P. Alimonti and V. Kann, Some APX-completeness results for cubic graphs, Theoretical Computer Science, vol.237, issue.1-2, pp.123-134, 2000.
DOI : 10.1016/S0304-3975(98)00158-3

URL : http://doi.org/10.1016/s0304-3975(98)00158-3

A. Amir and D. Keselman, Maximum Agreement Subtree in a Set of Evolutionary Trees: Metrics and Efficient Algorithms, SIAM Journal on Computing, vol.26, issue.6, pp.1656-1669, 1997.
DOI : 10.1137/S0097539794269461

V. Berry and F. Nicolas, Maximum agreement and compatible supertrees, 15th Annual Symposium on Combinatorial Pattern Matching, pp.205-219, 2004.
DOI : 10.1007/978-3-540-27801-6_15

URL : https://hal.archives-ouvertes.fr/lirmm-00108782

V. Berry and F. Nicolas, Improved parametrized complexity of maximum agreement subtree and maximum compatible tree problems, IEEE Trans. on Comput. Biology and Bioinf
URL : https://hal.archives-ouvertes.fr/lirmm-00131835

P. Bonizzoni, G. D. Vedova, and G. Mauri, APPROXIMATING THE MAXIMUM ISOMORPHIC AGREEMENT SUBTREE IS HARD, International Journal of Foundations of Computer Science, vol.11, issue.04, pp.579-590, 2000.
DOI : 10.1142/S0129054100000363

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Bryant, Building trees, hunting for trees and comparing trees: theory and method in phylogenetic analysis, 1997.

R. Cole, M. Farach-colton, R. Hariharan, T. M. Przytycka, and M. Thorup, ) Algorithm for the Maximum Agreement Subtree Problem for Binary Trees, SIAM Journal on Computing, vol.30, issue.5, pp.1385-1404, 2001.
DOI : 10.1137/S0097539796313477

G. F. Eastabrook and F. R. Mcmorris, When is one estimate of evolutionary relationships a refinement of another?, Journal of Mathematical Biology, vol.14, issue.4, pp.367-373, 1980.
DOI : 10.1007/BF00276095

L. Engebretsen and J. Holmerin, Towards optimal lower bounds for clique and chromatic number, Theoretical Computer Science, vol.299, issue.1-3, pp.1-3, 2003.
DOI : 10.1016/S0304-3975(02)00535-2

URL : http://doi.org/10.1016/s0304-3975(02)00535-2

M. Farach, T. M. Przytycka, and M. Thorup, On the agreement of many trees, Information Processing Letters, vol.55, issue.6, pp.297-301, 1995.
DOI : 10.1016/0020-0190(95)00110-X

G. Ganapathy and T. J. Warnow, Approximating the Complement of the Maximum Compatible Subset of Leaves of k Trees, 5th Int. Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX'02), volume 2462 of LNCS, pp.122-134, 2002.
DOI : 10.1007/3-540-45753-4_12

G. Ganapathysaravanabavan and T. J. Warnow, Finding a Maximum Compatible Tree for a Bounded Number of Trees with Bounded Degree Is Solvable in Polynomial Time, 1st Int. Workshop on Algorithms in Bioinformatics (WABI'01), volume 2149 of LNCS, pp.156-163, 2001.
DOI : 10.1007/3-540-44696-6_12

A. Gupta and N. Nishimura, Finding Largest Subtrees and Smallest Supertrees, Algorithmica, vol.21, issue.2, pp.183-210, 1998.
DOI : 10.1007/PL00009212

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. M. Halldòrsson, Approximations of weighted independent set and hereditary subset problems, J. of Graph Algor. and Appl, vol.4, issue.1, 2000.

A. M. Hamel and M. A. Steel, Finding a maximum compatible tree is NP-hard for sequences and trees, Applied Mathematics Letters, vol.9, issue.2, pp.55-59, 1996.
DOI : 10.1016/0893-9659(96)00012-2

URL : http://doi.org/10.1016/0893-9659(96)00012-2

J. Håstad, Clique is hard to approximate within n1?????, Acta Mathematica, vol.182, issue.1, pp.105-142, 1999.
DOI : 10.1007/BF02392825

J. Hein, T. Jiang, L. Wang, and K. Zhang, On the complexity of comparing evolutionary trees, Disc. Appl. Math, vol.71, pp.1-3153, 1996.

J. Jansson, J. H. Ng, K. Sadakane, and W. Sung, Rooted maximum agreement supertrees, 6th Latin American Symposium on Theoretical Informatics, pp.499-508, 2004.

T. Jiang and M. Li, On the Approximation of Shortest Common Supersequences and Longest Common Subsequences, SIAM Journal on Computing, vol.24, issue.5, pp.1122-1139, 1995.
DOI : 10.1137/S009753979223842X

M. Kao, T. W. Lam, W. Sung, and H. Ting, A decomposition theorem for maximum weight bipartite matchings with applications to evolutionary trees, 7th Annual European Symposium on Algorithms (ESA'99), volume 1643 of LNCS, pp.438-449, 1999.

M. Kao, T. W. Lam, W. Sung, and H. Ting, An Even Faster and More Unifying Algorithm for Comparing Trees via Unbalanced Bipartite Matchings, Journal of Algorithms, vol.40, issue.2, pp.212-233, 2001.
DOI : 10.1006/jagm.2001.1163

M. A. Steel and T. J. Warnow, Kaikoura tree theorems: Computing the maximum agreement subtree, Information Processing Letters, vol.48, issue.2, pp.77-82, 1993.
DOI : 10.1016/0020-0190(93)90181-8