
HAL Id: lirmm-00105347
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105347

Submitted on 12 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Backtracking Without Adding Links: A
New Member in the ABT Family

Christian Bessiere, Arnold Maestre, Ismel Brito, Pedro Meseguer

To cite this version:
Christian Bessiere, Arnold Maestre, Ismel Brito, Pedro Meseguer. Asynchronous Backtracking With-
out Adding Links: A New Member in the ABT Family. Artificial Intelligence, 2005, 161 (1-2), pp.7-24.
�10.1016/j.artint.2004.10.002�. �lirmm-00105347�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105347
https://hal.archives-ouvertes.fr

Asynchronous Backtracking without Adding Links:

A New Member in the ABT Family ∗

Christian Bessière Ismel Brito

Arnold Maestre Pedro Meseguer

LIRMM-CNRS, 161 rue Ada IIIA-CSIC, Campus UAB

34392 Montpellier, France 08193 Bellaterra, Spain

Abstract

Following the pioneer work of Yokoo and colleagues on the ABT (asynchronous backtrack-
ing) algorithm, several ABT-based procedures have been proposed for solving distributed
constraint networks. They differ in the way they store nogoods, but they all use additional
communication links between unconnected agents to detect obsolete information. In this
paper, we propose a new asynchronous backtracking algorithm which does not need to add
links between initially unconnected agents. To make the description simpler and to facilitate
the comparisons between algorithms, we present a unifying framework from which the new
algorithm we propose, as well as existing ones, are derived. We provide an experimental
evaluation of these algorithms.

1 Introduction

In the last years, the AI community has shown an increasing interest in distributed problem
solving using the agents paradigm. In particular, several works have considered constraint satis-
faction in a distributed form. They are motivated by naturally distributed constraint problems,
for which it is not convenient to gather the whole problem knowledge into a single agent, and to
solve it using centralized algorithms. The cost of collecting all information into a single agent
could be taxing. Besides, gathering all information into a single agent could be undesirable for
security or privacy reasons.

Considering complete algorithms for distributed constraint satisfaction, we mention the pi-
oneer work of Yokoo and colleagues, who proposed the asynchronous backtracking algorithm
(ABT) [15, 16]. ABT assumes a variable-based model, where each variable belongs to one agent
and constraints are shared between agents. ABT requires a total agent ordering. When a dead-
end is detected, it may require to add communication links between previously unconnected
agents. Nogoods are exchanged among connected agents, and stored. Several extensions were
proposed, as its adaptation to dynamic agent re-ordering [12] or consistency maintenance [11].
The distributed backtracking algorithm (DIBT) [6] performs graph-based backjumping without
nogood storage. However, DIBT is not complete in its original form [14, 1]. A different approach
is the asynchronous aggregation search algorithm (AAS) [10], that assumes a constraint-based
model where each constraint belongs to one agent.

In this paper, we propose ABTnot, a new ABT-based algorithm that does not require to
add communication links between initially unconnected agents. We first present ABTkernel, a

∗The work of Ismel Brito and Pedro Meseguer is supported by the Spanish project REPLI: TIC-2002-04470-
C03.

1

simple procedure that contains the basic features of an asynchronous backtracking algorithm for
variable-based distributed constraint satisfaction. We show that ABTkernel is sound but may
not terminate, and we identify the condition that has to be accomplished to obtain a complete
procedure. Depending on the way this condition is implemented, we obtain already known
algorithms (such as Yokoo’s ABT or a correct version of DIBT), or new ones.1 Among them,
we emphasize on ABTnot, a new algorithm that behaves like ABT without requiring to add
new communication links. This algorithm could be useful for applications where agents are
not permitted to establish new communication links (due to a security policy of the site, for
instance). In addition, the algorithmic analysis of ABTkernel allows us to understand better the
behavior of asynchronous search, clarifying the similarities and differences among ABT-based
algorithms. We provide an experimental evaluation of these algorithms, using random problems
and distributed meeting scheduling problems.

The rest of the paper is organized as follows. Section 2 contains some basic definitions and
a description the asynchronous backtracking algorithm. In Section 3, we introduce ABTkernel

and provide the condition to achieve completeness. In Section 4, we implement this condition
in several ways, deriving some already known algorithms and new ones like ABTnot. Section 5
contains the experimental evaluation. Finally, Section 6 contains some conclusions of this work.

2 Preliminaries

Classically, constraint satisfaction problems (CSPs) have been defined for a centralized archi-
tecture. A constraint network is defined by a triple (X ,D, C), where X = {x1, . . . , xn} is a set
of n variables, D = {D(x1), . . . , D(xn)} is the set of their respective finite domains, and C is a
set of constraints specifying the acceptable value combinations for variables. The CSP involves
finding values for the variables that satisfy all the constraints. We consider constraints involving
two variables only, namely binary constraints. A constraint between xi and xj is denoted by cij .

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints of the
underlying network are distributed among agents. A finite variable-based distributed constraint
network is defined by a 5-tuple (X ,D, C,A, ϕ), where X , D and C are as before. A = {1, . . . , p}
is a set of p agents, and ϕ : X → A is a function that maps each variable to its agent. Each
variable belongs to one agent. The distribution of variables divides C in two disjoint subsets,
Cintra = {cij |ϕ(xi) = ϕ(xj)}, and Cinter = {cij |ϕ(xi) 6= ϕ(xj)}, called intra-agent and inter-agent
constraint sets, respectively. An intra-agent constraint cij is known by the agent owner of xi and
xj, and it is unknown by other agents. Usually, it is considered that an inter-agent constraint
cij is known by the agents ϕ(xi) and ϕ(xj) [16, 6]. As in the centralized case, a solution of a
DisCSP is an assignment of values to variables satisfying every constraint. DisCSPs are solved
by the collective action of agents A, each holding a process of distributed constraint satisfaction.

Agents communicate by sending messages. It is assumed that the delay in delivering a
message is finite but random. For a given pair of agents, messages are delivered in the order
they were sent. For simplicity, in the rest of the paper we assume that each agent owns exactly
one variable. We identify the agent number with its variable index (∀xi ∈ X , ϕ(xi) = i). From
this assumption, all constraints are inter-agent constraints, so Cinter = C and Cintra = ∅.

Asynchronous backtracking (ABT) [15, 16] was a pioneer algorithm to solve DisCSP, its first
version dating from 1992. ABT is executed autonomously and asynchronously by each agent in
the network. Each agent takes its own decisions, informs other agents about them, and no agent
has to wait for decisions of others. It computes a global consistent solution (or detects that no
solution exists) in finite time; its correctness and completeness have been proven.

1A comprehensive description of the different algorithms derived from ABTkernel is presented in [2].

2

ABT requires constraints to be directed. A constraint causes a directed link between the two
constrained agents: the value-sending agent, from which the link departs, and the constraint-
evaluating agent, to which the link arrives. To make the network cycle-free there is a total order
among agents, which is followed by the directed links.

Each agent keeps its own agent view and nogood store. Considering a generic agent self ,
the agent view of self is the set of values that it believes to be assigned to agents connected to
self by incoming links. The nogood store keeps nogoods as justifications of inconsistent values.
Agents exchange assignments and nogoods. When self makes an assignment, it informs those
agents connected to it by outgoing links. self always accepts new assignments, updating its
agent view accordingly. When self receives a nogood, it is accepted if it is consistent with self ’s
agent view, otherwise it is discarded as obsolete. An accepted nogood is added to self ’s nogood
store to justify the deletion of the value it targets. When self cannot take any value consistent
with its agent view, because of the original constraints or because of the received nogoods, new
nogoods are generated as inconsistent subsets of the agent view, and are sent to the closest
agent involved, causing backtracking. If self receives a nogood mentioning another agent not
connected with it, self requires to add a link from that agent to self . From this point on, a
link from the other agent to self will exist. The process terminates when achieving quiescence,
meaning that a solution has been found, or when the empty nogood is generated, meaning that
the problem is unsolvable.

3 The Unifying Kernel

In the following we describe ABTkernel, a generic algorithm for variable-based DisCSPs. This
algorithm is sound but it may fail termination. We identify the condition to assure termination.

3.1 The ABTkernel algorithm

The ABTkernel algorithm requires, like ABT , that constraints are directed —from the value-
sending agent to the constraint-evaluating agent— forming a directed acyclic graph. Agents are
ordered statically in agreement with constraint orientation. Agent i has higher priority than
agent j if i appears before j in the total ordering. Considering a generic agent self , Γ−(self) is
the set of agents constrained with self appearing above it in the ordering. Conversely, Γ+(self)
is the set of agents constrained with self appearing below it in the ordering.

A directed nogood for value c of variable xk is xi = a∧xj = b∧. . .⇒ xk 6= c, meaning that the
assignment of c to xk is inconsistent with the assignments of a, b, . . . to xi, xj , This nogood
is a justification of c removal, as long as values a, b, . . . are assigned to variables xi, xj , Its
left-hand (lhs) and right-hand sides (rhs) are defined from the position of ⇒. Nogoods can
have been received from lower priority agents, or derived from constraints with higher priority
agents. ABTkernel takes the following options on nogoods,

1. One nogood per removed value. Each agent keeps only one nogood per removed value.
This option, also taken in some version of ABT , assures a polynomial space complexity.

2. Nogood resolution. When every value of a variable xk is ruled out a nogood, these no-
goods are resolved computing a new nogood newNogood as follows. Let xj be the closest
variable (in the total order) to xk in the left-hand side of the nogoods, with value b.
lhs(newNogood) is the conjunction of the left-hand sides of all nogoods for values of xk

removing xj. rhs(newNogood) is xj 6= b. newNogood is sent to xj. Agent k removes from
its nogood store nogoods with xj in their left-hand side.

3

Each agent keeps its agent view and a nogood store, which must be consistent. The agent
view of self is the set of values it believes are assigned to Γ−(self) agents. Agents exchange
assignments and nogoods until a solution is found or inconsistency is detected. A message msg
can be of the following types (sender is the sending agent and self is the receiver),

• Info: it informs self that sender has done a new assignment msg.Assig.

• Back: it informs self that sender has found a nogood msg.Nogood as a cause of incon-
sistency requiring self not to take rhs(msg.Nogood).

• Stop: it informs self that no solution exists and causes it to stop.

ABTkernel appears in Figure 1. In the main procedure ABTkernel, each agent selects a value
and informs other agents (CheckAgentView call, line 2). Then, a loop receives and processes
messages (lines 3-8).

Info messages are processed by ProcessInfo and they are always accepted. After receiving
an Info message, the agent view of self is updated to include the new assignment, and any
nogood inconsistent with the agent view is removed (Update call, line 1). Then, a consistent
value for self is searched after the change in the agent view (CheckAgentView call, line 2).
CheckAgentView checks if the current value of self is still consistent (line 1). If not, it tries to
select a consistent value (ChooseValue call, line 2). In this process, some values of self may
appear as inconsistent. The nogoods justifying their removal are added to the nogood store (line
3 of ChooseValue). If a new consistent value is found, this new assignment is notified to all
agents in Γ+(self) through Info messages (line 3). Otherwise, self has to backtrack (Backtrack
call, line 4). Backtrack generates a new nogood by the resolution of existing nogoods for the
values of self (line 1). If the new nogood is empty, a Stop message is sent to the agent system
and the process stops (lines 2-3). Otherwise, the new nogood is sent in a Back message to
the agent appearing in its rhs (line 5). The value of this agent is deleted from the agent view
(Update call, line 6), and a new consistent value is selected (CheckAgentView call, line 7).

Back messages are processed by ResolveConflict. A Back message coming from sender
is accepted if its nogood has the same assignments as Γ−(self) ∪ {self} (line 1). In this case,
the assignments in the nogood for variables not directly related with self are taken to update
the agent view (Update call, line 2). The nogood is stored, acting as justification for removing
the current value of self (line 3). A new consistent value for self is searched (CheckAgentView
call, line 4). If the message is not accepted, it is obsolete. Then, if the value of self was correct
in the received nogood, self resends its value to sender by an Info message (line 5), because
sender has forgotten self value when sending the Back message (line 6 of Backtrack). If not,
self does nothing because there is an Info message travelling from self towards sender that
has not arrived yet.

A Stop message means that the empty nogood has been derived, so the problem has no
solution and the process has to stop.

Eventually, the system can stabilize in a state where each agent has a value and no constraint
is violated. This state is a global solution and the network has reached quiescence, meaning
that no message is travelling through it. Such a state can be detected using specialized snapshot
algorithms [3]. If no solution exists, the empty nogood will be generated.

3.2 Formal Properties

ABTkernel has the following formal properties.

Proposition 1 ABTkernel is sound.

4

procedure ABTkernel()

1 myV alue← empty; end ← false;
2 CheckAgentView();
3 while (¬end) do

4 msg ← getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end← true;

procedure CheckAgentView(msg)
1 if ¬consistent(myV alue, myAgentV iew) then

2 myV alue← ChooseValue();
3 if (myV alue) then for each child ∈ Γ+(self) do sendMsg:Info(child, myV alue);
4 else Backtrack();

procedure ProcessInfo(msg)
1 Update(myAgentV iew, msg.Assig);
2 CheckAgentView();

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then

2 for each assig ∈ lhs(msg.Nogood) \ Γ−(self) do Update(myAgentV iew, assig);
3 add(msg.Nogood, myNogoodStore); myV alue← empty;
4 CheckAgentView();
5 else if msg.sender ∈ Γ+(self) ∧ Coherent(msg.Nogood, self) then SendMsg:Info(msg.sender, myV alue);

procedure Backtrack()
1 newNogood← solve(myNogoodStore);
2 if (newNogood = empty) then

3 end← true; sendMsg:Stop(system);
4 else

5 sendMsg:Back(newNogood);
6 Update(myAgentV iew,rhs(newNogood)← unknown);
7 CheckAgentView();

function ChooseValue()

1 for each v ∈ D(self) not eliminated by myNogoodStore do

2 if consistent(v, myAgentV iew) then return (v);
3 else add(xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent with xj ’s value */
4 return (empty);

procedure Update(myAgentV iew, newAssig)
1 add(newAssig, myAgentV iew);
2 for each ng ∈ myNogoodStore do

3 if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)
1 for each var ∈ nogood ∪ agents do

2 if nogood[var] 6= myAgentV iew[var] then return false;
3 return true;

Figure 1: The ABTkernel algorithm for asynchronous backtracking search.

5

Proof. If a solution is claimed, we have to prove that all agents satisfy their constraints. Let
us assume quiescence in the network. If the current assignments are not a solution, there exists
at least one violated constraint, i.e., an agent still unsatisfied with its current assignment. In
this case, at least one message has been sent from the unsatisfied agent to the nearest culprit.
This message is either not obsolete, in which case the recipient will change its value and break
our quiescence assumption by sending a message, or obsolete, which means that some other
message has not yet reached its destination and again breaks our assumption. 2

Proposition 2 ABTkernel cannot infer inconsistency if a solution exists.

Proof. Every nogood resulting from an Info message is redundant with regard to the DisCSP
to solve. Since all additional nogoods are generated by logical inference when a domain wipe-out
occurs, the empty nogood cannot be inferred if the network is satisfiable. 2

In spite of these good properties, ABTkernel may fail to terminate. The problem lies in the ob-
solescence of nogoods. The way nogoods are generated guarantees that every variable appearing
in the nogood is above self in the ordering. But nothing ensures that those variables are in
Γ−(self). This leads us to the following observation.

Lemma 1 ABTkernel may store obsolete information.

Proof. Since a nogood may contain an unrelated agent u above self in the ordering, it cannot
be locally checked for obsolescence as u will not send its new value to self . Thus, an agent can
end up storing indefinitely an information which is no longer updated. 2

Worse, the agent may use that information to prune a value. If there is a solution including this
value, it will be missed. Since ABTkernel cannot infer inconsistency if a solution exists, it will
not terminate.

Lemma 2 Storing obsolete information, ABTkernel agents may fall into an infinite loop

Proof. Let i be an agent keeping a nogood about an unrelated agent u above i in the ordering,
i.e. xu = a⇒ xi 6= c. Suppose this nogood is now obsolete since xu changed its value, and c is
the only value of xi in a solution. xi will try all other values in its domain, find them unfeasible
and generate a backtrack message. When this message will reach u, it will be discarded as
obsolete, and i will continue looping on the same subdomain, sending backtrack messages which
are doomed to be dropped by u. The solution will never be detected. 2

Proposition 3 ABTkernel may fail to terminate.

Proof. The proof flows naturally from lemma 1 and 2. 2

If we eliminate obsolete information in finite time, it means that crucial values will not stay
deleted forever. At least some of the backtrack messages will be processed, and will thus delete
a value on some agent above self in the ordering.

Lemma 3 The first agent in the ordering can never fall into an infinite loop.

Proof. Every variable in a nogood received by self is above self in the ordering. If agent 1
receives a nogood, it has an empty left-hand side. So it will never become obsolete. 2

Lemma 4 If the first k−1 agents in the ordering are not trapped in an infinite loop and obsolete
information disappears in finite time, agent k cannot fall into an infinite loop.

6

Proof. Suppose agent k is looping. Since we assume that no obsolete information can last
forever, some of the backtracks sent by k will be seen as relevant, and will lead to value deletions.
Since no agent among 1, . . . , k − 1 is supposed to be in an infinite loop, they can accept only a
finite number of relevant backtrack messages. Thus, they will either stabilize, in which case k
will exit its so-called infinite loop as soon as the obsolete data are deleted, or generate an empty
nogood, which will also stop the entire system. So, k is not in an infinite loop. 2

Proposition 4 Removing obsolete information in finite time, ABTkernel will terminate.

Proof. By recurrence, lemma 3 and lemma 4 show that none of our agents can fall into an
infinite loop. So ABTkernel terminates if obsolete information is erased in finite time. 2

Therefore, complete algorithms based on ABTkernel should be able to discard obsolete nogoods.
If a nogood becomes obsolete, it may survive in the network for a limited period of time.

4 The ABT Family

In the following, we explore ways to remove obsolete information from ABTkernel in finite time,
producing several sound and complete algorithms. This allows us to rediscover already existing
algorithms, like ABT [16] or DIBT [6], derived from ABTkernel in a clean and elegant form.

A first way to remove obsolete information is to add new communication links to allow a
nogood owner to determine whether this nogood is obsolete or not. An added link from agent i
to agent j can be seen as the universal constraint between xi and xj , permitting all value tuples.
xi should be included in Γ−(xj) and xj in Γ+(xi), which implies that xj will be informed of the
value changes of xi. These added links were proposed in the original ABT algorithm [16].

A second way to remove obsolete information is to detect when a nogood could become
obsolete. In that case, the hypothetically obsolete nogood and the values of unrelated agents
are forgotten. These two alternative ways lead to the following four algorithms,

• Adding links as preprocessing: ABTall. This algorithm adds all the potentially useful new
links during a preprocessing phase. New links are permanent.

• Adding links during search: ABT . This algorithm adds new links between agents during
search. A link is requested by self when it receives a Back message containing unrelated
agents above self in the ordering. New links are permanent.

• Adding temporary links: ABTtemp. This algorithm adds new links between agents during
search, as ABT . The difference is that new links are temporary. This idea has been
informally proposed in [13]. A new link remains until a fixed number of messages have
been exchanged through it. After that, it is removed.

• No links: ABTnot. No new links are added between agents. To achieve completeness,
this algorithm has to remove obsolete information in finite time. To do so, when an agent
backtracks it forgets all nogoods that hypothetically could become obsolete.

In the following we present each of these algorithms in some detail.

4.1 ABTall: Adding links as preprocessing

In a preprocessing phase, ABTall adds a permanent link between every pair of unrelated agents i
and j such that xj may receive a nogood mentioning xi during the execution of ABTkernel. This

7

is done adding exactly the same links as in the computation of the induced constraint graph
from the initial ordered constraint graph [4]. These new links are computed as follows. Agents
(graph nodes) are processed from last to first, along the total ordering of agents. When an agent
is processed, all its parents (related agents before it in the ordering) are connected by new links
if they were not connected before. These new links are directed, following the total ordering of
agents. The structure of the induced graph is recorded in the sets Γ− and Γ+ of each agent.

During the search phase, ABTall behaves exactly like ABTkernel, which is now a complete
algorithm because each agent is directly connected with every other agent that could appear
in a nogood contained in a Back message. Obsolete nogoods will be removed in finite time, so
ABTall is a sound and complete algorithm that terminates with a correct answer.

Interestingly, it is possible to modify ABTall in such way that agents do not store nogoods
anymore, by fixing the agent to backtrack to the closest agent in Γ−(self). A somewhat erro-
neous form of this algorithm was published in [6] as the DIBT algorithm.

4.2 ABT : Adding links during search

Instead of linking all possible sources of conflict beforehand, we can wait until the conflict
actually happens, and add a link at that point. The original ABT takes this approach.

ABT uses a fourth type of message, AddL, to request the addition of a new communication
link. Each time an agent j receives information about a higher priority agent i previously
unheard of, an AddL message is sent. As a result, xi extends its Γ+ to include xj, and sends its
current value on the newly created link. This way, each agent storing a nogood is guaranteed to
be informed whenever one of the variables in the nogood changes its value.

The ABT algorithm appears in Figure 2, only for those parts that differ from ABTkernel. The
main procedure ABT includes the reception of the AddL message (line 9.1), which is processed by
SetLink. When a link request arrives, the sender is included in Γ+(self) (line 1) and self sends
its value through an Info message (line 2). When a Back message is received, ResolveConflict
considers if a request for a new link must be sent (CheckAddLink call, line 2.1). Also, the
condition for resending self value to senders of obsolete Back messages is simplified (line 5.1).
CheckAddLink checks if unrelated agents appear in the received nogood (lines 1-2). In such
case, it sends a request of new link for each unrelated agent, adding it to Γ−(self) (lines 3-4).
Finally, it updates its agent view taking as the value of the unrelated agent the value coming in
the nogood (line 5). This value will be confirmed or discarded later, when the link request will
cause the just related agent to send its value to self .

4.3 ABTtemp: Adding temporary links

Given that links added in ABT serve the sole purpose of informing self when some nogood
becomes obsolete, we may add them during search on a temporary basis. In fact, as soon as
self knows the new value for the linked agent, obsolete nogoods are discarded and no further
information from that agent is needed at this time, so this additional link could be dropped. It
may happen that future Back messages will also mention this agent, so the link will have to be
established again. If this happens often, it may be more efficient to keep the link active for a
number of Info messages, carrying the value changes of the linked agent to self .

This is the approach taken by ABTtemp. When a new link is set from agent i to j, it is
maintained for a fixed number k of Info messages going from xi to xj . After this number
of messages has been sent, the link is removed and agents i and j become disconnected. The
number k of messages for a link is known a priori by both agents, so two simple counters —one
in each agent— allow for an effective implementation of this technique. When reporting results
the number k is essential, and then this algorithm is mentioned as ABTtemp(k).

8

procedure ABT()

1 myV alue← empty; end ← false;
2 CheckAgentView();
3 while (¬end) do

4 msg ← getMsg();
5 switch(msg.type)
6 Info : ProcessInfo(msg);
7 Back : ResolveConflict(msg);
8 Stop : end← true;
9.1 AddL : SetLink(msg);

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then

2.1 CheckAddLink(msg);
3 add(msg.Nogood, myNogoodStore); myV alue← empty;
4 CheckAgentView();
5.1 else if Coherent(msg.Nogood, self) then sendMsg:Info(msg.sender, myV alue);

procedure SetLink(msg)
1 add(msg.sender, Γ+(self));
2 sendMsg:Info(msg.sender, myV alue);

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if (var /∈ Γ−(self)) then

3 sendMsg:AddL(var, self);
4 add(var, Γ−(self));
5 Update(myAgentV iew, var ← varV alue);

Figure 2: The ABT algorithm with permanent links. Only the new or modified parts with
respect to ABTkernel in Figure 1 are shown.

4.4 ABTnot: No links any more

Instead of trying hard to be informed when an unconnected agent changes its value, self can
study its own course of action and update its knowledge accordingly. More precisely, when all
values of self have been removed, a new nogood is generated and sent to the nearest culprit.
self knows that this nogood will possibly reach every variable it contains, forcing them all, in
the worst case, to change their value. For those variables in Γ−(self), there is no need to worry,
because they are bound to inform self . For the others, the very action of backtracking can
lead to the obsolescence of any nogood inside which they appear. Hence, self will forget those
insecure variables and nogoods upon backtracking.

There are two cases which deserve some attention. First, it may happen that a forgotten
nogood does not become obsolete after all. If self takes the value that this nogood was removing,
then self will necessarily receive again this nogood, rediscovered by a lower priority agent.

Second, it may happen that a nogood becomes obsolete because an unrelated, higher priority
agent has changed its value and self has not been notified. If the value suppressed by the obsolete
nogood is not mandatory to find a solution, this mistake does not compromise finding a solution.
On the contrary, if that value is mandatory, self will be forced to try every other value in its
domain before backtracking. A new nogood resolving all nogoods removing self values will be
produced. This nogood will include the agent that had changed its value, so when sending the
Back message, its value will be forgotten and search will be resumed.

The ABTnot algorithm takes this approach. This algorithm was described in [1], under the

9

procedure Backtrack()
1 newNogood← solve(myNogoodStore);
2 if (newNogood = empty) then

3 end← true; sendMsg:Stop(system);
4 else

5 sendMsg:Back(newNogood);
6 Update(myAgentV iew,rhs(newNogood)← unknown);
6.1 for each var ∈ lhs(newNogood) \ Γ−(self) do Update(myAgentV iew, var ← unknown);
7 CheckAgentView();

Figure 3: The ABTnot algorithm with no links. Only the new or modified parts with respect to
ABTkernel in Figure 1 are shown.

name DisDB. ABTnot only differs from ABTkernel in the forgetting policy of nogoods that
could become obsolete, and this concerns the procedure Backtrack that appears in Figure 3.
This procedure computes the new nogood as the resolvent of the nogoods justifying the wipe
out of self . If the new nogood is not empty, it is sent in a Back message. Then, self forgets
the values of agents not in Γ−(self), and the nogoods including those agents (line 6.1). Finally,
a new value consistent with the agent view is searched.

4.5 Discussion

Consider two agents i and j (i preceding j in the ordering) not originally constrained but
connected in the induced constraint graph. The algorithms above differ in the way information
flows between these two agents. If i takes a new assignment, we say that j is informed about this
new assignment when j knows it. The cost of informing j is the minimum number of messages
required since i takes the new assignment until j is aware of it. We will say that algorithm A
is better informed than algorithm B if, for the same problem and the same agent ordering, the
cost of informing j of i changes using A is less than or equal to the cost of informing j using B.

Using this definition, we can order the ABT family algorithms following the quality of the
information they handle, from ABTall to ABTnot. ABTall is better informed than ABT because
both behave the same except when ABT detects a conflict between i and j for the first time. In
this case, ABT requires more messages to set up the link. ABT is better informed than ABTtemp

since the latter can require some extra messages to set up again a suspended temporary link.
And ABTtemp is better informed than ABTnot because the former could inform j in one or two
messages, while the latter always requires at least two messages since j can be aware of i’s value
only through a Back message.

5 Experimental Results

We have tested the ABT family algorithms in an asynchronous, single-processor environment.
All agents are represented by Linux processes running on the same machine with the same
scheduling priority.

We provide results on the search effort, counting the number of “concurrent constraint
checks” (#c-ccks), as defined2 in [9], following Lamport’s logic clocks [8]. Informally, the num-
ber of concurrent constraint checks approximates the longest sequence of constraint checks not
performed concurrently. We prefer this parameter to the total number of constraint checks,

2Except that in our implementation we do not take into account the cost of messages.

10

which does not take into account concurrency among agents. Also, we evaluate the global com-
munication effort as the total number of messages exchanged among agents (#msgs). We do not
report the number of concurrent messages (that were computed following the same technique as
#c-ccks) because it was completely proportional to #c-ccks in all our experiments.

We implemented these algorithms considering the following improvements,

1. Value in AddL. When a new link with agent k is requested by self , instead of sending the
AddL message and wait for answer, ABT and ABTtemp include in the AddL message the
value of xk recorded in the received nogood. After reception of the AddL message, agent
k informs self of its current value only if it is different from the value contained in the
AddL message. In this way, some Info messages can be saved.

2. Avoid resending same values. ABT family algorithms keep track of the last value taken
by self . When selecting a new value, if it happens that the new value is the same as the
last value, self does not resend it to Γ+(self), because this information is already known.
(See line 3 of CheckAgentView in Fig. 1.) Again, this may save some Info messages.

3. Sequence numbers (ABTnot(seq)). It is possible to enhance slightly the quality of the
information stored by ABTnot in the agent view, as follows. Each agent keeps a sequence
number, which is incremented each time its value changes. Each time it sends its value,
the sequence number is attached. The agent view stores the values and sequence numbers
of previous agents in the ordering. When self receives a message, it keeps the newest
value for each variable in its agent view. In particular, a Back message is discarded as
obsolete if it contains older values than those recorded in self ’s agent view. When self
sends a Back message, the computed nogood contains the values and sequence numbers
of involved variables, forgetting the values of unconnected variables but keeping their
sequence numbers.

We have decided to keep one nogood per removed value. However, if two nogoods are
available for a value, it is possible to select the most appropriate one. With this idea, we
propose the following heuristic: when comparing two nogoods, select the one with the highest
possible lowest variable involved. The rationale for this heuristic is to ensure that each time a
wipe-out occurs, the Back message is sent as high as possible in the agent ordering. A similar
idea was proposed in [7]. This heuristic is computed as follows. When self ’s domain is wiped
out, each value is checked against each agent in Γ−(self), looking for a nogood better than
the current one for this value. In addition, when self receives a Back message with a nogood
obsolete on self only, and removing value c, this nogood is still a valid justification for removing
c. Then, this nogood is taken if it is better than the current stored nogood justifying c removal.

ABT algorithms, with or without the heuristic of selecting the best nogood, have been tested
on two kind of problems, random DisCSPs and distributed meeting scheduling. Their results
are reported and discussed in the following.

5.1 Random DisCSPs

Uniform binary random CSPs are characterized by 〈n, d, p1, p2〉 where n is the number of vari-
ables, d the number of values per variable, p1 the network connectivity defined as the ratio of
existing constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.

We have tested random instances of 16 agents and 8 values per agent, considering two con-
nectivity classes, sparse (p1 = 0.2) and medium (p1 = 0.5). Experiments are at the complexity
peak considering 50 instances. Specifically, we tested the random classes 〈16, 8, 0.2, 0.7〉 (20 solv-
able instances out of 50) and 〈16, 8, 0.5, 0.42〉 (27 solvable instances out of 50). Results appear

11

p1 = 0.20 #c-ccks #msgs p1 = 0.50 #c-ccks #msgs
ABTall 5,196 8,095 ABTall 39,148 56,206
ABT 5,496 7,675 ABT 40,564 54,694
ABTtemp(10) 5,530 7,485 ABTtemp(5) 40,599 50,455
ABTnot 35,443 40,223 ABTnot 61,658 66,331
ABTnot(seq) 28,599 33,345 ABTnot(seq) 59,402 63,451

Table 1: Plain ABTs

p1 = 0.20 #c-ccks #msgs p1 = 0.50 #c-ccks #msgs
ABTall 13,144 7,486 ABTall 101,898 51,891
ABT 13,939 7,470 ABT 102,367 50,558
ABTtemp(10) 13,889 7,174 ABTtemp(5) 103,401 48,120
ABTnot 75,020 36,454 ABTnot 153,320 60,393
ABTnot(seq) 47,437 27,558 ABTnot(seq) 128,164 58,907

Table 2: ABTs with nogood selection heuristic

in Tables 1 and 2, where we report the number of concurrent constraint checks and the total
number of messages exchanged, averaged over 50 executions.

Table 1 contains the results for the plain ABT algorithms. The parameter k for ABTtemp

was adjusted manually after some trials. Only the results for the best value of k are given.
Considering the three algorithms adding links, ABTall, ABT , and ABTtemp, we observe that
the better informed the algorithm is, the less concurrent constraint checks it requires to solve the
problem. This is at the cost of exchanging more messages. ABTtemp is the algorithm exchanging
less messages, followed by ABT and ABTall. ABTnot requires the highest number of concurrent
constraint checks. Because it is the worst informed algorithm, it is more likely to make wrong
decisions, requiring more effort than previous algorithms to solve the same problem. This
also implies a higher number of messages exchanged. ABTnot(seq) dominates ABTnot because
sequence numbers avoid some of the wrong decisions taken by ABTnot.

The effect of using the nogood selection heuristic appears in Table 2. We observe that the
number of concurrent constraint checks increases because agents have to do more checks in order
to compare nogoods from the store with potentially better nogoods from the constraints. How-
ever, the number of messages decreases consistently for all the algorithms, showing the benefits
of the heuristic. The relative performance of the algorithms in #msgs remains unchanged with
respect to the plain versions.

5.2 Distributed Meeting Scheduling

To compare our algorithms on structured problems, we solved distributed meeting scheduling
problems: a number of people with an already partially filled planning, are looking for a place
where they can meet at the same time [5]. In our experiment, attendees are divided into three
thematic groups. A group, formed by four attendees, has its own meeting to schedule in one of
three cities. Two meetings cannot be held at the same time in the same city. Cities are separated
by a given travel time. One of the members of the group is in charge of communicating with
the other groups.

Each attendee is represented by an agent, with its starting domain matching the attendee’s
current planning: the predefined appointments (time/place pairs), as well as the time/places
which are unreachable because of said appointments, are removed from the domain before the

12

p = 8 p = 10 p = 12
#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs

ABTall 2,482 352 35,937 3,511 2,312 328
ABT 2,513 336 38,439 3,503 2,517 310
ABTtemp(1) 2,606 220 38,888 3,018 2,873 308
ABTnot 3,607 319 47,257 3,793 3,403 375
ABTnot(seq) 3,417 307 44,017 3,319 3,268 359

Table 3: Plain ABTs

p = 8 p = 10 p = 12
#c-ccks #msgs #c-ccks #msgs #c-ccks #msgs

ABTall 3,046 346 55,944 3,451 2,812 322
ABT 3,053 335 59,723 3,438 3,024 303
ABTtemp(1) 3,119 218 59,892 2,962 3,198 301
ABTnot 3,993 317 72,350 3,744 4,013 369
ABTnot(seq) 3,717 303 65,742 3,492 3,807 354

Table 4: ABTs with nogood selection heuristic

search starts. Our experiment is composed of 5 days, with 6 time slots per day and 3 meeting
places. This gives 5 · 6 · 3 = 90 possible values in the domain of each agent. Meetings and time
slots are both one hour long. The ’travel times’ between the three cities are 1 hour, 1 hour, and
2 hours. The actual instances are generated by randomly posting p predefined appointments in
each agent’s planning. We have tested three different classes of problems, with p = 8, p = 10,
and p = 12 that correspond respectively to under-constrained, critically constrained, and over-
constrained problems. Results appear in Tables 3 and 4, where we report #c-ccks and #msgs
averaged over 100 instances.

Table 3 contains the results for plain ABTs. With p = 8 (left part of the table), we are
at the beginning of the phase transition, where 92% of the instances were satisfiable. On
these instances, the best informed algorithms, ABTall and ABT , show the worst performance
in number of messages exchanged. The temporary link policy of ABTtemp significantly pays
off. This can be explained by the fact that these problems are structured as cliques with few
constraints outside them. A single nogood between two agents belonging to different cliques
leads ABT to the addition of a link that will remain active during the whole search, even if
they no longer share nogoods. ABTtemp takes advantage of this by activating the link just for
solving the current conflict. A confirmation of this is that we observed that ABTtemp(k) decays
performance as soon as k > 2. Even ABTnot, with its poorly informed agents, requires less
messages than the two best informed algorithms, ABTall and ABT , while on random problems
it was always the greatest consumer of messages.

The number of concurrent constraint checks presents the same steady increase from better
informed to worse informed algorithms as on random problems, even if the differences are smaller.

Finally, it is worth noting that if we limit the analysis to the 8 inconsistent instances, ABTall

and ABT obtain results much closer to ABTtemp (232 messages in average for ABTall and 225
for ABT versus 217 for ABTtemp). On these inconsistent problems, ABTnot is the worst (250
messages for both versions).

Increasing the number of predefined appointments per agent changes the proportion of solv-
able instances. With p = 10 (middle of Table 3), the problems are at the complexity peak (49%
of satisfiable instances), and when p = 12 (right of Table 3), they are slightly over-constrained
(only 12% of satisfiable instances). We observe that as inconsistent instances become more
frequent, the average behavior changes. Regarding the number of messages, at the complexity

13

peak, the benefit of ABTtemp with respect to ABTall and ABT decreases, and ABTnot becomes
worse than ABT . At the right of the complexity peak, differences between ABT and ABTtemp

are quite small, while differences between ABTnot and ABT increase. In this case, the relative
results of the different algorithms are very similar to those observed on the 8 inconsistent in-
stances with p = 8. The number of concurrent constraint checks reflects again the same trend:
the more the problems are constrained, the better informed algorithms behave.

Table 4 shows the effect of the nogood selection heuristic. Regarding the number of messages,
it appears that the heuristic is almost useless. One of the reasons is probably that in our
implementation, the agents are ordered according to the 4-cliques. Hence, the causes of a
conflict are most of the time circumscribed to a clique, which does not give the opportunity to
select a nogood jumping much higher than another one chosen arbitrarily. As a consequence, the
number of concurrent constraint checks can only increase since the heuristic has a tiny benefit
on the search performance while it requires extra constraint checks.

5.3 Discussion

We have tested the ABT family algorithms on unstructured (random) problems as well as
structured ones (meeting scheduling). From the results, we observe the following facts.

Regarding the search effort, consistently for all problems, the more informed an algorithm
is, the smaller the number of concurrent constraint checks it requires. Regarding the number
of messages exchanged, the dynamic links of ABT improve over the static approach of ABTall.
Temporary links of ABTtemp dominate the permanent link approach of ABT , and this dominance
depends on the kind of problems. On unstructured problems, ABTtemp improves over ABT by a
narrow margin, which becomes larger on structured problems, especially consistent ones. When
considering unsatisfiable instances only, both algorithms exhibit a similar performance. ABTnot,
the algorithm not adding links, is competitive only for structured problems at the left of the
complexity peak, showing a slight improvement when sequence numbers are used. This leads
us to conclude that when problems do not show some structure, or are not under-constrained,
ABTnot has to be selected only if some privacy policy justifies its use.

Regarding the nogood selection heuristic, we observe clear benefits on unstructured prob-
lems but only minor advantages on structured ones. Apparently, the structure of the meeting
scheduling problems prevents the heuristic to find large jumps over the network.

While ABTtemp appears as a good algorithm for asynchronous backtracking, the following
question remains: how many Info messages to allow through a temporary link? In the reported
experiments this parameter was adjusted manually after some trials. We believe that it has not
to be a fixed parameter of the algorithm, but it could be adjusted automatic and dynamically,
customized for each agent. The automatic selection of this parameter is a direction for further
research.

6 Conclusion

We have proposed ABTnot, a new asynchronous backtracking algorithm for distributed CSPs.
This procedure is the first one that does not add links between agents not sharing constraints.
This property can be important to avoid messages sent to agents which may not need to be
informed. We presented ABTnot via a basic kernel that is sound but does not guarantee ter-
mination. By implementing the condition for termination in this kernel, we obtained existing
ABT family algorithms, or new ones, such as ABTnot. We compared experimentally several
algorithms from the ABT family.

14

References

[1] C. Bessière, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. Notes of the
IJCAI’01 workshop on Distributed Constraint Reasoning, pages 9–16, Seattle WA, 2001.

[2] C. Bessière, I. Brito, A. Maestre, and P. Meseguer. The Asynchronous Backtracking Family.
Technical Report, LIRMM-CNRS, Montpellier, France, March 2003.

[3] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-
tributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[4] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence, 34:1–38, 1988.

[5] E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency trade-offs in distributed meet-
ing scheduling by constraint-based agents. Notes of the IJCAI’01 workshop on Distributed
Constraint Reasoning, pages 63–71, Seattle WA, 2001.

[6] Y. Hamadi, C. Bessière, and J. Quinqueton. Backtracking in distributed constraint net-
works. Proc. 13th European Conference on Artificial Intelligence, ECAI’98, pages 219–223,
Brighton, UK, 1998.

[7] K. Hirayama and M. Yokoo. The effect of nogood learning in distributed constraint satisfac-
tion. Proc. 20th International Conference on Distributed Computing Systems, ICDCS’00,
pages 169–177, 2000.

[8] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, 1978.

[9] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed
constraints processing algorithms. Notes of the AAMAS’02 workshop on Distributed Con-
straint Reasoning, pages 86–93, Bologna, Italy, 2002.

[10] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations.
Proc. 17th National Conference on Artificial Intelligence, AAAI’00, pages 917–922, Austin
TX, 2000.

[11] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintenance for ABT. Proc. 7th
International Conference on Principles and Practice of Constraint Programming, CP’01,
pages 271–285, Paphos, Cyprus, 2001.

[12] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing ABT and AWC into a polyno-
mial space, complete protocol with reordering. Technical report, EPFL, Lausanne, 2001.

[13] M.C. Silaghi, D. Sam-Haroud, and B. Faltings. Polynomial space and complete multiply
asynchronous search with abstractions. Notes of the IJCAI’01 workshop on Distributed
Constraint Reasoning, Seattle WA, 2001.

[14] M. Yokoo. Personal communication, 2000.

[15] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for
formalizing distributed problem solving. Proc. 12th International Conference on Distributed
Computing Systems, ICDCS’92, pages 614–621, 1992.

15

[16] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: formalization and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

16

