
HAL Id: lirmm-00106455
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106455

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CRT-Based Montgomery Multiplication for Finite
Fields of Small Characteristic

Jean-Claude Bajard, Laurent Imbert, Graham A. Jullien, Hugh C. Williams

To cite this version:
Jean-Claude Bajard, Laurent Imbert, Graham A. Jullien, Hugh C. Williams. A CRT-Based Mont-
gomery Multiplication for Finite Fields of Small Characteristic. IMACS: Scientific Computation,
Applied Mathematics and Simulation, Jul 2005, Paris, France. �lirmm-00106455�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106455
https://hal.archives-ouvertes.fr


A CRT-Based Montgomery Multiplication

for Finite Fields of Small Characteristic

Jean-Claude Bajard∗, Laurent Imbert∗,†, Graham A. Jullien† and Hugh C. Williams†

∗LIRMM, CNRS UMR 5506, 161 rue Ada, 34392 Montpellier cedex 5, France
†University of Calgary, 2500 University drive NW, Calgary, AB, T2N 1N4, Canada

Abstract— We propose a new CRT-based multipli-
cation algorithm for finite fields Fpk of small prime
characteristic, whose complexity does not depend on a
special form of the reduction polynomial. With a com-

plexity of O(k3/2) this is the first general subquadratic
algorithm for fields of small odd characteristic.

I. INTRODUCTION

Finite field arithmetic is an important prerequisite

for elliptic curve cryptography (ECC) [1], [2]. ECC

has recently received a lot of attention, because

of its smaller key-size (the security provided by

a 160-bit key is equivalent to a 80-bit symmetric-

key for block ciphers or a 1024-bit RSA mod-

ulus) and improved theoretical robustness (there

is no known subexponential algorithm to solve

the ECDLP which is the foundation of ECC). As

witness of its commercial acceptance, is its recent

inclusion in various standards (see [3], [4]). These

standards recommend a small number of secure

curves defined over large prime fields Fp and binary

fields F2m . As a consequence, the use of other

finite fields of potential interest has received limited

attention.

In this paper we propose a modified Montgomery

multiplication algorithm for finite fields of small

prime characteristic, i.e. Fpk ≃ Fp[X]/(N), where

N is a monic irreducible polynomial of degree k,

called the reduction polynomial. Is is known that

the elements of Fpk can be modeled as polynomials

of degree at most k − 1, with coefficients in Fp.

(It is easy to verify that there are exactly pk such

polynomials.) The arithmetic operations (addition,

multiplication) are carried out using polynomial

arithmetic modulo N . In this work, we represent

the operands in a so-called Chinese Remainder

Representation (CR), where polynomials of degree

less than k are represented using their remainders

modulo m relatively prime binomials of degree d,

of the form Xd + c, where c ∈ Fp. Our algorithm

requires p > 2m and md ≥ k. Compared to the

classical Montgomery algorithm, our algorithm re-

quires fewer multiplications in Fp, with best results

obtained for fields of small characteristic. If m, d
are chosen close to

√
k, we obtain a subquadratic

complexity of O(k1.5), whereas Montgomery’s al-

gorithm is in O(k2).

II. MONTGOMERY MULTIPLICATION IN Fpk

In this section, we briefly recall the Mont-

gomery’s modular multiplication algorithm for in-

tegers, and its straightforward extension to finite

fields. Then, we present a new algorithm which

is a generalization of Montgomery multiplication,

where the elements of the finite field Fpk are

represented in polynomial residue arithmetic, i.e.

according to their remainders modulo a set of well

chosen, relatively prime polynomials.

Let us start with Montgomery’s multiplication

algorithm for integers [5]. Instead of computing

ab mod n, Montgomery’s algorithm returns1 s =
abr−1 mod n, where r is such that gcd(r, n) = 1.

In practice n is always an odd number, and r is

chosen as a power of 2 to reduce multiplication

and division by r to simple shifts. The number

r is often referred to as the Montgomery factor.

The computation is accomplished in two steps: first

1We use the notation x = y mod n to denote the remainder
x < n in the division of y by n; and the notation x ≡ y
(mod n) to express the fact that x and y have the same
remainder modulo n.



compute q = −abn−1 mod r, then ab + qn is a

multiple of r; hence, an exact division by r, which

is equivalent to some right shifts, gives the result. In

order to get an actual product, ab mod n, different

methods are possible. If s is the output of the

Montgomery product of a and b modulo n, i.e., s =
MM(a, b, n) (= abr−1 mod n), then, it is easy to

see that MM(s, r2 mod n, n) = a b mod n. Also,

MM(a, br mod n, n) = MM(ar mod n, b, n) =
a b mod n. When several multiplications need to be

performed modulo the same n, as in an exponentia-

tion, the inputs are first modified using the transfor-

mation, a → ar mod n, which has the advantage

of being stable over Montgomery multiplication

(indeed, we have MM(ar mod n, br mod n, n) =
a b r mod n). These conversions can be done at the

extra cost of only two Montgomery multiplications

(with r2 mod n and 1 as inputs respectively), which

is negligible compared to the cost of the exponen-

tiation. See [6] for more details.

Montgomery’s multiplication of large integers

has been generalized to binary fields F2k by

Ç. K. Koç and T. Acar [7]. Their solution is a direct

adaptation of the original Montgomery algorithm,

where the polynomial Xk plays the role of the

Montgomery factor r. Given A,B ∈ F2k , the

algorithm computes ABX−k mod N , where N is

the reduction polynomial of degree k in F2[X]. We

remark that Koç and Acar’s algorithm easily extends

to any extension fields Fpk . As in [7], we represent

Fpk with respect to a monic irreducible polynomial

N of degree k and we consider its elements as

polynomials of degree at most k− 1 in Fp[X]. Let

us define Ψ = Xk such that gcd(Ψ, N) = 1. Then,

given A,B ∈ Fp[X]/(N), Algorithm 1 below,

returns ABΨ−1 mod N .

Algorithm 1 Montgomery Multiplication over Fpk

Input: Two polynomials A,B ∈ Fp[X], with

degA,degB ≤ k − 1; a monic irreducible

polynomial N ∈ Fp[X], with degN = k; a

polynomial Ψ = Xk

Output: ABΨ−1 mod N
1: Q = −A×B ×N−1 mod Ψ
2: R = (A×B +Q×N) /Ψ

In this case, selecting Ψ = Xk seems to be the

perfect choice, since the reduction modulo Xk (in

Step 1) and the division by Xk (in Step 2) can be

easily implemented. Indeed, given two polynomials

U, V ∈ Fp[X], with degU,deg V < k, we compute

(U × V ) mod Xk by ignoring the coefficients of

U × V of order larger than k − 1. Similarly, (U ×
V )/Xk is given by the coefficients of (U × V ) of

order greater than or equal to k.

The complexity, in terms of the number of arith-

metic operations over Fp, can be easily determined

(see [8] for details). The computation of Q in Step 1

requires k(k+1) multiplications, and k(k−1) addi-

tions; whereas R, in Step 2, is computed in k(k−1)

multiplications, and
(k−1)(k−2)

2 + k(k−1)
2 + (k− 1)

additions. If M and A denote the costs of one

multiplication and one addition in Fp respectively,

the total cost for Algorithm 1 is thus

2k2M + (2k2 − 2k)A. (1)

For most applications (especially for ECC) the

finite field is fixed and we can reasonably assume

that the reduction polynomial N and its inverse

modulo Xk have been precomputed. In this case,

the multiplications by the N−1 and N can be

simplified using optimized algorithms for multipli-

cation by a constant and by constant vectors, as

in [9]. The global cost of Algorithm 1 becomes

k2M + k2 CM + (2k2 − 2k)A, (2)

where CM denotes the cost of one multiplication

by a constant in Fp.

III. MODIFIED MONTGOMERY MULTIPLICATION

IN Fpk

In this section we first modify Algorithm 1 by

allowing the polynomial Ψ to be any polynomial of

degree k satisfying the condition gcd(Ψ, N) = 1
and by replacing the division by Ψ in Step 2 by a

multiplication by Ψ−1 modulo another given poly-

nomial Ψ′. Then we analyze a special case, where

Ψ,Ψ′ are the products of relatively prime polynomi-

als of small degree; and Ψ, Ψ′ are relatively prime.

Algorithm 2 below computes ABΨ−1 mod N for

any relatively prime polynomials Ψ,Ψ′, both of

degree k with gcd(Ψ, N) = 1.



Algorithm 2 Modified Montgomery Multiplication

over Fpk

Input: Two polynomials A,B ∈ Fp[X], with

degA,degB ≤ k − 1; a monic irreducible

polynomial N ∈ Fp[X], with degN = k; two

polynomials Ψ,Ψ′, with deg Ψ = deg Ψ′ ≥ k,

and gcd(Ψ,Ψ′) = gcd(Ψ, N) = 1
Output: ABΨ−1 mod N

1: Q = −A×B ×N−1 mod Ψ
2: R = (A×B +Q×N) × Ψ−1 mod Ψ′

Lemma 1: Algorithm 2 is correct and returns

ABΨ−1 mod N .

Proof: In Step 1, we compute Q such that

(AB + QN) is a multiple of Ψ. Indeed, we have

AB +QN ≡ AB −ABN−1N ≡ 0 (mod Ψ) and

degAB +QN = degQN ≤ 2k − 1. This implies

that there exists a polynomial f such that AB +
QN = fΨ, with deg f ≤ k−1. Now, in step 2, we

compute R modulo Ψ′. We have (AB+QN)Ψ−1 ≡
(fΨ)Ψ−1 ≡ f (mod Ψ′). Since deg Ψ′ ≥ k >
deg f , we have (AB+QN)Ψ−1 mod Ψ′ = f = R.

In general, for any polynomial h with deg h ≥ k,

and gcd(h,Ψ) = 1, we have (AB+QN)Ψ−1 mod
h = f . In particular, for h = N we have (AB +
QN)Ψ−1 ≡ ABΨ−1 (mod N) which concludes

the proof.

Of course, the generalization proposed in Algo-

rithm 2 is interesting, only if we can define poly-

nomials Ψ,Ψ′ such that the arithmetic operations

modulo Ψ and Ψ′ are easy to implement.

IV. NEW ALGORITHM

In this section, we define Ψ (resp. Ψ′) to be

the product of some relatively prime binomials of

the form Xd + c, where c ∈ Fp, and we use

the Chinese Remainder Theorem (CRT) in order

to represent the elements (polynomials) of Fp[X]
of degree less than k by their remainders modulo

sufficiently many of these binomials. The advantage

is that we distribute the costly arithmetic modulo Ψ
(resp. modulo Ψ′) into several independent arith-

metic units, each performing its arithmetic modulo

a very simple polynomial.

Suppose that Ψ =
∏m

i=1 ψi, where ψi = Xd+ci,
with ci ∈ Fp, and ci 6= cj for i 6= j. 2 Then, for

any arbitrary U ∈ Fp[X], we define ui = U mod
(Xd + ci). The following ring isomorphism given

by the Chinese Remainder Theorem

Fp[X]/(Ψ) → Fp[X]/(ψ1) × · · · × Fp[X]/(ψm)

U 7→ (u1, . . . , um) ,
(3)

tells us that if degU < deg Ψ = dm, then U
is uniquely defined by its remainders (u1, . . . , um)
modulo ψ1, . . . , ψm.

Definition 1: Let U ∈ Fp[X] with degU < k,

and let Ψ =
∏m

i=1(X
d + ci), with ci ∈ Fp and

ci 6= cj for i 6= j. We define the Chinese Remainder

(CR) representation of U modulo Ψ as

CRΨ(U) = (u1, . . . , um), (4)

where ui = U mod (Xd + ci) is a polynomial in

Fp[X] of degree at most d− 1, for i = 1, . . . ,m.

One advantage of the CR representation, is that

the arithmetic modulo Ψ is carried out implicitly by

performing the arithmetic modulo each ψi indepen-

dently. In Algorithm 2 we need another polynomial

Ψ′. We define Ψ′ =
∏m

i=1(X
d + c′i), where c′i 6= c′j

for i 6= j and ci 6= c′j for i, j = 1, . . . ,m.

This simply means that the ci’s and c′i’s are all

distinct. With Ψ and Ψ′ defined as above, we have

gcd(Ψ,Ψ′) = 1, and because N is irreducible in

Fp, we also have gcd(Ψ, N) = 1.

We assume that the input polynomials A,B are

given (or converted into) the CR representation

modulo both Ψ and Ψ′. In Step 1, we also need

CRΨ(N−1), which can be precomputed. We note

that since gcd(Ψ, N) = 1, then N−1 always exists

modulo Ψ. For the operations in Step 2, we also

need CRΨ′(Ψ−1) which also always exists, and

CRΨ′(N). Both can be precomputed. We remark

further that (Ψ−1 mod ψi) ∈ Fp, for i = 1, . . . ,m.

The only problem to solve is the conversion of

Q from its residue representation modulo Ψ to its

residue representation modulo Ψ′. Similarly, if we

wish to reuse the output of the multiplication, as in

2Note that with Ψ defined as above, we clearly need m < p.
Moreover, since we shall also define Ψ′ =

Qm
i=1

(Xd + c′i)
such that gcd(Ψ, Ψ′) = 1, this condition will become 2m < p.



the performance of an exponentiation, we need to

convert R back from CRΨ′ to CRΨ.

A straightforward approach is to use the con-

structive proof of the Chinese remainder theorem to

convert Q from its CR representation to its classical

polynomial (coefficient based) representation, and

then reduce it modulo each ψ′

i to get CRΨ′(Q).
Another solution, however, which is much more ef-

ficient in this case, is to use Newton’s interpolation

algorithm.3

Assume CRΨ(Q) = (q1, . . . , qm). We want

to compute CRΨ′(Q) = (q′1, . . . , q
′

m). We must

first evaluate the intermediate values (ζ1, . . . , ζm) –

often referred to as the mixed-radix representation

in the integer case – where the ζi’s are polynomials

of degree less than d. The vector (ζ1, . . . , ζm) is

obtained by performing the following computations:














































ζ1 = q1

ζ2 = (q2 − ζ1)ψ
−1
1 mod ψ2

ζ3 =
(

(q3 − ζ1)ψ
−1
1 − ζ2

)

ψ−1
2 mod ψ3

...

ζm =
(

. . .
(

(qm − ζ1)ψ
−1
1 − ζ2

)

ψ−1
2 − · · ·

− ζm−1

)

ψ−1
m−1 mod ψm.

(5)

We then evaluate the polynomials q′i’s using

Horner’s rule as

q′i = (. . . ((ζmψm−1 + ζm−1)ψm−2 + · · ·
+ ζ3)ψ2 + ζ2)ψ1 + ζ1 mod ψ′

i. (6)

Concerning (5), we remark that the main oper-

ation is a polynomial multiplication of the form

U×ψ−1
i mod ψj (e.g. for ζ2, we have U = q2−ζ1).

In (6), the main operation is also a polynomial

multiplication of the form V × ψi mod ψ′

j . With

ψi, ψ
′

j defined as above, i.e., ψi = Xd + ci and

ψ′

j = Xd + c′j , we have

ψi mod ψj = ci − cj mod p ∈ Fp. (7)

And thus,

ψ−1
i mod ψj = (ci − cj)

−1 mod p ∈ Fp. (8)

3In fact, it is useful to think of the CRT as a special case of
interpolation.

As a consequence, (5) and (6) can be evaluated

without any polynomial multiplications! The only

required operations are the addition of two polyno-

mials of degree less than d and the multiplication of

a polynomial of degree less than d by an element

of Fp. Both are very easy operations that can be

fully parallelized. In the complexity analysis of our

multiplication algorithm, we will only consider the

number of real polynomial multiplications and the

number of multiplications by integer constants. For

the computation of the ζi’s, we have to evaluate

m(m−1)/2 expressions of the form U×ψ−1
i mod

ψj = U × (ci − cj)
−1, since degU < d. Thus, it

requires dm(m−1)/2 CM , where CM denotes the

cost of one multiplication by an integer constant in

Fp. For (6), we have to compute (m−1) expressions

of the form V × ψi mod ψj = V × (ci − cj)
for each q′i, where deg V < k. The cost is thus

dm(m − 1) CM . The total cost for one Newton’s

interpolation is thus equal to

CNewton =
3

2
dm(m− 1) CM. (9)

Let us now analyze the cost of our modi-

fied Montgomery algorithm with Ψ,Ψ′ defined as

above. Given CRΨ(A) and CRΨ(B), Algorithm 2

first computes CRΨ(A×B) = (t1, . . . , tm), where

ti = (ai × bi) mod ψi. The cost is m polynomial

multiplications modulo a polynomial of the form

Xd + c. In order to provide a more accurate com-

plexity measure, let us make precise the cost of our

main operation; i.e., the product

(ai × bi) mod (Xd + ci), (10)

where deg ai,deg bi ≤ d − 1. Assuming we first

compute the product si = (ai × bi) using the basic

high-school algorithm, we need d2 multiplications

in Fp. (Note that when d is large, it might be more

interesting to use a more efficient polynomial mul-

tiplication algorithm, such as Karatsuba-like meth-

ods [10].) The result si is a polynomial of degree at

most 2d− 2. The reduction part is performed using

the congruence Xd ≡ −ci mod ψi. We have

si = (si mod Xd) − ci (si − si mod Xd)/Xd.
(11)



The reduction modulo Xd and the division by Xd

are easy operations, performed at no cost. They

simply consists of ignoring the terms of si of order

larger than d−1 (for the reduction modulo Xd), and

considering only those terms of order larger than or

equal to d for the division. Since deg si ≤ 2d− 2,

the multiplication of the higher part of si by ci
requires d − 1 CM . Thus, the cost for (10) is

equal to d 2 M + (d − 1) CM . In the following

analysis, we will also encounter some polynomial

multiplications modulo Xd + c, where one of the

operands is a constant polynomial. In these cases,

the cost is d 2 CM + (d− 1) CM .

After CRΨ(A × B) is computed, we evaluate

CRΨ(Q) = (q1, . . . , qm), where qi = (−ti ×
ñi) mod ψi, and (ñ1, . . . , ñm) = CRΨ(N−1) is

the CR representation of N−1 modulo Ψ. Because

one of the operands (CRΨ(N−1)) is a constant

polynomial, the cost is md 2 CM +m(d−1) CM .

The total cost for Step 1 is therefore

C1 = md 2 M +
(

md 2 + 2m(d− 1)
)

CM. (12)

After step 1, Q is converted to CRΨ′(Q) =
(q′1, . . . , q

′

m) using Newton’s interpolation algo-

rithm whose cost is given by (9).

For Step 2, we require m polynomial multiplica-

tions to compute CRΨ′(A × B), plus m constant

polynomial multiplications (CRΨ′(N)). Instead of

performing the reduction twice, i.e., after each

multiplication, we only need to reduce their sum

AB+QN . We terminate Step 2 with the multiplica-

tion by Ψ−1 mod Ψ′, which requires only md CM
operations since Ψ−1 mod ψ′

i belongs to Fp, for

i = 1, . . . ,m. Indeed, we have

Ψ−1 mod ψ′

i =





m
∏

j=1

ψj





−1

mod ψ′

i

=





m
∏

j=1

(ψj mod ψ′

i)





−1

mod ψ′

i

=





m
∏

j=1

(cj − c′i)





−1

mod p ∈ Fp.

The cost of Step 2 is thus

C2 = md 2 M +
(

md 2 +m(d− 1) +md
)

CM.
(13)

The last step of our multiplication algorithm con-

sists of the conversion of R from its CR represen-

tation modulo Ψ′ to its CR representation modulo

Ψ using Newton’s interpolation algorithm.

The total cost of Algorithm 2 is thus equal to

Cm,d = 2md 2 M

+
(

2md 2 + 3dm2 +md− 3m
)

CM. (14)

In Table I below, we illustrate the efficiency

of our algorithm for fields of small characteristic.

We give examples of possible decompositions m, d,

which lead to fewer multiplications in Fp than the

2k2 required by Algorithm 1. For each example, we

give the parameters m and d such that md ≥ k, and

there exists a prime p yielding a field Fpk of crypto-

graphic interest (for elliptic curve applications [11]).

For security reasons, we only consider extensions

of prime degree k. (See [12] for a recent attack

when k ≡ 0 mod 3 or 4.) We use l to denote the

corresponding key-size l =
⌊

log2(p
k)

⌋

bits. Note

that p and m satisfy the condition 2m < p. For

simplicity in the comparisons, we further assume

that CM = M .

From Table I we remark that it is always possible

to define convenient pairs m, d for p ≥ 5. However,

in the case p = 5, we cannot consider more than

two binomials (m = 2 is the only option), and

Algorithm 1 always requires fewer multiplications

in the general case.4

For small p, it is reasonable to assume that

CM = M , since the arithmetic modulo p can

be implemented very efficiently; e.g. for hardware

implementations, using a small lookup table. Also,

when m is small, one can optimize the choice of the

ci’s to save some multiplications. For large p, how-

ever, one can reasonably consider that CM < M .

Efficient algorithms for multiplication by an integer

constant have been investigated [9] and can be used

in this context to further improvethe efficiency of

our technique.

4For m = 2 and md = k + 1, we have Cm,n = 2k2 +
11k + 3.



TABLE I

NUMBER OF MULTIPLICATIONS OBTAINED FOR VARIOUS

PARAMETERS m, d, WITH md ≥ k AND 2m < p, AND WHERE

p AND k ARE PRIMES SUCH THAT Fpk IS A FIELD OF

CRYPTOGRAPHIC INTEREST; I.E. OF ORDER ≥ 2160

p k l m d 2k2 Cm,d

5 71 164 2 36 10082 10866

7 59 165 3 20 6962 5391

11 47 162 5 10 4418 2785

4 12 2914

13 47 173 6 8 4418 2430

5 10 2785

4 12 2916

17 41 167 8 6 3362 2328

7 6 1911

6 7 1956

19 41 174 9 5 3362 2133

8 6 2328

7 6 1911

6 7 1956

23 37 167 8 5 2738 1776

7 6 1911

6 7 1956

5 8 1905

127 23 160 12 2 1058 1044

8 3 864

6 4 822

5 5 885

4 6 876

From Table I we notice that we get the best re-

sults when m and d are close. Indeed, if we assume

that m, d ≈ k1/2, then under the assumption that

CM = M , we obtain a subquadratic complexity:

Ck = 7k3/2 + k − 3k1/2 = O(k3/2). (15)

V. EXAMPLE

In the following example, we assume p = 7,

k = 13 (713 ≈ 236). Let A = 5X12 + 2X10 +
3X8 + 2X4 + 4X , and B = X9 + X8 + 2X5 +
4X3 + 2X2 + 1, be two polynomials in the field

F7[X]/(N), where N = X13 + 2X4 + 4X + 2 is

irreducible.

We consider the parameters m = 3, d = 5 and

the polynomials Ψ = (X3 + 1)(X3 + 2)(X3 + 3),

and Ψ′ = (X3 + 4)(X3 + 5)(X3 + 6). To simplify

the notations, we represent polynomials (of degree

at most 4) by their coefficients only (in F7), where

the right-most digit correspond to the coefficient of

degree 0. The precomputed values, expressed in CR

representations are

CRΨ(−N−1) = (15016, 65413, 64652)

CRΨ′(N) = (22402, 24042, 21042)

CRΨ′(Ψ−1) = (00001, 00002, 00005).

Note that Ψ−1 mod ψ′

i ∈ Fp for i = 1, . . . , 3. We

express A,B in CR representation for both Ψ and

Ψ′. We have

CRΨ(A) = (24542, 21641, 25344)

CRΨ′(A) = (22344, 26641, 23542)

CRΨ(B) = (63206, 52204, 41202)

CRΨ′(B) = (30200, 26205, 15203).

And we compute

CRΨ(Q) = (32505, 02004, 36666)

CRΨ′(Q) = (50244, 65215, 60642)

CRΨ(R) = (43601, 15003, 50042)

CRΨ′(R) = (22655, 64435, 36152).

It is easy to check that the result is the CR represen-

tation of A×B ×Ψ−1 mod N = 3X12 + 2X11 +
2X10 + 3X9 + 5X8 +X7 + 6X6 + 4X5 +X3 +
4X2 + 4X + 3, modulo Ψ and Ψ′.

VI. CONCLUSIONS

In this paper, we have proposed a modified Mont-

gomery multiplication algorithm for finite fields,

where the operands are represented by their re-

mainders modulo a set of relatively prime bino-

mials of the form Xd + c, with c ∈ Fp. Our

algorithm takes advantage of the fact that Xd +
c1 mod (Xd + c2) = c1 − c2 ∈ Fp, and it requires

fewer multiplications in the ground field that its

classical counterpart. Indeed, if m, d ≈
√
k, we

can obtain a subquadratic complexity of O(k3/2)
for Montgomery multiplication.



ACKNOWLEDGMENTS

This work was done during L. Imbert leave of

absence at the university of Calgary, with the Centre

for Information Security and Cryptography (CISaC)

and the Advanced Technology Information Pro-

cessing Systems (ATIPS) Laboratory. It was partly

supported by NSERC Canada, under the strategic

grant number 73–2048, Novel implementation of

cryptographic algorithms on custom hardware plat-

forms; and by the French ministry of education and

research under the grant ACI Sécurité Informatique

2003, Opérateurs Cryptographiques et Arithmétique

Matérielle (OCAM).

REFERENCES

[1] V. S. Miller, “Uses of elliptic curves in cryptography,” in
Advances in Cryptology – CRYPTO ’85, ser. LNCS, H. C.
Williams, Ed., vol. 218. Springer-Verlag, 1986, pp. 417–
428.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of

Computation, vol. 48, no. 177, pp. 203–209, January 1987.
[3] National Institute of Standards and Technology, FIPS PUB

186-2: Digital Signature Standard (DSS). National Insti-
tute of Standards and Technology, Jan. 2000.

[4] IEEE, IEEE 1363-2000 Standard Specifications for Public-

Key Cryptography, 2000.
[5] P. L. Montgomery, “Modular multiplication without trial

division,” Mathematics of Computation, vol. 44, no. 170,
pp. 519–521, Apr. 1985.

[6] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC Press, 1997.

[7] Ç. K. Koç and T. Acar, “Montgomery multiplication in
GF (2k),” Designs, Codes and Cryptography, vol. 14,
no. 1, pp. 57–69, April 1998.

[8] J.-C. Bajard, L. Imbert, and C. Nègre, “Arithmetic op-
erations in finite fields of medium prime characteristic
for elliptic curve cryptography,” LIRMM – CNRS UMR
5506, 161 rue Ada, 34392 Montpellier cedex 5, France,
Research Report 05028, Mar. 2005, available electronically
at http://www.lirmm.fr/˜imbert.

[9] V. Lefèvre, “Multiplication by an integer constant,” INRIA,
Research Report 4192, May 2001.

[10] P. L. Montgomery, “Five, six, and seven-term karatsuba-
like formulae,” IEEE Transactions on Computers, vol. 54,
no. 3, pp. 362–369, Mar. 2005.

[11] D. Hankerson, A. Menezes, and S. Vanstone, Guide to

Elliptic Curve Cryptography. Springer-Verlag, 2004.
[12] P. Gaudry, “Index calculus for abelian varieties and the

elliptic curve discrete logarithm problem,” Oct. 2004,
preprint.


