view, because of the original constraints or because of the received nogoods, new nogoods are generated as inconsistent subsets of the agent view, and are sent to the closest agent involved, causing backtracking. If self receives a nogood mentioning another agent not connected with it, self requires to add a link from that agent to self . From this point on, a link from the other agent to self will exist. The process terminates when achieving quiescence, meaning that a solution has been found, or when the empty nogood is generated, meaning that the problem is unsolvable.

The Unifying Kernel

In the following we describe ABT kernel , a generic algorithm for variable-based DisCSPs. This algorithm is sound but it may fail termination. We identify the condition to assure termination.

The ABT kernel algorithm

The ABT kernel algorithm requires, like ABT , that constraints are directed -from the valuesending agent to the constraint-evaluating agent-forming a directed acyclic graph. Agents are ordered statically in agreement with constraint orientation. Agent i has higher priority than agent j if i appears before j in the total ordering. Considering a generic agent self , Γ -(self ) is the set of agents constrained with self appearing above it in the ordering. Conversely, Γ + (self ) is the set of agents constrained with self appearing below it in the ordering.

A directed nogood for value c of variable x k is x i = a∧x j = b∧. . . ⇒ x k = c, meaning that the assignment of c to x k is inconsistent with the assignments of a, b, . . . to x i , x j , . . .. This nogood is a justification of c removal, as long as values a, b, . . . are assigned to variables x i , x j , . . .. Its left-hand (lhs) and right-hand sides (rhs) are defined from the position of ⇒. Nogoods can have been received from lower priority agents, or derived from constraints with higher priority agents. ABT kernel takes the following options on nogoods, 1. One nogood per removed value. Each agent keeps only one nogood per removed value.

This option, also taken in some version of ABT , assures a polynomial space complexity.

2. Nogood resolution. When every value of a variable x k is ruled out a nogood, these nogoods are resolved computing a new nogood newN ogood as follows. Let x j be the closest variable (in the total order) to x k in the left-hand side of the nogoods, with value b. lhs(newN ogood) is the conjunction of the left-hand sides of all nogoods for values of x k removing x j . rhs(newN ogood) is x j = b. newN ogood is sent to x j . Agent k removes from its nogood store nogoods with x j in their left-hand side.

Each agent keeps its agent view and a nogood store, which must be consistent. The agent view of self is the set of values it believes are assigned to Γ -(self ) agents. Agents exchange assignments and nogoods until a solution is found or inconsistency is detected. A message msg can be of the following types (sender is the sending agent and self is the receiver),

• Inf o: it informs self that sender has done a new assignment msg.Assig.

• Back: it informs self that sender has found a nogood msg.N ogood as a cause of inconsistency requiring self not to take rhs(msg.N ogood).

• Stop: it informs self that no solution exists and causes it to stop.

ABT kernel appears in Figure 1. In the main procedure ABT kernel , each agent selects a value and informs other agents (CheckAgentView call, line 2). Then, a loop receives and processes messages (lines 3-8).

Inf o messages are processed by ProcessInfo and they are always accepted. After receiving an Inf o message, the agent view of self is updated to include the new assignment, and any nogood inconsistent with the agent view is removed (Update call, line 1). Then, a consistent value for self is searched after the change in the agent view (CheckAgentView call, line 2). CheckAgentView checks if the current value of self is still consistent (line 1). If not, it tries to select a consistent value (ChooseValue call, line 2). In this process, some values of self may appear as inconsistent. The nogoods justifying their removal are added to the nogood store (line 3 of ChooseValue). If a new consistent value is found, this new assignment is notified to all agents in Γ + (self ) through Inf o messages (line 3). Otherwise, self has to backtrack (Backtrack call, line 4). Backtrack generates a new nogood by the resolution of existing nogoods for the values of self (line 1). If the new nogood is empty, a Stop message is sent to the agent system and the process stops (lines 2-3). Otherwise, the new nogood is sent in a Back message to the agent appearing in its rhs (line 5). The value of this agent is deleted from the agent view (Update call, line 6), and a new consistent value is selected (CheckAgentView call, line 7).

Back messages are processed by ResolveConflict. A Back message coming from sender is accepted if its nogood has the same assignments as Γ -(self ) ∪ {self } (line 1). In this case, the assignments in the nogood for variables not directly related with self are taken to update the agent view (Update call, line 2). The nogood is stored, acting as justification for removing the current value of self (line 3). A new consistent value for self is searched (CheckAgentView call, line 4). If the message is not accepted, it is obsolete. Then, if the value of self was correct in the received nogood, self resends its value to sender by an Inf o message (line 5), because sender has forgotten self value when sending the Back message (line 6 of Backtrack). If not, self does nothing because there is an Inf o message travelling from self towards sender that has not arrived yet.

A Stop message means that the empty nogood has been derived, so the problem has no solution and the process has to stop. Eventually, the system can stabilize in a state where each agent has a value and no constraint is violated. This state is a global solution and the network has reached quiescence, meaning that no message is travelling through it. Such a state can be detected using specialized snapshot algorithms [START_REF] Chandy | Distributed snapshots: Determining global states of distributed systems[END_REF]. If no solution exists, the empty nogood will be generated.

Formal Properties

ABT kernel has the following formal properties.

Proposition 1 ABT kernel is sound.

Proof. If a solution is claimed, we have to prove that all agents satisfy their constraints. Let us assume quiescence in the network. If the current assignments are not a solution, there exists at least one violated constraint, i.e., an agent still unsatisfied with its current assignment. In this case, at least one message has been sent from the unsatisfied agent to the nearest culprit. This message is either not obsolete, in which case the recipient will change its value and break our quiescence assumption by sending a message, or obsolete, which means that some other message has not yet reached its destination and again breaks our assumption.

2

Proposition 2 ABT kernel cannot infer inconsistency if a solution exists.

Proof. Every nogood resulting from an Inf o message is redundant with regard to the DisCSP to solve. Since all additional nogoods are generated by logical inference when a domain wipe-out occurs, the empty nogood cannot be inferred if the network is satisfiable. 2

In spite of these good properties, ABT kernel may fail to terminate. The problem lies in the obsolescence of nogoods. The way nogoods are generated guarantees that every variable appearing in the nogood is above self in the ordering. But nothing ensures that those variables are in Γ -(self ). This leads us to the following observation.

Lemma 1 ABT kernel may store obsolete information.

Proof. Since a nogood may contain an unrelated agent u above self in the ordering, it cannot be locally checked for obsolescence as u will not send its new value to self . Thus, an agent can end up storing indefinitely an information which is no longer updated. 2

Worse, the agent may use that information to prune a value. If there is a solution including this value, it will be missed. Since ABT kernel cannot infer inconsistency if a solution exists, it will not terminate.

Lemma 2 Storing obsolete information, ABT kernel agents may fall into an infinite loop

Proof. Let i be an agent keeping a nogood about an unrelated agent u above i in the ordering, i.e. x u = a ⇒ x i = c. Suppose this nogood is now obsolete since x u changed its value, and c is the only value of x i in a solution. x i will try all other values in its domain, find them unfeasible and generate a backtrack message. When this message will reach u, it will be discarded as obsolete, and i will continue looping on the same subdomain, sending backtrack messages which are doomed to be dropped by u. The solution will never be detected. 2

Proposition 3 ABT kernel may fail to terminate.

Proof. The proof flows naturally from lemma 1 and 2. 2

If we eliminate obsolete information in finite time, it means that crucial values will not stay deleted forever. At least some of the backtrack messages will be processed, and will thus delete a value on some agent above self in the ordering.

Lemma 3

The first agent in the ordering can never fall into an infinite loop.

Proof. Every variable in a nogood received by self is above self in the ordering. If agent 1 receives a nogood, it has an empty left-hand side. So it will never become obsolete. 2

Lemma 4 If the first k-1 agents in the ordering are not trapped in an infinite loop and obsolete information disappears in finite time, agent k cannot fall into an infinite loop.

Proof. Suppose agent k is looping. Since we assume that no obsolete information can last forever, some of the backtracks sent by k will be seen as relevant, and will lead to value deletions. Since no agent among 1, . . . , k -1 is supposed to be in an infinite loop, they can accept only a finite number of relevant backtrack messages. Thus, they will either stabilize, in which case k will exit its so-called infinite loop as soon as the obsolete data are deleted, or generate an empty nogood, which will also stop the entire system. So, k is not in an infinite loop. 

The ABT Family

In the following, we explore ways to remove obsolete information from ABT kernel in finite time, producing several sound and complete algorithms. This allows us to rediscover already existing algorithms, like ABT [START_REF] Yokoo | The distributed constraint satisfaction problem: formalization and algorithms[END_REF] or DIBT [START_REF] Hamadi | Backtracking in distributed constraint networks[END_REF], derived from ABT kernel in a clean and elegant form.

A first way to remove obsolete information is to add new communication links to allow a nogood owner to determine whether this nogood is obsolete or not. An added link from agent i to agent j can be seen as the universal constraint between x i and x j , permitting all value tuples. x i should be included in Γ -(x j ) and x j in Γ + (x i ), which implies that x j will be informed of the value changes of x i . These added links were proposed in the original ABT algorithm [START_REF] Yokoo | The distributed constraint satisfaction problem: formalization and algorithms[END_REF].

A second way to remove obsolete information is to detect when a nogood could become obsolete. In that case, the hypothetically obsolete nogood and the values of unrelated agents are forgotten. These two alternative ways lead to the following four algorithms,

• Adding links as preprocessing: ABT all . This algorithm adds all the potentially useful new links during a preprocessing phase. New links are permanent.

• Adding links during search: ABT . This algorithm adds new links between agents during search. A link is requested by self when it receives a Back message containing unrelated agents above self in the ordering. New links are permanent.

• Adding temporary links: ABT temp . This algorithm adds new links between agents during search, as ABT . The difference is that new links are temporary. This idea has been informally proposed in [START_REF] Silaghi | Polynomial space and complete multiply asynchronous search with abstractions[END_REF]. A new link remains until a fixed number of messages have been exchanged through it. After that, it is removed.

• No links: ABT not . No new links are added between agents. To achieve completeness, this algorithm has to remove obsolete information in finite time. To do so, when an agent backtracks it forgets all nogoods that hypothetically could become obsolete.

In the following we present each of these algorithms in some detail.

ABT all : Adding links as preprocessing

In a preprocessing phase, ABT all adds a permanent link between every pair of unrelated agents i and j such that x j may receive a nogood mentioning x i during the execution of ABT kernel . This is done adding exactly the same links as in the computation of the induced constraint graph from the initial ordered constraint graph [START_REF] Dechter | Network-based heuristics for constraint-satisfaction problems[END_REF]. These new links are computed as follows. Agents (graph nodes) are processed from last to first, along the total ordering of agents. When an agent is processed, all its parents (related agents before it in the ordering) are connected by new links if they were not connected before. These new links are directed, following the total ordering of agents. The structure of the induced graph is recorded in the sets Γ -and Γ + of each agent.

During the search phase, ABT all behaves exactly like ABT kernel , which is now a complete algorithm because each agent is directly connected with every other agent that could appear in a nogood contained in a Back message. Obsolete nogoods will be removed in finite time, so ABT all is a sound and complete algorithm that terminates with a correct answer.

Interestingly, it is possible to modify ABT all in such way that agents do not store nogoods anymore, by fixing the agent to backtrack to the closest agent in Γ -(self ). A somewhat erroneous form of this algorithm was published in [START_REF] Hamadi | Backtracking in distributed constraint networks[END_REF] as the DIBT algorithm.

ABT : Adding links during search

Instead of linking all possible sources of conflict beforehand, we can wait until the conflict actually happens, and add a link at that point. The original ABT takes this approach.

ABT uses a fourth type of message, AddL, to request the addition of a new communication link. Each time an agent j receives information about a higher priority agent i previously unheard of, an AddL message is sent. As a result, x i extends its Γ + to include x j , and sends its current value on the newly created link. This way, each agent storing a nogood is guaranteed to be informed whenever one of the variables in the nogood changes its value.

The ABT algorithm appears in Figure 2, only for those parts that differ from ABT kernel . The main procedure ABT includes the reception of the AddL message (line 9.1), which is processed by SetLink. When a link request arrives, the sender is included in Γ + (self ) (line 1) and self sends its value through an Inf o message (line 2). When a Back message is received, ResolveConflict considers if a request for a new link must be sent (CheckAddLink call, line 2.1). Also, the condition for resending self value to senders of obsolete Back messages is simplified (line 5.1). CheckAddLink checks if unrelated agents appear in the received nogood (lines 1-2). In such case, it sends a request of new link for each unrelated agent, adding it to Γ -(self ) (lines 3-4). Finally, it updates its agent view taking as the value of the unrelated agent the value coming in the nogood (line 5). This value will be confirmed or discarded later, when the link request will cause the just related agent to send its value to self .

ABT temp : Adding temporary links

Given that links added in ABT serve the sole purpose of informing self when some nogood becomes obsolete, we may add them during search on a temporary basis. In fact, as soon as self knows the new value for the linked agent, obsolete nogoods are discarded and no further information from that agent is needed at this time, so this additional link could be dropped. It may happen that future Back messages will also mention this agent, so the link will have to be established again. If this happens often, it may be more efficient to keep the link active for a number of Inf o messages, carrying the value changes of the linked agent to self . This is the approach taken by ABT temp . When a new link is set from agent i to j, it is maintained for a fixed number k of Inf o messages going from x i to x j . After this number of messages has been sent, the link is removed and agents i and j become disconnected. The number k of messages for a link is known a priori by both agents, so two simple counters -one in each agent-allow for an effective implementation of this technique. When reporting results the number k is essential, and then this algorithm is mentioned as ABT temp (k). 

ABT not : No links any more

Instead of trying hard to be informed when an unconnected agent changes its value, self can study its own course of action and update its knowledge accordingly. More precisely, when all values of self have been removed, a new nogood is generated and sent to the nearest culprit. self knows that this nogood will possibly reach every variable it contains, forcing them all, in the worst case, to change their value. For those variables in Γ -(self ), there is no need to worry, because they are bound to inform self . For the others, the very action of backtracking can lead to the obsolescence of any nogood inside which they appear. Hence, self will forget those insecure variables and nogoods upon backtracking. There are two cases which deserve some attention. First, it may happen that a forgotten nogood does not become obsolete after all. If self takes the value that this nogood was removing, then self will necessarily receive again this nogood, rediscovered by a lower priority agent.

Second, it may happen that a nogood becomes obsolete because an unrelated, higher priority agent has changed its value and self has not been notified. If the value suppressed by the obsolete nogood is not mandatory to find a solution, this mistake does not compromise finding a solution. On the contrary, if that value is mandatory, self will be forced to try every other value in its domain before backtracking. A new nogood resolving all nogoods removing self values will be produced. This nogood will include the agent that had changed its value, so when sending the Back message, its value will be forgotten and search will be resumed.

The ABT not algorithm takes this approach. This algorithm was described in [START_REF] Bessière | Distributed dynamic backtracking[END_REF], under the name DisDB. ABT not only differs from ABT kernel in the forgetting policy of nogoods that could become obsolete, and this concerns the procedure Backtrack that appears in Figure 3. This procedure computes the new nogood as the resolvent of the nogoods justifying the wipe out of self . If the new nogood is not empty, it is sent in a Back message. Then, self forgets the values of agents not in Γ -(self ), and the nogoods including those agents (line 6.1). Finally, a new value consistent with the agent view is searched.

Discussion

Consider two agents i and j (i preceding j in the ordering) not originally constrained but connected in the induced constraint graph. The algorithms above differ in the way information flows between these two agents. If i takes a new assignment, we say that j is informed about this new assignment when j knows it. The cost of informing j is the minimum number of messages required since i takes the new assignment until j is aware of it. We will say that algorithm A is better informed than algorithm B if, for the same problem and the same agent ordering, the cost of informing j of i changes using A is less than or equal to the cost of informing j using B.

Using this definition, we can order the ABT family algorithms following the quality of the information they handle, from ABT all to ABT not . ABT all is better informed than ABT because both behave the same except when ABT detects a conflict between i and j for the first time. In this case, ABT requires more messages to set up the link. ABT is better informed than ABT temp since the latter can require some extra messages to set up again a suspended temporary link. And ABT temp is better informed than ABT not because the former could inform j in one or two messages, while the latter always requires at least two messages since j can be aware of i's value only through a Back message.

Experimental Results

We have tested the ABT family algorithms in an asynchronous, single-processor environment. All agents are represented by Linux processes running on the same machine with the same scheduling priority.

We provide results on the search effort, counting the number of "concurrent constraint checks" (#c-ccks), as defined2 in [START_REF] Meisels | Comparing performance of distributed constraints processing algorithms[END_REF], following Lamport's logic clocks [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF]. Informally, the number of concurrent constraint checks approximates the longest sequence of constraint checks not performed concurrently. We prefer this parameter to the total number of constraint checks, which does not take into account concurrency among agents. Also, we evaluate the global communication effort as the total number of messages exchanged among agents (#msgs). We do not report the number of concurrent messages (that were computed following the same technique as #c-ccks) because it was completely proportional to #c-ccks in all our experiments.

We implemented these algorithms considering the following improvements, 1. Value in AddL. When a new link with agent k is requested by self , instead of sending the AddL message and wait for answer, ABT and ABT temp include in the AddL message the value of x k recorded in the received nogood. After reception of the AddL message, agent k informs self of its current value only if it is different from the value contained in the AddL message. In this way, some Inf o messages can be saved.

2.

Avoid resending same values. ABT family algorithms keep track of the last value taken by self . When selecting a new value, if it happens that the new value is the same as the last value, self does not resend it to Γ + (self ), because this information is already known.

(See line 3 of CheckAgentView in Fig. 1.) Again, this may save some Inf o messages.

3. Sequence numbers (ABT not (seq)). It is possible to enhance slightly the quality of the information stored by ABT not in the agent view, as follows. Each agent keeps a sequence number, which is incremented each time its value changes. Each time it sends its value, the sequence number is attached. The agent view stores the values and sequence numbers of previous agents in the ordering. When self receives a message, it keeps the newest value for each variable in its agent view. In particular, a Back message is discarded as obsolete if it contains older values than those recorded in self 's agent view. When self sends a Back message, the computed nogood contains the values and sequence numbers of involved variables, forgetting the values of unconnected variables but keeping their sequence numbers.

We have decided to keep one nogood per removed value. However, if two nogoods are available for a value, it is possible to select the most appropriate one. With this idea, we propose the following heuristic: when comparing two nogoods, select the one with the highest possible lowest variable involved. The rationale for this heuristic is to ensure that each time a wipe-out occurs, the Back message is sent as high as possible in the agent ordering. A similar idea was proposed in [START_REF] Hirayama | The effect of nogood learning in distributed constraint satisfaction[END_REF]. This heuristic is computed as follows. When self 's domain is wiped out, each value is checked against each agent in Γ -(self ), looking for a nogood better than the current one for this value. In addition, when self receives a Back message with a nogood obsolete on self only, and removing value c, this nogood is still a valid justification for removing c. Then, this nogood is taken if it is better than the current stored nogood justifying c removal.

ABT algorithms, with or without the heuristic of selecting the best nogood, have been tested on two kind of problems, random DisCSPs and distributed meeting scheduling. Their results are reported and discussed in the following.

Random DisCSPs

Uniform binary random CSPs are characterized by n, d, p 1 , p 2 where n is the number of variables, d the number of values per variable, p 1 the network connectivity defined as the ratio of existing constraints, and p 2 the constraint tightness defined as the ratio of forbidden value pairs.

We have tested random instances of 16 agents and 8 values per agent, considering two connectivity classes, sparse (p 1 = 0.2) and medium (p 1 = 0.5). Experiments are at the complexity peak considering 50 instances. Specifically, we tested the random classes 16, 8, 0. 1 and2, where we report the number of concurrent constraint checks and the total number of messages exchanged, averaged over 50 executions. Table 1 contains the results for the plain ABT algorithms. The parameter k for ABT temp was adjusted manually after some trials. Only the results for the best value of k are given. Considering the three algorithms adding links, ABT all , ABT , and ABT temp , we observe that the better informed the algorithm is, the less concurrent constraint checks it requires to solve the problem. This is at the cost of exchanging more messages. ABT temp is the algorithm exchanging less messages, followed by ABT and ABT all . ABT not requires the highest number of concurrent constraint checks. Because it is the worst informed algorithm, it is more likely to make wrong decisions, requiring more effort than previous algorithms to solve the same problem. This also implies a higher number of messages exchanged. ABT not (seq) dominates ABT not because sequence numbers avoid some of the wrong decisions taken by ABT not .

The effect of using the nogood selection heuristic appears in Table 2. We observe that the number of concurrent constraint checks increases because agents have to do more checks in order to compare nogoods from the store with potentially better nogoods from the constraints. However, the number of messages decreases consistently for all the algorithms, showing the benefits of the heuristic. The relative performance of the algorithms in #msgs remains unchanged with respect to the plain versions.

Distributed Meeting Scheduling

To compare our algorithms on structured problems, we solved distributed meeting scheduling problems: a number of people with an already partially filled planning, are looking for a place where they can meet at the same time [START_REF] Freuder | Privacy/efficiency trade-offs in distributed meeting scheduling by constraint-based agents[END_REF]. In our experiment, attendees are divided into three thematic groups. A group, formed by four attendees, has its own meeting to schedule in one of three cities. Two meetings cannot be held at the same time in the same city. Cities are separated by a given travel time. One of the members of the group is in charge of communicating with the other groups.

Each attendee is represented by an agent, with its starting domain matching the attendee's current planning: the predefined appointments (time/place pairs), as well as the time/places which are unreachable because of said appointments, are removed from the domain before the 3 and4, where we report #c-ccks and #msgs averaged over 100 instances. Table 3 contains the results for plain ABTs. With p = 8 (left part of the table), we are at the beginning of the phase transition, where 92% of the instances were satisfiable. On these instances, the best informed algorithms, ABT all and ABT , show the worst performance in number of messages exchanged. The temporary link policy of ABT temp significantly pays off. This can be explained by the fact that these problems are structured as cliques with few constraints outside them. A single nogood between two agents belonging to different cliques leads ABT to the addition of a link that will remain active during the whole search, even if they no longer share nogoods. ABT temp takes advantage of this by activating the link just for solving the current conflict. A confirmation of this is that we observed that ABT temp (k) decays performance as soon as k > 2. Even ABT not , with its poorly informed agents, requires less messages than the two best informed algorithms, ABT all and ABT , while on random problems it was always the greatest consumer of messages.

The number of concurrent constraint checks presents the same steady increase from better informed to worse informed algorithms as on random problems, even if the differences are smaller.

Finally, it is worth noting that if we limit the analysis to the 8 inconsistent instances, ABT all and ABT obtain results much closer to ABT temp (232 messages in average for ABT all and 225 for ABT versus 217 for ABT temp ). On these inconsistent problems, ABT not is the worst (250 messages for both versions).

Increasing the number of predefined appointments per agent changes the proportion of solvable instances. With p = 10 (middle of Table 3), the problems are at the complexity peak (49% of satisfiable instances), and when p = 12 (right of Table 3), they are slightly over-constrained (only 12% of satisfiable instances). We observe that as inconsistent instances become more frequent, the average behavior changes. Regarding the number of messages, at the complexity peak, the benefit of ABT temp with respect to ABT all and ABT decreases, and ABT not becomes worse than ABT . At the right of the complexity peak, differences between ABT and ABT temp are quite small, while differences between ABT not and ABT increase. In this case, the relative results of the different algorithms are very similar to those observed on the 8 inconsistent instances with p = 8. The number of concurrent constraint checks reflects again the same trend: the more the problems are constrained, the better informed algorithms behave.

Table 4 shows the effect of the nogood selection heuristic. Regarding the number of messages, it appears that the heuristic is almost useless. One of the reasons is probably that in our implementation, the agents are ordered according to the 4-cliques. Hence, the causes of a conflict are most of the time circumscribed to a clique, which does not give the opportunity to select a nogood jumping much higher than another one chosen arbitrarily. As a consequence, the number of concurrent constraint checks can only increase since the heuristic has a tiny benefit on the search performance while it requires extra constraint checks.

Discussion

We have tested the ABT family algorithms on unstructured (random) problems as well as structured ones (meeting scheduling). From the results, we observe the following facts.

Regarding the search effort, consistently for all problems, the more informed an algorithm is, the smaller the number of concurrent constraint checks it requires. Regarding the number of messages exchanged, the dynamic links of ABT improve over the static approach of ABT all . Temporary links of ABT temp dominate the permanent link approach of ABT , and this dominance depends on the kind of problems. On unstructured problems, ABT temp improves over ABT by a narrow margin, which becomes larger on structured problems, especially consistent ones. When considering unsatisfiable instances only, both algorithms exhibit a similar performance. ABT not , the algorithm not adding links, is competitive only for structured problems at the left of the complexity peak, showing a slight improvement when sequence numbers are used. This leads us to conclude that when problems do not show some structure, or are not under-constrained, ABT not has to be selected only if some privacy policy justifies its use.

Regarding the nogood selection heuristic, we observe clear benefits on unstructured problems but only minor advantages on structured ones. Apparently, the structure of the meeting scheduling problems prevents the heuristic to find large jumps over the network.

While ABT temp appears as a good algorithm for asynchronous backtracking, the following question remains: how many Inf o messages to allow through a temporary link? In the reported experiments this parameter was adjusted manually after some trials. We believe that it has not to be a fixed parameter of the algorithm, but it could be adjusted automatic and dynamically, customized for each agent. The automatic selection of this parameter is a direction for further research.

Conclusion

We have proposed ABT not , a new asynchronous backtracking algorithm for distributed CSPs. This procedure is the first one that does not add links between agents not sharing constraints. This property can be important to avoid messages sent to agents which may not need to be informed. We presented ABT not via a basic kernel that is sound but does not guarantee termination. By implementing the condition for termination in this kernel, we obtained existing ABT family algorithms, or new ones, such as ABT not . We compared experimentally several algorithms from the ABT family.
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 2 Figure 2: The ABT algorithm with permanent links. Only the new or modified parts with respect to ABT kernel in Figure 1 are shown.

Figure 3 :

 3 Figure 3: The ABT not algorithm with no links. Only the new or modified parts with respect to ABT kernel in Figure 1 are shown.
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  Proposition 4 Removing obsolete information in finite time, ABT kernel will terminate.Proof. By recurrence, lemma 3 and lemma 4 show that none of our agents can fall into an infinite loop. So ABT kernel terminates if obsolete information is erased in finite time.2Therefore, complete algorithms based on ABT kernel should be able to discard obsolete nogoods. If a nogood becomes obsolete, it may survive in the network for a limited period of time.

  else if Coherent(msg.N ogood, self ) then sendMsg:Inf o(msg.sender, myV alue);

	procedure ABT()
	1 myV alue ← empty; end ← false;
	2 CheckAgentView();
	3 while (¬end) do
	4 msg ← getMsg();
	5 switch(msg.type)
	6	Inf o : ProcessInfo(msg);
	7	Back : ResolveConflict(msg);
	8	Stop : end ← true;
	9.1 AddL : SetLink(msg);
	procedure ResolveConflict(msg)
	1 if Coherent(msg.N ogood, Γ -(self ) ∪ {self }) then
	2.1 CheckAddLink(msg);
	3	add(msg.N ogood, myN ogoodStore); myV alue ← empty;
	4	CheckAgentView();
	5.1 procedure SetLink(msg)
	1 add(msg.sender, Γ + (self ));
	2 sendMsg:Inf o(msg.sender, myV alue);
	procedure CheckAddLink(msg)
	1 for each (var ∈ lhs(msg.N ogood))
	2 if (var / ∈ Γ

-(self )) then 3 sendMsg:AddL(var, self ); 4 add(var, Γ -(self )); 5 Update(myAgentV iew, var ← varV alue);

Table 1 :

 1 2, 0.7 (20 solvable instances out of 50) and 16, 8, 0.5, 0.42 (27 solvable instances out of 50). Results appear Plain ABTs

	p 1 = 0.20	#c-ccks #msgs p 1 = 0.50	#c-ccks #msgs
	ABT all	5,196	8,095 ABT all	39,148 56,206
	ABT	5,496	7,675 ABT	40,564 54,694
	ABT temp (10)	5,530	7,485 ABT temp (5)	40,599 50,455
	ABT not	35,443 40,223 ABT not	61,658 66,331
	ABT not (seq)	28,599 33,345 ABT not (seq)	59,402 63,451
	p 1 = 0.20	#c-ccks #msgs p 1 = 0.50	#c-ccks #msgs
	ABT all	13,144	7,486 ABT all	101,898 51,891
	ABT	13,939	7,470 ABT	102,367 50,558
	ABT temp (10)	13,889	7,174 ABT temp (5)	103,401 48,120
	ABT not	75,020 36,454 ABT not	153,320 60,393
	ABT not (seq)	47,437 27,558 ABT not (seq) 128,164 58,907

Table 2 :

 2 ABTs with nogood selection heuristic in Tables

Table 3 :

 3 Plain ABTs

		p = 8		p = 10		p = 12	
		#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs
	ABT all	2,482	352	35,937	3,511	2,312	328
	ABT	2,513	336	38,439	3,503	2,517	310
	ABT temp (1)	2,606	220	38,888	3,018	2,873	308
	ABT not	3,607	319	47,257	3,793	3,403	375
	ABT not (seq)	3,417	307	44,017	3,319	3,268	359
		p = 8		p = 10		p = 12	
		#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs
	ABT all	3,046	346	55,944	3,451	2,812	322
	ABT	3,053	335	59,723	3,438	3,024	303
	ABT temp (1)	3,119	218	59,892	2,962	3,198	301
	ABT not	3,993	317	72,350	3,744	4,013	369
	ABT not (seq)	3,717	303	65,742	3,492	3,807	354

Table 4 :

 4 ABTs with nogood selection heuristic search starts. Our experiment is composed of 5 days, with 6 time slots per day and 3 meeting places. This gives 5 • 6 • 3 = 90 possible values in the domain of each agent. Meetings and time slots are both one hour long. The 'travel times' between the three cities are 1 hour, 1 hour, and 2 hours. The actual instances are generated by randomly posting p predefined appointments in each agent's planning. We have tested three different classes of problems, with p = 8, p = 10, and p = 12 that correspond respectively to under-constrained, critically constrained, and overconstrained problems. Results appear in Tables

A comprehensive description of the different algorithms derived from ABT kernel is presented in[START_REF] Bessière | The Asynchronous Backtracking Family[END_REF].

Except that in our implementation we do not take into account the cost of messages.
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