
HAL Id: lirmm-00105348
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105348

Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Regimes Across Constrainedness Regions
Carla P. Gomes, Cèsar Fernández, Bart Selman, Christian Bessiere

To cite this version:
Carla P. Gomes, Cèsar Fernández, Bart Selman, Christian Bessiere. Statistical Regimes Across Con-
strainedness Regions. Constraints, 2005, 10 (4), pp.317-337. �10.1007/s10601-005-2807-z�. �lirmm-
00105348�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00105348
https://hal.archives-ouvertes.fr

Statistical Regimes Across Constrainedness Regions ∗

Carla P. Gomes (gomes@cs.cornell.edu)
Dpt. of Computer Science, Cornell University, Ithaca, NY

Cèsar Fernández (cesar@eps.udl.es)
Dpt. d’Informàtica, Universitat de Lleida, Jaume II, 69, E-25001 Lleida, Spain

Bart Selman (selman@cs.cornell.edu)
Dpt. of Computer Science, Cornell University, Ithaca, NY

Christian Bessière (bessiere@lirmm.fr)
LIRMM-CNRS, 161 rue Ada, 34392, Montpellier Cedex 5, France

Abstract. Much progress has been made in terms of boosting the effectiveness of
backtrack style search methods. In addition, during the last decade, a much better
understanding of problem hardness, typical case complexity, and backtrack search
behavior has been obtained. One example of a recent insight into backtrack search
concerns so-called heavy-tailed behavior in randomized versions of backtrack search.
Such heavy-tails explain the large variance in runtime often observed in practice.
However, heavy-tailed behavior does certainly not occur on all instances. This has led
to a need for a more precise characterization of when heavy-tailedness does and when
it does not occur in backtrack search. In this paper, we provide such a characteriza-
tion. We identify different statistical regimes of the tail of the runtime distributions
of randomized backtrack search methods and show how they are correlated with the
“sophistication” of the search procedure combined with the inherent hardness of the
instances. We also show that the runtime distribution regime is highly correlated
with the distribution of the depth of inconsistent subtrees discovered during the
search. In particular, we show that an exponential distribution of the depth of
inconsistent subtrees combined with a search space that grows exponentially with
the depth of the inconsistent subtrees implies heavy-tailed behavior.

Keywords: backtrack search, runtime distributions, heavy-tailed distributions, phase
transitions, typical case analysis.

1. Introduction

Significant advances have been made in recent years in the design of
search engines for constraint satisfaction problems (CSP), including
Boolean satisfiability problems (SAT). For complete solvers, the basic
underlying solution strategy is backtrack search enhanced by a series of

∗ Research supported by the Intelligent Information Systems Institute, Cornell
University (AFOSR grant F49620-01-1-0076), MURI (AFOSR grant F49620-01-1-
0361) and Ministerio de Educación y Ciencia (TIN-2004 grant 07933-C03-03). We
thank the anonymous reviewers for their insightful comments.

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

2

increasingly sophisticated techniques, such as non-chronological back-
tracking [10, 25], fast pruning and propagation methods [14, 24, 22, 28,
4], nogood (or clause) learning (e.g., [7, 26, 2, 21]), and more recently
randomization and restarts [12, 13]. For example, in areas such as plan-
ning and finite model-checking, we are now able to solve large CSP’s
with up to a million variables and several million constraints (see e.g.,
[3, 23]).

The study of problem structure of combinatorial search problems
has also provided tremendous insights in our understanding of the
interplay between structure, search algorithms, and more generally,
typical case complexity. For example, the work on phase transition
phenomena in combinatorial search has led to a better characterization
of search cost, beyond the worst-case notion of NP-completeness. While
the notion of NP-completeness captures the computational cost of the
very hardest possible instances of a given problem, in practice, one
may not encounter many instances that are quite that hard. In gen-
eral, CSP problems exhibit an “easy-hard-easy” pattern of search cost,
depending on the constrainedness of the problem [15]. The computa-
tional hardest instances appear to lie at the phase transition region, the
area in which instances change from being almost all solvable to being
almost all unsolvable. The discovery of “exceptionally hard instances”
reveals an interesting phenomenon : such instances seem to defy the
“easy-hard-easy” pattern, they occur in the under-constrained area,
but they seem to be considerably harder than other similar instances
and even harder than instances from the critically constrained area.
This phenomenon was first identified by Hogg and Williams in graph
coloring and by Gent and Walsh in satisfiability problems [11, 16].
However, it was shown later that such instances are not inherently
difficult; for example, by renaming the variables such instances can
often be easily solved [30, 29]. Therefore, the “hardness” of excep-
tionally hard instances does not reside purely in the instances, but
rather in the combination of the instance with the details of the search
method. Smith and Grant provide a detailed analysis of the occurrence
of exceptionally hard instances for backtrack search, by considering
a deterministic backtrack search procedure on sets of instances with
the same parameter setting (see e.g., [31]). Recently, researchers have
noted that for a proper understanding of search behavior one has to
study full runtime distributions1 [16, 9, 12, 8, 17], as opposed to
only considering statistics such as the mean of the distribution. In our
work we have focused on the study of randomized backtrack search

1 Namely the probability (density) function (PDF); the cumulative distribution
function (CDF) and the survival function (SF) or tail probability.

3

algorithms [12]. By studying the runtime distribution produced by a
randomized algorithm on a single instance, we can analyze the variance
caused solely by the algorithm, and therefore separate the algorithmic
variance from the variance between different instances drawn from an
underlying distribution. We have shown previously that the runtime
distributions of randomized backtrack search procedures can exhibit
extremely large variance, even when solving the same instance over and

over again, [12, 13]. This work on the study of the runtime distributions
of randomized backtrack search algorithms further clarified that the
source of extreme variance observed in exceptional hard instances was
not due to the inherent hardness of the instances: A randomized version
of a search procedure on such instances in general solves the instance
easily, even though it has a non-negligible probability of taking very
long runs to solve the instance, considerably longer than all the other
runs combined. Such extreme fluctuations in the runtime of backtrack
search algorithms are nicely captured by so-called heavy-tailed distribu-
tions, distributions that are characterized by extremely long tails with
some infinite moments [16, 12]. The decay of the tails of heavy-tailed
distributions follows a power law — much slower than the decay of
standard distributions, such as the normal or the exponential distribu-
tion, that have tails that decay exponentially. Further insights into the
empirical evidence of heavy-tailed phenomena of randomized backtrack
search methods were provided by abstract models of backtrack search
that show that, under certain conditions, such procedures provably
exhibit heavy-tailed behavior [6, 13, 33, 34].

Main Results

So far, evidence for heavy-tailed behavior of randomized backtrack
search procedures on concrete instance models has been largely em-
pirical. Moreover, it is clear that not all problem instances exhibit
heavy-tailed behavior. The goal of this work is to provide a better
characterization of when heavy-tailed behavior occurs, and when it

does not, when using randomized backtrack search methods. We study
the empirical runtime distributions of randomized backtrack search
procedures across different constrainedness regions of random binary
constraint satisfaction models.2 In order to obtain the most accurate
empirical runtime distributions, all our runs are performed without

2 Hogg and Williams (94) provided the first report of heavy-tailed behavior in
the context of backtrack search. They considered a deterministic backtrack search
procedure on different instances drawn from a given distribution. Our work is of
different nature as we study heavy-tailed behavior of the runtime distribution of a
given randomized backtrack search method on a particular problem instance, thereby
isolating the variance in runtime due to different runs of the algorithm.

4

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model E <17,8,p> BT Random

Non-Heavy-Tailed

Heavy-Tailed

Phase transition

p=0.25

p=0.05
p=0.07
p=0.19
p=0.24

Figure 1. Heavy-tailed (linear behavior) and non-heavy-tailed regime in the runtime
of instances of model E 〈17, 8, p〉. CDF stands for Cumulative Density Function.

censorship (i.e., we run our algorithms without a cutoff) over the
largest possible size. Our study reveals dramatically different statistical
regimes for randomized backtrack search algorithms across the different
constrainedness regions of the CSP models. Figure 1 provides a preview
of our results. The figure plots the runtime distributions (the survival
function, i.e., the probability of a run taking more than x backtracks)
of a basic randomized backtrack search algorithm (no look-ahead and
no look-back), using random variable and value selection, for different
constrainedness regions of one of our CSP models (model E; instances
with 17 variables and domain size 8). We observe two regions with
dramatically different statistical regimes of the runtime distribution.

In the first regime (the bottom two curves in figure 1, p ≤ 0.07), we
see heavy-tailed behavior. This means that the runtime distributions
decay slowly. In the log-log plot, we see linear behavior over several
orders of magnitude. When we increase the constrainedness of our
model (higher p), we encounter a different statistical regime in the run-
time distributions, where the heavy-tails disappear. In this region, the
instances become inherently hard for the backtrack search algorithm,
all the runs become homogeneously long, and therefore the variance of
the backtrack search algorithm decreases and the tails of its survival
function decay rapidly (see top two curves in figure 1, with p = 0.19
and p = 0.24; tails decay exponentially).

5

1st. inconsistent
subtree with

depth 3
2nd. inconsistent

subtree with
depth 4 3rd. inconsistent

subtree with
depth 2

. .

..

Figure 2. Inconsistent subtrees in backtrack search.

A common intuitive understanding of the extreme variability of
backtrack search is that on certain runs the search procedure may hit a
very large inconsistent subtree that needs to be fully explored, causing
“thrashing” behavior.

To confirm this intuition and in order to get further insights into
the statistical behavior of our backtrack search method, we study the
inconsistent sub-trees discovered by the algorithm during the search
(see figure 2).

The distribution of the depth of inconsistent trees is quite revealing:
when the distribution of the depth of the inconsistent trees decreases
exponentially (see figure 3, bottom panel, p = 0.07) the runtime dis-
tribution of the backtrack search method has a power law decay (see
figure 3, top panel, p = 0.07). In other words, when the backtrack
search heuristic has a good probability of finding relatively shallow
inconsistent subtrees, and this probability decreases exponentially as
the depth of the inconsistent subtrees increases, heavy-tailed behavior
occurs. Contrast this behavior with the case in which the survival
function of the runtime distribution of the backtrack search method
is not heavy-tailed (see figure 3, top panel, p = 0.24). In this case,
the distribution of the depth of inconsistent trees no longer decreases
exponentially (see figure 3, bottom panel, p = 0.24).

In essence, these results show that the distribution of inconsistent
subproblems encountered during backtrack search is highly correlated
with the tail behavior of the runtime distribution. We provide a formal
analysis that links the exponential search tree depth distribution with

6

 1e-04

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model E <17,8,p> BT Random

p=0.07
p=0.24

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 2 4 6 8 10 12 14 16 18

P
D

F

IST Depth (N)

Model E <17,8,p> BT Random

p=0.07
p=0.24

Figure 3. Example of a heavy-tailed instance (p = 0.07) and a non-heavy-tailed
instance (p = 0.24): (top) Survival function of runtime distribution, (bottom) prob-
ability density function of depth of inconsistent subtrees encountered during search.
The subtree depth for p = 0.07 instance is exponentially distributed.

heavy-tailed runtime profiles. As we will see below, the predictions of
our model closely match our empirical data.

The structure of the paper is as follows. In the next section we
provide definitions of concepts used throughout the paper, namely
concepts related to constraint networks and search trees, a description
of the random models used for the generation of our problem instances,
and a description of the search algorithms that we use in our exper-
imentation. In section 3 we provide empirical results. In section 4 we
present a theoretical model of heavy-tailed runtime distributions that
considers the distribution of the depth of inconsistent subtrees and the
growth of the search space inside such inconsistent subtrees; in this
section we also compare the results of our theoretical model with our

7

empirical results. In section 5 we present conclusions and discuss future
research directions.

2. Definitions, Problem Instances, and Search Methods

Constraint Networks

A finite binary constraint network P = (X ,D, C) is defined as a
set of n variables X = {x1, . . . , xn}, a set of domains D =
{D(x1), . . . ,D(xn)}, where D(xi) is the finite set of possible values

for variable xi, and a set C of binary constraints between pairs of
variables. A constraint Cij on the ordered set of variables (xi, xj) is
a subset of the Cartesian product D(xi) × D(xj) that specifies the
allowed combinations of values for the variables xi and xj. A solution

of a constraint network is an instantiation of the variables such that
all the constraints are satisfied. The constraint satisfaction problem
(CSP) involves finding a solution for the constraint network or proving
that none exists. We used a direct CSP encoding and also a Boolean
satisfiability encoding (SAT) [32].

Random Problems

The CSP research community has always made a great use of ran-
domly generated constraint satisfaction problems for comparing differ-
ent search techniques and studying their behavior. Several models for
generating these random problems have been proposed over the years.
The oldest one, which was the most commonly used until the middle
90’s, is model A. A network generated by this model is characterized
by four parameters 〈N,D, p1, p2〉, where N is the number of variables,
D the size of the domains, p1 the probability of having a constraint
between two variables, and p2, the probability that a pair of values
is forbidden in a constraint. Notice that the variance in the type of
problems generated with the same four parameters can be large, since
the actual number of constraints for two problems with the same pa-
rameters can vary from one problem to another, and the actual number
of forbidden tuples for two constraints inside the same problem can
also be different. Model B does not have this variance. In model B, the
four parameters are again N,D, p1, and p2, where N is the number of
variables, and D the size of the domains. But now, p1 is the proportion
of binary constraints that are in the network (i.e., there are exactly
c = bp1 · N · (N − 1)/2c constraints), and p2 is the proportion of
forbidden tuples in a constraint (i.e., there are exactly t = bp2 · D2c
forbidden tuples in each constraint). Problem classes in this model are

8

denoted by 〈N,D, c, t〉. In [1] it was shown that model B (and model
A as well) can be “flawed” when we increase N . Indeed, when N goes
to infinity, we will almost surely have a flawed variable (that is, one
variable which has all its values inconsistent with one of the constraints
involving it). Model E was proposed to overcome this weakness. It is
a three parameter model, 〈N,D, p〉, where N and D are the same as
in the other models, and bp · D2 · N · (N − 1)/2c forbidden pairs of
values are selected with repetition out of the D2 ·N · (N −1)/2 possible
pairs. There is also a way of tackling the problem of flawed variables
in model B. In [35] it is shown that by enforcing certain constraints on
the relative values of N , D, p1, and p2, one can guarantee that model
B is sound and scalable, for a range of values of the parameters. In our
work, we only considered instances of model B that fall within such a
range of values.

Search Trees

A search tree is composed of nodes and arcs. A node u represents
an ordered partial instantiation I(u) = (xi1 = vi1 , . . . , xik = vik). A
search tree is rooted at the particular node u0 with I(u0) = ∅. There
is an arc from a node u to a node uc if I(uc) = (I(u), x = v), x
and v being a variable and one of its values. The node uc is called a
child of u and u a parent of uc. Every node u in a tree T defines a
subtree Tu that consists of all the nodes and arcs below u in T . The
depth of a subtree Tu is the length of the longest path from u to any
other node in Tu. An inconsistent subtree (IST) is a maximal subtree
that does not contain any node u such that I(u) is a solution. (See
figure 2.) The maximum depth of an inconsistent subtree is referred
to the “inconsistent subtree depth” (ISTD). We denote by T (A,P)
the search tree of a backtrack search algorithm A solving a particular
instance P , which contains a node for each instantiation visited by A
until a solution is reached or inconsistency of P is proved. Once assigned
a partial instantiation I(u) = (xi1 = vi1, . . . , xik = vik) for node u, the
algorithm will search for a partial instantiation of some of its children.
In the case that there exists no instantiation which does not violate the
constraints, algorithm A will take another value for variable xik , and
start again checking the children of this new node. In this situation, it
is said that a backtrack happens. We use the number of wrong decisions
or backtracks to measure the search cost of a given algorithm [5].3

3 In the rest of the paper sometimes we refer to the search cost as runtime. Even
though there are some discrepancies between runtime and the search cost measured
in number of wrong decisions or backtracks, such differences are not significant in
terms of the tail regime of the distributions.

9

Algorithms

We studied different search procedures, that differ in the amount of
propagation they perform, and in the order in which they generate
instantiations. We used three levels of propagation: no propagation
(backtracking, BT), removal of values directly inconsistent with the
last instantiation performed (forward-checking, FC), and arc consis-
tency propagation (maintaining arc consistency, MAC). We used three
different heuristics for variable selection: random selection of the next
variable to instantiate (random), variables pre-ordered by decreasing
degree in the constraint graph (deg), and selection of the variable
with smallest domain first, ties broken by decreasing degree (dom+deg)
and always random value selection. For the SAT encodings we used
the Davis-Putnam-Logemann-Loveland procedure. More specifically we
used a simplified version of Satz [20], without its standard heuristic, and
with static variable ordering, injecting some randomness in the value
selection heuristics.

Heavy-tailed or Pareto-like Distributions

As we discussed earlier, the runtime distributions of backtrack search
methods are often characterized by very long tails or heavy-tails (HT).
These are distributions that have so-called Pareto like decay of the tails.
For a general Pareto distribution F (x), the probability that a random
variable is larger than a given value x, i.e., its survival function, is:

1 − F (x) = P [X > x] ∼ Cx−α, x > 0,

where α > 0 and C > 0 are constants. I.e., we have power-law decay in
the tail of the distribution. These distributions have infinite variance
when 1 < α < 2 and infinite mean and variance when 0 < α ≤ 1. The
log-log plot of the tail of the survival function (1−F (x)) of a Pareto-like
distribution shows linear behavior with slope determined by α.

3. Empirical Results

In the previous section we defined our models and algorithms, as well
as the concepts that are central in our study: the runtime distributions
of our backtrack search methods and the associated distributions of the
depth of the inconsistent subtrees found by the backtrack method. As
we discussed in the introduction, our key findings are: (1) we observe
different regimes in the behavior of these distributions as we move along
different instance constrainedness regions; (2) when the depth of the

10

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model E <17,8,p> BT Random

p=0.05

p=0.24

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12 14 16

P
D

F

IST Depth (N)

Model E <17,8,p> BT Random

p=0.05

p=0.24

Figure 4. The progression from heavy-tailed regime to non-heavy-tailed regime:
(top) survival function of runtime distribution; (bottom) probability density func-
tion of the corresponding inconsistent sub-tree depth (ISTD) distribution for BT
Random algorithm on instances of model E 〈17, 8, p〉. (The value of p increases by
0.01 between curves.)

inconsistent subtrees encountered during the search by the backtrack
search method follows an exponential distribution, the corresponding
backtrack search method search exhibits heavy-tailed behavior. In this
section, we provide the empirical data upon which these findings are
based.4

We present results for the survival functions of the search cost
(number of wrong decisions or number of backtracks) of our backtrack
search algorithms. All the plots were computed with at least 10,000
independent executions of a randomized backtrack search procedure
on a given (uniquely generated) problem satisfiable instance. For each

4 Instance generator and data available from the authors.

11

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08 1e+10

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <20,8,60,t> BT Random

t=28

t=7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16 18 20

P
D

F

IST Depth (N)

model B <20,8,60,t> BT Random

t=7

t=28

Figure 5. The progression from heavy-tailed regime to non-heavy-tailed regime for
BT Random algorithm on instances of model B 〈20, 8, 60, t〉. (The value of t increases
by 1 between curves.)

parameter setting we considered over 20 instances. In order to obtain
more accurate empirical runtime distributions, all our runs were per-
formed without censorship, i.e., we run our algorithms without any
cutoff.5 We also instrumented the code to obtain the information for
the corresponding inconsistency sub-tree depth (ISTD) distributions.

Figure 4 (top) provides a detailed view of the heavy-tailed and
non-heavy-tailed regions, as well as the progression from one region
to the other. The figure displays the survival function (log-log scale)
for running (pure) backtrack search with random variable and value
selection on instances of Model E with 17 variables and a domain size
of 8 for values of p (the constrainedness of the instances) ranging from

5 For our data analysis, we needed purely uncensored data. We could therefore
only consider relatively small problem instances. The results appear to generalize to
larger instances.

12

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <20,8,60,t> FC Random

t=29

t=10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2 4 6 8 10 12 14 16 18

P
D

F

IST Depth (N)

model B <20,8,60,t> FC Random

t=10

t=29

Figure 6. The progression from heavy-tailed regime to non-heavy-tailed regime for
FC Random algorithm on instances of model B 〈20, 8, 60, t〉. (The value of t increases
by 1 between curves.)

0.05 ≤ p ≤ 0.24. We clearly identify the heavy-tailed region in which
the log-log plot of the survival functions exhibits linear behavior, while
in the non-heavy-tailed region the drop of the survival function is much
faster than linear. The transition between regimes occurs around a
constrainedness level of p = 0.09.

Interestingly, we observe that some of the curves that correspond
to the heavy-tailed regime cross the curves corresponding to the non-
heavy-tailed regime. That is, some of the longest runs for the heavy-
tailed instances are longer than the longest runs for the non-heavy-
tailed instances. The intuitive explanation for this is that in the heavy-
tailed regime, the backtrack search will now and then encounter an
inconsistent subproblem that is quite under-constrained. The search
trees of such sub-problems are actually larger than any inconsistent sub-

13

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <60,10,200,t> MAC Random

t=42

t=30

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 2 4 6 8 10 12 14 16 18

P
D

F

IST Depth (N)

model B <60,10,200,t> MAC Random

t=42

t=30

Figure 7. The progression from heavy-tailed regime to non-heavy-tailed regime for
MAC Random algorithm on instances of model B 〈60, 10, 200, t〉. (The value of t
increases by 1 between curves.)

problems encountered in the non-heavy-tailed regime, where instances
are more constrained and therefore more pruning occurs during search.

Figure 4 (bottom) depicts the probability density function of the
corresponding inconsistent sub-tree depth (ISTD) distributions. The
figure shows that while the ISTD distributions that correspond to the
heavy-tailed region have an exponential behavior (see section 4 where
we compare the predictions of our theoretical model against our data,
for a heavy-tailed instance of model E 〈17, 8, 0.07〉), the ISTD distribu-
tions that correspond to the non-heavy-tailed region are quite different
from the exponential distribution.

For all the backtrack search variants that we considered on instances
of model E, including the DPLL procedure, we observed a pattern
similar to that of figure 4. (See bottom panel of figure 9 for the DPLL
data.)

14

 1e-04

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <20,8,60,t> BT Random

t=7
t=20

 1e-04

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <50,10,167,t> MAC Random

t=33
t=45

Figure 8. Heavy-tailed and non-heavy-tailed regimes for instances of model B: (top)
〈20, 8, 60, t〉, using BT-random, (bottom) 〈50, 10, 167, t〉, using MAC-random.

We also observed a similar behavior — a transition from heavy-tailed
region to non-heavy-tailed region with increased constrainedness — for
instances of Model B, for different problem sizes and different search
strategies. Figures 5, 6 and 7 show the same qualitative behavior as
in figure 4, for instances of model B, with search strategy BT-random,
FC-random, and MAC-random, respectively. These figures were generated
by running the corresponding randomized backtrack search procedure
on the same instance (10,000 runs per instance). Again, we clearly see
the progression from the heavy-tailed to the non-heavy-tailed region.
Note that for the sake of clarity, for MAC-random (figure 7), the prob-
ability density function is plotted in log scale (Y-axis) and therefore
the exponential distributions exhibit linear behavior. Figure 8 (top)
shows the survival functions of runtime distributions of instances of
model B 〈20, 8, 60, t〉, for different levels of constrainedness, solved with
BT-random. Figure 8 (bottom) shows the survival functions of runtime

15

 1e-04

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model B <20,8,60,t> DP random

t=11
t=20

 1e-04

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06

S
ur

vi
va

l f
un

ct
io

n
(1

-C
D

F
)

Number of wrong decisions

model E <25,10,p> DP random

p=0.07
p=0.12

Figure 9. Heavy-tailed and non-heavy-tailed regimes for instances of (top) model
B 〈20, 8, 60, t〉, using DP-random (DPLL procedure with static variable ordering and
random value selection) and (bottom) model E 〈25, 10, p〉 using DP-random.

distributions of instances of model B 〈50, 10, 167, t〉, for different levels
of constrainedness, solved with MAC-random. The top panel of figure 9
gives the DPLL data for instances of model B. Again, the two different
statistical regimes of the runtime distributions are quite clear in these
plots.

To summarize our findings:

− For both models (B and E), for CSP and SAT encodings, for the
different backtrack search strategies, we clearly observe two dif-
ferent statistical regimes — a heavy-tailed and a non-heavy-tailed
regime.

− As constrainedness increases (p increases), we move from the heavy-
tailed region to the non-heavy-tailed region.

16

− The transition point from heavy-tailed to non-heavy-tailed regime
is dependent on the particular search procedure adopted. As a
general observation, we note that as the efficiency (and, in gen-
eral, propagation strength) of the search method increases, the
extension of the heavy-tailed region increases and therefore the
heavy-tailed threshold gets closer to the phase transition.

− Exponentially distributed inconsistent sub-tree depth (ISTD) com-
bined with exponential growth of the search space as the tree depth
increases implies heavy-tailed runtime distributions. We observe
that as the ISTD distributions move away from the exponential
distribution, the runtime distributions become non-heavy-tailed.

These results suggest that heavy-tailed behavior in the cost distri-
butions depends on the efficiency of the search procedure as well as on
the level of constrainedness of the problem. Increasing the algorithm
efficiency tends to shift the heavy-tail threshold closer to the phase tran-
sition. We conjecture that even when considering more sophisticated
search methods involving, e.g., intelligent backtracking and no-good
learning (see e.g., [7, 26, 2, 21]), one will encounter qualitatively the
same pattern, albeit for larger problem instances. Although we have
not yet studied this pattern for more sophisticated search strategies,
we have identified heavy-tailed behavior for SAT solvers with no-good
learning and probing in earlier work on structured problems [13].

For both models, B and E, and for the different search strategies,
we also clearly observed that when the ISTD follows an exponential
distribution, the corresponding distribution is heavy-tailed. In the next
section we present a theoretical model and validate it against our data.

4. Validation

Let X be the search cost of a given backtrack search procedure, Pistd[N]
be the probability of finding an inconsistent subtree of depth N during
search, and P [X > x|N] the probability of having a inconsistent search
tree of size larger than x, given a tree of depth N . Assuming that the
inconsistent search tree depth follows an exponential distribution in the
tail and the search cost inside an inconsistent tree grows exponentially,
then the cost distribution of a search method is lower bounded by a
Pareto distribution. More formally:

17

Theoretical Model

Assumptions:

− Pistd[N] is exponentially distributed in the tail, i.e.,

Pistd[N] = B1e
−B2N , N > n0 (1)

where B1, B2, and n0 are constants.

− P [X > x|N] is modeled as a complementary Heavyside function,
1 − H(x − kN), where k is a constant and

H(x − a) =

{

0, x < a
1, x ≥ a

Then, P [X > x] is Pareto-like distributed

P [X > x] ≈ βx−α

for x > kn0 , where α and β are constants.
Derivation of result:

Note that P [X > x] is lower bounded as follows

P [X > x] ≥

∫

∞

N=0

Pistd[N]P [X > x|N]dN (2)

This is a lower bound since we consider only one inconsistent tree
contributing to the search cost, when in general there are more incon-
sistent trees. Given the assumptions above, Eq. (2) results

P [X > x] ≥

∫

∞

N=0

Pistd[N] (1 − H(x − kN))dN

=

∫

∞

N=
ln x

ln k

Pistd[N]dN (3)

Since x > kn0 , we can use Eq.(1) for Pistd[N], so Eq.(3) results in:

P [X > x] ≥

∫

∞

N=
ln x

ln k

B1e
−B2NdN =

B1

B2

e−B2
ln x

ln k = βx−α

with

α =
B2

ln k
; β =

B1

B2

Note that when 1 < α < 2, X has infinite variance; when α ≤ 1, X
has infinite mean and infinite variance.

18

In order to empirically validate our theoretical model we compared
its predictions against our data, for instances of model B and E. Fig-
ure 10 and figure 11 illustrate the comparison for two instances. Fig-
ure 10 concerns an instance from model B 〈20, 8, 60, 7〉, running BT-

random, the same instance plotted in figure 8 (top), for which heavy-
tailed behavior was observed (t = 7). The plots in figure 10 provide
the regression data and fitted curves for the parameters B1, B2, and k,
using n0 = 1. The good quality of the linear regression fit suggests that
our assumptions are very reasonable. Based on the estimated values
for k, B1, and B2, we then compare the lower bound predicted using
the formal analysis presented above with the empirical data. As we
can see from figure 10, the theoretical model provides a good (tight)
lower bound for the empirical data. In figure 11 we illustrate the com-
parison between our theoretical model and our data for an instance
from model E 〈17, 8, 0.07〉, also running BT-random, the same instance
plotted in figure 3 (top), for which heavy-tailed behavior was observed
(p = 0.07). As in the previous case, the theoretical model lower bounds
the empirical data quite well.

5. Conclusions and Future Work

We have studied the runtime distributions of complete backtrack search
methods on instances of well-known random CSP binary models. Our
results reveal different regimes in the runtime distributions of the back-
track search procedures and corresponding distributions of the depth of
the inconsistent sub-trees. We see a changeover from heavy-tailed be-
havior to non-heavy-tailed behavior when we increase the constrained-
ness of the problem instances. The exact point of changeover depends
on the sophistication of the search procedure, with more sophisticated
solvers exhibiting a wider range of heavy-tailed behavior. In the non-
heavy-tailed region, the instances become harder and harder for the
backtrack search algorithm, and the runs become nearly homogeneously
long. We have also shown that there is a clear correlation between the
the distributions of the depth of the inconsistent sub-trees encountered
by the backtrack search method and the heavy-tailedness of the runtime
distributions, with exponentially distributed sub-tree depths leading
to heavy-tailed search. To further validate our findings, we compared
our theoretical model, which models exponentially distributed subtrees
in the search space, with our empirical data: the theoretical model
provides a good (tight) lower bound for the empirical data. Our findings
on the distribution of inconsistent subtrees in backtrack search give, in

19

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10 12

P
is

td
[N

]

N

Data
Regression

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 2 4 6 8 10 12

IS
T

 c
os

t[N
]

N

Data
Regression, k=4.832

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08 1e+10

P
[X

>
x]

x

Data
Model

Figure 10. Regressions for the estimation of B1=0.015, B2=0.408 (top plot; quality
of fit R2 = 0.88), and k = 4.832 (middle plot; R2 = 0.98) and comparison of lower
bound based on the theoretical model with empirical data (bottom plot). We have
α = B2/ ln(k) = 0.26 from our model; α = 0.27 directly from runtime data. Model
B 〈20, 8, 60, 7〉, using BT-random.

20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10 12

P
is

td
[N

]

N

Data
Regression

 1

 100

 10000

 1e+06

 1e+08

 0 2 4 6 8 10 12

IS
T

co
st

[N
]

N

Data
Regression, k=4.00

 0.0001

 0.001

 0.01

 0.1

 1

 1 100 10000 1e+06 1e+08

P
[X

>
x]

x

Data
Model

Figure 11. Regressions for the estimation of B1=0.167, B2=0.610 (top plot; quality
of fit R2 = 0.86), and k = 4.00 (middle plot; R2 = 0.99) and comparison of lower
bound based on the theoretical model with empirical data (bottom plot). We have
α = B2/ ln(k) = 0.439 from our model; α = 0.443 directly from runtime data. Model
E 〈17, 8, 0.07〉, using BT-random.

21

effect, information about the inconsistent subproblems that are created
during the search.

We believe that these results can be exploited in the design of more
efficient restart strategies and backtrack solvers. Note that a restart
strategy provably eliminates heavy-tailed behavior [13]. Furthermore,
heavy-tailed distributions are characterized by a wide range of run-
times. By using fast restarts not only does a solver avoid the long-tailed
runs, it also has a good chance of encountering very short success-
ful runs. Many current state-of-art SAT solvers exploit such restart
strategies [23]. However, current restart schemes are somewhat adhoc,
and are often tuned by hand. In practice, it has been observed that
relatively fast restarts are most effective. One interesting direction for
future research is whether one can detect during a single run whether
the solver has reached a large inconsistent subtree. For preliminary
results on this issue, see [18, 19]. More generally, an important research
direction is the design of more sophisticated restart strategies.

Another interesting direction for future research involves the study
of more structured problem domains. In recent work, we have intro-
duced the notion of a “backdoor set”, which is a special set of variables
such that, when assigned values, the polytime propagation mechanism
of the solver can resolve the remaining instance [33, 34]. (For a closely
related notion, see the work on treewidth and cutset [27, 8].) We have
found that practical, structured instances, have surprisingly small sets
of backdoor variables (often only a few dozen from among thousands
of variables). Moreover, variable selection heuristics are quite good at
finding those backdoor variables, which explains the presence of very
short, successful runs in structured domains. Further work is needed to
better understand the semantics of backdoor sets, namely by relating
the presence of small backdoor sets with the structure of different prob-
lem domains. In other recent work we have also provided some initial
results on the connections between backdoors, restarts, and heavy-tails
in combinatorial search [34]. We hope the findings reported in this paper
will provide additional insights on the nature of heavy-tailed behavior
in combinatorial search and lead to further improvements in the design
of restart strategies and search methods.

References

1. Achlioptas, D., L. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and Y. Sta-
matiou: 1997, ‘Random Constraint Satisfaction: a More Accurate Picture’. In:
Proceedings CP’97. Linz, Austria, pp. 107–120.

2. Bayardo, R. and D. Miranker: 1996, ‘A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem’. In: Proceedings

22

of the Thirteenth National Conference on Artificial Intelligence (AAAI-96).
Portland, OR, pp. 558–562.

3. Berre, D. L. and L. Simon: 2004, ‘Fifty-five solvers in vancouver: The sat 2004
competition.’. In: Proceedings of SAT’04.

4. Bessière, C. and J. Régin: 1996, ‘MAC and combined heuristics: two reasons to
forsake FC (and CBJ?) on hard problems’. In: Proceedings CP’96. Cambridge
MA, pp. 61–75.

5. Bessière, C., B. Zanuttini, and C. Fernández: 2004, ‘Measuring Search Trees’.
In: B. Hnich (ed.): Proceedings ECAI’04 Workshop on Modelling and Solving
Problems with Constraints. Valencia, Spain.

6. Chen, H., C. Gomes, and B. Selman: 2001, ‘Formal Models of Heavy-tailed
Behavior in Combinatorial Search’. In: Proceedings CP’01. Paphos, Cyprus,
pp. 408–421.

7. Dechter, R.: 1990, ‘Enhancement schemes for constraint processing: Back-
jumping, learning and cutset decomposition’. Artificial Intelligence 41(3),
273–312.

8. Dechter, R.: 2003, Constraint Processing. Morgan Kaufmann.
9. Frost, D., I. Rish, and L. Vila: 1997, ‘Summarizing CSP Hardness with

Continuous Probability Distributions’. In: AAAI-97. Providence RI, pp.
327–333.

10. Gaschnig, J.: 1977, ‘A General Backtrack Algorithm that Eliminates Most
Redundant Tests’. In: Proceedings IJCAI’77. Cambridge MA, p. 447.

11. Gent, I. and T. Walsh: 1994, ‘Easy Problems are Sometimes Hard’. Artificial
Intelligence 70, 335–345.

12. Gomes, C., B. Selman, and N. Crato: 1997, ‘Heavy-tailed Distributions in
Combinatorial Search’. In: Proceedings CP’97. Linz, Austria, pp. 121–135.

13. Gomes, C. P., B. Selman, N. Crato, and H. Kautz: 2000, ‘Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems’. J. of Automated
Reasoning 24(1–2), 67–100.

14. Haralick, R. and G. Elliot: 1980, ‘Increasing Tree Search Efficiency for
Constraint Satisfaction Problems’. Artificial Intelligence 14, 263–313.

15. Hogg, T., B. Huberman, and C. Williams: 1996, ‘Phase Transitions and Search
Problems’. Artificial Intelligence 81 (1-2), 1–15.

16. Hogg, T. and C. Williams: 1994, ‘The Hardest Constraint Problems: a Double
Phase Transition’. Artificial Intelligence 69, 359–377.

17. Hoos, H. H. and T. Stützle: 2004, Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann.

18. Horvitz, E., Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering: 2001,
‘A Bayesian Approach to Tackling Hard Computational Problems’. In: Pro-
ceedings of the Seventeenth Conference On Uncertainty in Artificial Intelligence
(UAI-01).

19. Kautz, H., E. Horvitz, Y. Ruan, C. Gomes, and B. Selman: 2002, ‘Dynamic
Restart Policies’. In: Proceedings of the Eighteenth National Conference on
Artificial Intelligence (AAAI-02). Edmonton, Canada.

20. Li, C. and Ambulagan: 1997, ‘Heuristics Based on Unit Propagation for
Satisfiability Problems’. In: Proceedings IJCAI’97. Nagoya, Japan, pp. 366–371.

21. Marques-Silva, J. P. and K. A. Sakallah: 1999, ‘GRASP - A search algorithm for
propositional satisfiability’. IEEE Transactions on Computers 48(5), 506–521.

22. Mohr, R. and T. Henderson: 1986, ‘Arc and Path Consistency Revisited’.
Artificial Intelligence 28, 225–233.

23

23. Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang, and S. Malik: 2001, ‘Chaff:
Engineering an Efficient SAT Solver’. In: Proceedings of the 39th Design
Automation Conference. Las Vegas.

24. Nadel, B.: 1989, ‘Constraint Satisfaction Algorithms’. Computational Intelli-
gence 5, 188–224.

25. Prosser, P.: 1993a, ‘Domain Filtering Can Degrade Intelligent Backtrack
Search’. In: Proceedings IJCAI’93. Chambry, France, pp. 262–267.

26. Prosser, P.: 1993b, ‘Hybrid algorithms for the constraint satisfaction problem’.
Computational Intelligence 9(3), 268–299.

27. Rish, I. and R. Dechter: 2000, ‘Resolution versus Search: Two Strategies for
SAT’. J. of Automated Reasoning 24(1/2), 225–275.

28. Sabin, D. and E. Freuder: 1994, ‘Contradicting Conventional Wisdom in
Constraint Satisfaction’. In: Proceedings PPCP’94. Seattle WA.

29. Selman, B. and S. Kirkpatrick: 1996, ‘Finite-Size Scaling of the Computational
Cost of Systematic Search’. Artificial Intelligence 81(1–2), 273–295.

30. Smith, B. and S. Grant: 1995, ‘Sparse Constraint Graphs and Exceptionally
Hard Problems’. In: Proceedings IJCAI’95. Montral, Canada, pp. 646–651.

31. Smith, B. and S. Grant: 1997, ‘Modelling Exceptionally Hard Constraint
Satisfaction Problems’. In: Proceedings CP’97. Linz, Austria, pp. 182–195.

32. Walsh, T.: 2000, ‘SAT vs CSP’. In: Proceedings CP’00. Singapore, pp. 441–456.
33. Williams, R., C. Gomes, and B. Selman: 2003a, ‘Backdoors to Typical Case

Complexity’.
34. Williams, R., C. Gomes, and B. Selman: 2003b, ‘On the connections be-

tween backdoors, restarts, and heavy-tailedness in combinatorial search’. In:
Proceedings of Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT-03).

35. Xu, K. and W. Li: 2000, ‘Exact Phase Transition in Random Constraint
Satisfaction Problems’. JAIR 12, 93–103.

