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Abstract. Galois sub-hierarchies have been introduced as an interesting
polynomial-size sub-order of a concept lattice, with useful applications.
We present an algorithm which, given a context, efficiently computes an
ordered partition which corresponds to a linear extension of this sub-
hierarchy.

1 Introduction

Formal Concept Analysis (FCA) aims at mining concepts in a set of entities
described by properties, with many applications in a broad spectrum of research
fields including knowledge representation, data mining, machine learning, soft-
ware engineering or databases. Concepts are organized in concept (Galois) lat-
tices where the partial order emphasizes the degree of generalization of concepts
and helps to visually apprehend sets of shared properties as well as groups of
objects which have similarities.

The main drawback of concept lattices is that the number of concepts may
be very large, or even exponential in the size of the relation.

One of the options for dealing with this problem is to use a polynomial-size
representation of the lattice which preserves the most pertinent information. A
way of doing this is to restrict the lattice to the concepts which introduce a
new object or property, leading to two similar structures called the ’Galois sub-
hierarchy’ (GSH) and the ’Attribute Object Concept poset’ (AOC-poset). GSH
has been introduced in the software engineering field by Godin and Mili in 1993
([11]) for class hierarchy reconstruction and successfully applied in later research
works ([12, 20, 14, 6]).



Recent work has shown interest of GSH in an extension of FCA to Relational
Concept Analysis (RCA); RCA has been tested to identify abstractions in UML
(Unified Modeling Language, see [19]) diagrams allowing to improve such dia-
grams in a way that had not been explored before ([7]). AOC-poset has been
used in applications of FCA to non-monotonic reasoning and domain theory
([13]) and to produce classifications from linguistic data ([17,16]). Considering
AOC-poset or GSH is interesting from two points of view, namely the algorith-
mic and the conceptual (human perception), because the structure which is used
has only a restricted number of elements.

Several algorithms have been proposed to construct the Galois sub-hierarchy,
either incrementally or globally. Incremental algorithm ARES [8] and IsGooD
[10] add a new object given with its property set in an already constructed GSH.
The best worst-case complexity is in O(k® n?) for ARES (in O(k* n?) for ISsGooD)
where k is the maximal size of a property set and n is the number of elements
in the initial GSH. Note that best pratical results are nevertheless obtained by
IsGoob. The global algorithm CERES ([15]) computes the elements of the GSH
as well as the order and has worst case complexity in O(|O] (|O] + |P])?).

In this paper, we present an algorithm which outputs the elements of the
GSH in a special order, compatible with a linear extension of the GSH: roughly
speaking, we decompose each element of the GSH into an extent (which is the
set of objects of this element) and an intent (which is the set of properties of this
element), and we output a list of subsets of objects and properties, such that if
E is a predecessor of Es in the GSH, then both the intent and the extent of E;
are listed before the intent and extent of Es in our output ordering.

To do this, we use a partition refinement technique, inspired by work done in
Graph Theory, which can easily be implemented to run in linear time. We used
this in previous works to improve Bordat’s concept generation algorithm (see
[4]), in order to rapidly group together the objects (or, dually, the properties)
which are similar. Partition refinement has also been used to reorder a matrix

([18)).

One of the interesting new points of the algorithm presented here is that it
uses the objects and properties at the same time, instead of just the objects or
just the properties.

The other interesting development is that the orderings on the properties
and objects created by our algorithm define a new representation of the input
relation, essentially by re-ordering its rows and columns, creating a zone of zeroes
in its lower right-hand corner.

The paper is organized as follows: in Section 2, we give a few necessary
notations, and present a running example which we will use throughout the paper
to illustrate our work. Section 3 presents some results from previous papers,
and explains the general algorithmic process which is used. Section 4 gives the
algorithm, as well as some interesting properties of the output. The algorithm
is proved in Section 5.



2 Notations and Example

It is assumed that the reader is familiar with classical notions of partial orderings
and lattices, and is referred to [5], [1] and [9]. We will need a few preliminary
notations and definitions.

Given a context (O, P, R), O is a set of objects and P a set of properties, for
X C0O,Y CP, we will denote by R(X,Y") the subrelation RN (X x Y). In the
algorithms we present in this paper, objects and properties can be interchanged,
so we will need to unify notations ' and z' from [9] into R[z] as follows: we will
denote by R[z] the set {y € P, (z,y) € R} ifz € Oand {y € O, (y,z) € R} if
r € P. R will denote the complement of relation R: (z,y) € R iff (z,y) € R.

We will say that a concept A’ x B’ is a successor of concept Ax Bif A C A’
and there is no intermediate concept A” x B" such that A C A” C A’. A concept
A’ x B' is a descendant of concept Ax B if A C A’. The notions of predecessor
and ancestor are defined dually.

In the rest of this paper, we will use the same running example to illustrate
our definitions and algorithms.

Example 1. Binary relation R:

a|blc|d|e|f|g|h
Set of objects: 1] [x[x[x
0=1{1,2,3,4,5,6}, 2 x[x|x x| x
3| x|x X|x|x
Set of properties: 4 x| x
P ={a,b,c,d,e, f,g,h}. 5 X | x
6|x X

~

The associated concept lattice £(R) is shown in Figure 1.

(123456, &)
(236, ah) (123,'b) (125, ¢) (145, d)
(23, abgh) (12, b) (15, cd) (14, de)
(3, abfgh) (2, abcgh) (1, bede)

(&, abodefgh)

Fig. 1. Concept lattice L(R) of Example 1. For example, (12,bc) denotes concept

{1,2} x {b,c}.



Definition 1. An object (resp. a property) x is said to be introduced by a con-
cept if x is in the extent (resp. intent) of this concept and no ancestor (resp.
descendant) of this concept contains x in its extent (resp. intent). An element of
the lattice is said to be an introducer if it introduces a property or an object.

In [9], an introducer of an object is called an ’Object Concept’ and an intro-
ducer of a property is called a "Property Concept’.

Definition 2. ([11]) The Galois sub-hierarchy (GSH) of a concept lattice is
the partially ordered set of elements X x Y, X UY # 0, such that there exists
a concept where X is the set of objects introduced by this concept and Y is the
set of properties introduced by this concept. The ordering of the elements in the
GSH is the same as in the lattice.

Let E; and Es be two elements of the GSH. We will denote FE; < E» if E is
an ancestor (i.e. represented below in the GSH) of Ey and Ey < Ey if By = Ey
or B, < Es.

The Attribute Object Concept Poset (AOC-Poset) is a GSH with addi-

tion of the top and bottom elements of the lattice, if they are not present in the
GSH ([16]).

Ezample 2.
For example, 23 x abgh is the introducer of g, as the descendants of this concept:
236 X ah, 123 x b and 123456 x ) do not have ¢ in their intent.

Simplifying the labeling of Figure 1 to the introduced objects and properties
leads to the lattice represented in Figure 2. Then, removing trivial nodes and
nodes labeled with empty sets leads to the Galois sub-hierarchy represented in
Figure 3.

(0,9)

(6,ah)  (d,b) (@,¢) (8,4d)
(0,9) (8.9) (50) (4,¢)

(3,f) (2,0) (1,9)

(2, 2)

Fig. 2. Simplified labelling of Lattice of Figure 1, first step to generate Galois sub-
hierarchy of Figure 3.



6,ah b c d

3,1 2 1

Fig. 3. Galois sub-hierarchy of Example 1, with the simplified labeling: b, for example,
corresponds to (@, {b}). This hierarchy is obtained by removing trivial nodes from
simplified lattice of Figure 2.

3 Previous results and algorithmic process

In order to explain our algorithm, we will need some extra notions which we
introduced in previous papers to improve concept-related algorithms.

First, we will need the notion of maxmod, which is a set of objects or proper-
ties which share the same row or column. These are useful, because when gener-
ating concepts using Bordat’s algorithm for example, the elements of a maxmod
of the relation or subrelation which is used are always grouped together in the
concepts. Note that if the relation is reduced ([1]), all maxmods are of cardi-
nality one; however, reducing a relations costs O(]|O + P|3) time, whereas our
algorithm is in O(|O + P|?), so we cannot assume that the relation is reduced.

Definition 3. (/2]) Let (O, P, R) be a context. For x,y € O or x,y € P, = and
y belong to the same maxmod if R[z] = R[y]. We refer to mazmods as object
maxmods or property maxmods, according to the nature of their elements.

The maxmods define a partition of O + P. The GSH, with its simplified
labeling, contains exactly the maxmods of O + P. For any maxmod M, we will
denote E(M) the element of the GSH which contains M in its label.

Ezample 3. For example, {a,h} defines a maxmod, as a and h have identical
columns in the matrix of R. a and h always appear together, both in the lattice
and in the GSH. The set of maxmods is:

{{a, b}, {b}, {c}, {d},{e}, {f} {1}, {2}, {3}, {4}, {5}, {6}}.
These are exactly the labels of the GSH of Figure 1.

Another important notion, which stems from Graph Theory, is that of domina-
tion:

Definition 4. (/2]) Let (O, P,R) be a context. For z,y € O or x,y € P, x is
said to dominate y if R[z] C R[y]. A maxmod X is said to dominate another
mazxmod Y if for x € X, for y € Y, © dominates y.



In the rest of this paper, we will often use maxmods, and denote them infor-
mally without columns, for example we will use ah instead of {a, h}; matrices
will be represented with maxmods instead of lone objects or properties, which is
equivalent to keeping in the matrix only one representative for every set of lines
which are identical.

The notion of domination leads us to a decomposition of the GSH into an
object-GSH and a property-GSH, as introduced in [3]. We will use the following
simple terms in referring to this:

Definition 5. (/3]) Let (O, P, R) be a context. The partial order on the property
mazxmods is called the property domination order, and likewise the partial order
on the object maxmods is called the object domination order.

Note that both partial orders on objects and properties are compatible with
the GSH:

Theorem 1. ([3]) Let Py and Py be two property mazmods ; then Py dominates
P, iff E(Py) < E(P,y). Let Oy and O2 be two object mazmods, then O1 dominates
0> ZﬁE(Oz) < E(Ol)

Ezample 4. Figure 4 shows the domination orders on our example.

Fig. 4. Domination order of Example 1. For example, we see that e dominates d and
f dominates b, whereas 6 dominates 2.

We showed in [4] that a linear extension of the object or property ordering
can be very efficiently computed in linear time, using another Graph Theory
tool: partition refinement. The partition algorithm is given in Section 4.

Our aim here is to compute a linear extension of the GSH. Since the object
and property orderings are preserved in the GSH, both the corresponding linear
extensions are compatible with the GSH. Our idea here is to use the object
linear extension and the property linear extension and merge them into a linear
extension of the GSH.

4 The algorithm

We present an algorithm which takes a context as input, and outputs a linear
extension of the GSH.



Our algorithm uses as a primitive a partition refinement technique (based on
a process presented in [4]), called Algorithm MAXMOD-PARTITION, which com-
putes a linear extension of the domination order. We use this primitive twice in
our main algorithm (Algorithm Tom Thumb): the first time, we use Algorithm
MAXMOD-PARTITION with an arbitrary ordering L on P; the second time, we use
in the input the ordering on O output by the first pass of Algorithm MAXMOD-
PARTITION.

Algorithm MAXMOD-PARTITION
Input: A context (O,P,R), a set S which is either O or P, and an ordered
partition L of (O + P) — S.
Output: An ordered partition of the maxmods of S.
PART is a queue, initialized with S;
for each class of partition L taken in the input ordering do
choose a representative x of the class;
for each class K of PART such that |K| > 1 do
K' + KN R[z];
K" + K — R[z];
if K' # 0 and K" # () then
In PART, replace K by K' followed by K"';
return PART.

Note that the execution can be stopped if all classes trivially contain a single
element,.
This process has the remarkable property that a given maxmod taken in the
output partition can dominate only maxmods which lie to its left:

Theorem 2. ([{]) Algorithm MAXMOD-PARTITION outputs an ordered list of
mazmods such that if mazmod A dominates maxmod B, then B is before A in
this list.

Example 5. Let us apply Algorithm MAXMOD-PARTITION to our running exam-
ple, using S = O, L is the total ordering (a,b,c,d, e, f,g,h) of P (each partition
is trivially formed of a single element).
(11,2,3,4,5,6})
L RE={2,36)
({2,3,6}; {1,4,5})
I R[b]={1,2,3}
({2,3}; {6}; {1}; {4,5})
L Rid={125}
({2}; {3}; {6}; {1}; {5}; {4}).

Our algorithm for computing a linear extension of the GSH first uses Algorithm
MAXMOD-PARTITION to compute a linear extension of the object maxmods, us-
ing any ordering of the property set, then uses the output ordering on object
maxmods to find a special linear extension of the property maxmods. In a third



step, the algorithm will merge the two extensions. The result is a list LINEXT
of maxmods, which represent a linear extension of the GSH, in which for any
element of the GSH formed by both an object maxmod and a property maxmod,
these appear consecutively.

Algorithm Tom THUMB

Input: A context (O, P, R).

Output: A linear extension of the GSH, where object maxmods and property
maxmods are separated (if an element of the GSH contains an object maxmod
O and a property maxmod P then P and O appear consecutively in the linear
extension).

1. Apply MAXMOD-PARTITION to (O,P, R), with S = O and L an arbitrary
ordering of P, resulting in an ordered partition (Y3, ...,Y;) of object max-
mods;

2. Apply MAXMOD-PARTITION, with S = P, and using for L partition (Y, ...,
Y1), i.e. the partition obtained at step one in reverse order, resulting in an
ordered partition (X7, ..., X,.) of property maxmods;

3. LIST is an empty queue.

Jegicl
while j>0 and i<r do
choose representatives: y € ¥; and z € Xj;
if (y,z) € R then add X; to queue LIST; i+ i+1;
else add Y; to queue LiST; j<j—1;
/] At this point, there may remain either objects or properties, which are
added to LiST
while j>0 do add Yj to queue LIST; j < j—1;
while i<r do add X; to queue LIST; i+ i+1;
LINEXT - L1ST in reverse; Return LINEXT.

Note that LiST computes a linear extension which is in reverse order with
respect to the orientation of the GSH we have chosen for this paper, as illustrated
in our running example. LIiST thus has to be output in reverse as LINEXT. In
the final LINEXT output, the list of properties output by MAXMOD-PARTITION
is reversed, while the list of objects is preserved.

Example 6. An execution of Algorithm Tom THUMB on Relation R from Ex-
ample 1.

Step 1: Partition the object set, using any ordering on the property set. With
ordering (a,b,c,d,e, f, g, h) used in Example 5, (2,3,6,1,5,4) is obtained.
Step 2: Partition property set using objects ordering (4,5,1,6,3,2).
({a,b,c,d,e,f,g,h})

L RMA={de)
({d.e}; {ab,c.fgh})

+ R[5]={c,d}



({d}; {e} {c.}; {a,b.f,g,h})
R[1]={b,c,d e}
({d},{e},{c} {b}; {afg}G)
R[6]={a,h}
({d}; {e} {c.}; {b}; {ah}; {f.g})
R[3]={a,b,f,g,h} let the partition unchanged
i R[2]={a,b,c,g,h}
({d}; {e}; {c.}; {b}; {ah}; {g}; {f})

Step 3: Merge ordered partitions (4,5,1,6,3,2) and (d,e,c,b,ah,g,f).
List=();

current object: 4, current property: d, (4,d) € R, d is chosen next,
LisT=(d);

current object: 4, current property: e, (4,e) € R, e is chosen next,
List=(d; e);

current object: 4, current property: c, (4,¢) € R, 4 is chosen next,
LisT=(d; e; 4);

current object: 5, current property: c, (5,¢) € R, ¢ is chosen next,
List=(d; e; 4; c);

current object: 5, current property: b, (5,b) € R, 5 is chosen next,
List=(d; e; 4; ¢; 5);

current object: 1, current property: b, (1,b) € R, b is chosen next,
List=(d; e; 4; c; 5; b);

current object: 1, current properties: ah, (1,a) ¢ R, 1 is chosen next,
List=(d; e; 4; c; 5; b; 1);

current object: 6, current properties: ah, (6,a) € R, ah is chosen next,
List=(d; e; 4; c; 5; b; 1; ah);

current object: 6, current property: g, (6,9) ¢ R, 6 is chosen next,
List=(d; e; 4; c; 5; b; 1; ah; 6);

current object: 3 current property: g, (3,9) € R, g is chosen next,
List=(d; e; 4; c; 5; b; 1; ah ;6 ;g);

current object: 3 current property: f, (3, f) € R, f is chosen next,
List=(d; e; 4; c; 5; b; 1; ah; 6; g; f);

no property left, add objects 3 then 2,
List=(d; e; 4; c; 5; b; 1; ah; 6; g; f; 3; 2).
The resulting list of maxmods is (d;e; 4; ¢; 5; b; 1; ah; 6; g; f; 3; 2).
In the GSH of Example 2, ah and 6 are in the same element, and so are e and
4, as well as f and 3.
The output LINEXT represents linear extension

({2}, {3, f}, {9}, {6,ah}, {1}, {b}, {5}, {c}, {4, e},{d})
of the GSH.

Note that, as usual, O and P could be interchanged in the algorithms above.

Time Complexity:
Algorithm MAXMOD-PARTITION can be implemented to run in O(|R|) time,
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thus Step 1 and Step 2 cost O(|R]). In Step 3, each time we enter the while-loop
i+ (g — j) is incremented; as i + (¢ — j) < r+ ¢ < |P|+ |0, Step 3 costs
O(|P]| + |0O]). Algorithm Tom THUMB has then a complexity in O(|R|).

Algorithm Tom Thumb runs in linear time, but does not explicitely com-
pute the elements of the GSH. Computing these elements, using a brute-force
approach, costs O((|P| + |0])?) time, and no better process is known for this.
However, in order to compute these elements, we could use the output of Algo-
rithm Tom Thumb in the following fashion: if an element of the GSH has both
a non-empty extent and a non-empty intent, call them O and P, then in list
LINEXT output by the algorithm, P comes first and O is just after P; thus we
need to test all pairs of the list where an object maxmod immediately follows
a property maxmod, to find out whether they together form an element of the
GSH. This test can be performed by taking an element 0; in O and an element
p1 in P; (O, P) is an element of the GSH iff R[o;] x R[pi] is a rectangle, i.e. the
corresponding cartesian product is a subset of R. The test costs O((|P|+ |0])?)
time for each pair which is tested. The overall cost of computing all the elements
of the GSH may become lower than O((|P| + |O|)?) in some cases.

Algorithm Tom Thumb turns out to have a variety of interesting properties,
due to the fact that it computes a very special linear extension of the GSH, as
Theorem 3 for which will will define the notion of ‘staircase’:

Definition 6. Let (O, P, R) be a context. Let oo = (o1, ..., 04) be a total ordering
of O and 8 = (p1,...,pr) be a total ordering of P. Let M be the matriz of R,
with the rows ordered by « and the columns ordered by 3.

We will say that M has a lower-right-hand staircase of zeroes if there exist
an total function ¢ from an interval [on,04] of o to P such that:

— for o; and o; objects of [on,04], if 0 — i before o; in a then p(o;) is after
v(oj) in B, and

— for each i in [h, q], the rectangle S; = {0;} x [p(0;), pr] is a rectangle of zeroes
(i.e. Vy € [p(0i), pr], Mloj,y] =0).

We will say that the union Zs of all these rectangles S; of zeroes is a lower-right-
hand staircase of zeroes of M. We will denote by Z; the other part M — Zs of
M.

Theorem 3. Using an arbitrary ordering « of O to compute with Algorithm
MAXMOD-PARTITION an ordered partition o of the maxmods of P (as in Step
2 of the Tom Thumb Algorithm), and reordering the rows and columns of the
matriz with o in reverse and [ results in a matriz which has a lower-right-hand
staircase of zeroes.

The proof follows the definition of the partition process: at each step, ‘ones’ are
put to the left, and ‘zeroes’ are left at the right; this is repeated one step higher,
to partition the zone above the previous zeroes zone; this results in a staircase
of zeroes, in any matrix defined in this fashion.
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Proof. Let (O,P,R) be a context. Let & = (01,...,04) be a total ordering of
O and 8 = (p1,..-,pr) be a total ordering of P. Let M be the matrix of R
with the rows ordered by « in reverse: (o, ...,01) and the columns ordered by
a = (ply "')pr) : _

At the first step of the algorithm, if R[o;] # 0, set P will be split into
K' = Rfoi] and K" = RJo;]; thus Vy € K", M[o;,y] = 0, and K" is the
righmost class of PART at the end of step 1. If R[o;] = 0, let k& = 0; note that
this only occurs if R[o;] = P. Suppose that at the end of step i of the algorihm,
the rightmost class of PART is S; = () !_, R[o;]. If, at step i + 1, R[o;41] # 0,
Siy1 = ﬂ;illﬁ[ok] will be the new rightmost class in PART. If R[o;11] = 0, let
k=1

Thus we recursively construct a list {01} x S, ..., {or} x Sk of rectangles of
zeroes, with inclusions S; D ... D S. This will define the successive elements of
the ordered partition on P, which w.l.o.g. are: R[o;], R[0o2]NS1, ... , Rlog]NSk—1,
Sk-

We can thus define function ¢ from [o1,0;] to P by ¢(0;) = S; with the
different rectangles of zeroes S; of Definition 6. Thus M has a lower-right-hand
staircase of zeroes Zo = U¥_, ({0;} x S;). Note that the use of a reverse ordering
on O makes the object indices different from those of Definition 6.

Ezample 7. Let us use (2,3,6,1,5,4) and (d,e,c,b,ah,g,f) as output by Steps 1 and
2 of the execution of Algorithm Tom Thumb of Example 6. The resulting matrix

is:
R|d|e|c|blah|g|f

X[ X[ X [X
X | X[ XX
X

x| x| x| %
x| |x
4|x|x

U = O W N

The lower-right-hand part of the matrix contains only zeroes. The limit of this
zone is defined by the succession of queries on R given in Step 3 of the Tom
Thumb Algorithm: (z,y) € R, (4,¢) € R, (5,b) € R, (1,a) € R, (6,9) ¢ R. Thus
Zy = {4} x{c,b,ah,g, f} U {5} x {b,ah,g, f} U{1} x {ah,g, f} U{6} x {g, f}.

5 Proof of the algorithm

The Tom THUMB Algorithm does a traversal of the GSH in a such fashion that
an element of the GSH is reached — and then put in the list — only after all its
descendants in the GSH are reached:

Theorem 4. Algorithm ToM THUMB gives a linear extension of the GSH,
where object maxmods and property maxrmods are separated: if a property maz-
mod P and an object mazmod O are in the same element of the GSH then O
appears just before P in the linear extension.
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In order to prove this, we will use Theorem 3, as well as the following lemmas.
Lemma 1. In the course of the execution of Algorithm Tom Thumb,

1. when a property mazmod P is added to LiST, then for any object mazxmod
O added after P, (O, P) is in Z;.

2. when an object mazmod O is added to LI1ST, then for any property P added
after O, (O, P) is in Z>.

Proof. Let (O, P, R) be a context. Let o = (O, ..., O,) be the partition in object
maxmods obtained at the first step of Algorithm Tom TuwmB, let 5 = (P, ..., P.)
be the partition in property maxmods obtained at the second step of Algorithm
Tom TUuMB, using « in reverse: (Oy, ..., 01), as ordered partition L in the input.
Let M be the matrix of R with rows in order o and columns in order 3. By
Theorem 3, M has a lower-right-hand staircase of zeroes.

1. Let O be an object maxmod and let P be a property maxmod such that
O is after P in LisT. If P and O have been compared in the third step
of Algorithm ToMm TuwmB, then (O, P) € R and (O, P) may not be in Z.
On the other hand, if P has been inserted in LIST without being compared
to O, this means there exists another object maxmod O’ which is after O
in «a, which has been compared to P, and which has been put after P as
(O',P) € R. Thus (0', P) € Z; and, by Definition 6 of M, (O, P) is in Z;.

2. We will prove by induction that for each object maxmod O; of «a, all the
properties P; put after O; in L1ST verify (O;, P;) € Z.

The first step of Algorithm Tom THUMB begins by comparing O, and P;. All
the property maxmods of R[O,] are put before O, in LIST, as for P; € R[O,],
(Oy4, P;) € R. The property maxmods of R[O,] will be put after O, in LIST
and will constitute the first ‘step’ Si of the lower-right-hand staircase in
matrix M. Thus for all P; € R[O,], (O1,P}) € Zs.

Suppose that for object maxmod O;, all the property maxmod P; that are
after O; in LiST verify (O;, Pj) € Z».

When O;_; is processed, the set B of property maxmods which have yet
to be processed can be split into BN R[O; 1] and BN R[O; 1]. Then, the
property maxmods of BN R[O;_1] will be put before O;_; in LIST and these
of Bﬂﬁ[Oi_l] will be put after Oi—l- By Definition 6, Oi—l X (Bﬂﬁ[Ol_l]) is
an element of the staircase of zeroes of matrix M. Thus, all P; in BAR[O;_1]
put after O;_1 in LisT will verify (Oi_l,Pj) € Zs.

Lemma 2. Let O be an object mazmod associated with element E(O) of the
GSH, let P be a property maxmod associated with E(P); then (O,P) € R iff
E(O) < E(P).

Proof.

= This follows directly from the definitions of concept lattice and GSH: the
introducer of P is concept R[P] x R[R[P]]. If (O,P) € R, O is in this
concept and in all its predecessors, one of which is the introducer of O. Then
E(O) < E(P)if (O,P) € R.
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< If E(O) < E(P), the introducer of P is a descendant of the introducer of O
and thus will have O in its extent. Then (O, P) € R.

Theorem 5. For any pair (O, P) of maxmods such that (O,P) ¢ R and
(O,P) € Z1, O and P belong to non-comparable elements E(O) and E(P) of
the GSH.

Proof. Let (O1,P1) be a zero in Z;. Suppose by contradiction that P, and Oy
belong to comparable elements of the GSH.

Since (O1,P1) ¢ R, by Lemma 2, we must have E(P;) < E(O;). Let us
consider the moment when P; is added to LisT: by Lemma 1, since (O1, Py) € Z1,
O; has not yet been added. Let O, be the object which is queried by Step 3 of
Algorithm Tom Thumb, and which results in adding P; to LisT, let E(O3) be
the element of the GSH which contains Os: we have (O2, P1) € R. Clearly, the
algorithm will insert Os after P; in Li1sT; by Lemma 2, E(O2) < E(Py).

Combining the above remarks together, we obtain E(Oy) < E(P;) < E(Oy),
so by Theorem 1, O; dominates Oy. But this is impossible, by Theorem 2, as the
ordering used ensures that O; can dominate only objects which are output before
it by Algorithm MAXMOD-PARTITION; since this ordering is used in reverse by
Step 3 of Algorithm Tom Thumb, Os, which is used first, cannot be dominated
by O1 - a contradiction.

We are now ready to prove Algorithm ToMm THUMB:

Proof. (of Theorem 4) Let A and B be two different maxmods, belonging to
elements F(A) and E(B) of the GSH respectively. There will be two cases:

— Suppose that E(B) < E(A). We will show that B is placed before A in
LINEXT, which is equivalent to saying that A is placed before B in LIST.

1. If A and B are both property maxmods: by Theorem 1, B dominates
A. Clearly, the ordering output by Step 2 of Algorithm Tom Thumb is
preserved in LIST. By Theorem 2, A is before B in LIST.

2. If A and B are both object maxmods: by Theorem 1, A dominates B.
The ordering output by Step 1 of Algorithm Tom Thumb is reversed in
LisT. By Theorem 2, A is before B in LIST.

3. If Ais a property maxmod and B is an object maxmod: as E(B) < E(A),
by Lemma 2, (B, A) € R, which implies (B, A) ¢ Z,. By contraposition
of the second item of Lemma 1, A must be before B in LIST.

4. If Ais an object maxmod and B is a property maxmod: as E(B) < E(A),
by contraposition of Lemma 2, (A, B) ¢ R. By Theorem 5, (A, B) & Z1,
as E(A) and E(B) are comparable. Finally, by contraposition of the first
item of Lemma 1, object maxmod A is before property maxmod B in
LisT.

— Suppose that E(B) = E(A). This corresponds to the case where object
maxmod A and property maxmod B appear in the same element of the
GSH. We will show that B is placed after A in LINEXT, which is equivalent
to saying that A is placed after B in L1ST.
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If E(A) = E(B) then, by Lemma 2, (4,B) € R and thus (4,B) ¢ Z-.
By contraposition of the second item of Lemma 1, object maxmod A is
after property maxmod B in LisT. Finally, as a direct consequence of the
precedent case, no other maxmod will appear between A and B in LIST.

6 Conclusion

In this paper, we present a new algorithm to efficiently compute an ordering on
the object and property maxmods which is compatible with a linear extension
of the Galois sub-hierarchy.

It turns out that the linear extension we compute has very special properties,
which will require further investigation, both as useful for dealing with Galois
sub-hierarchies, and as interesting in the more general context of handling a
binary relation. For example, the way the algorithm traverses the sub-hierarchy
is interesting, as well as the definition of some zones of the matrix with non-
comparable elements.

Moreover, the family of reorderings computed by our Tom Thumb algorithm
turns out to often lead to cases where concept generation can be accomplished
faster than in the general case. Experimentation on this is being pursued.
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