N

N
N

HAL

open science

Perfect Sorting by Reversal is not Always Difficult

Severine Bérard, Anne Bergeron, Cédric Chauve, Christophe Paul

» To cite this version:

Severine Bérard, Anne Bergeron, Cédric Chauve, Christophe Paul. Perfect Sorting by Reversal is
not Always Difficult. WABI: Workshop on Algorithms in Bioinformatics, Oct 2005, Mallorca, Spain.

pp.228-238, 10.1007/11557067_19 . lirmm-00106465

HAL Id: lirmm-00106465
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00106465
Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106465
https://hal.archives-ouvertes.fr

Perfect sorting by reversals is not always difficult
(Extended abstract*)

Severine Bérard!, Anne Bergeron?, Cedric Chauve?, Christophe Paul?

L INRA Toulouse, Dépt. de Mathématique et Informatique Appliquée, France.
E-mail: Severine.Berard@toulouse.inra.fr
2 LaCIM et Dépt. d’Informatique, Université du Québec & Montréal, Canada.
E-mail: [anne,chauve] @lacim.uqam.ca
3 CNRS, LIRMM, Montpellier, France. E-mail: paul@lirmm.fr

Abstract. This paper investigates the problem of conservation of com-
binatorial structures in genome rearrangement scenarios. We characterize
a class of signed permutations for which one can compute in polynomial
time a reversal scenario that conserves all common intervals, and that is
parsimonious among such scenarios. The general problem is believed to
be NP-hard. We show that there exists a class of permutations for which
this computation can be done in linear time with a very simple algorithm,
and, for a larger class of signed permutations, the computation can be
achieved in subquadratic time. We apply these methods permutations
obtained from the X chromosomes of the human, mouse and rat.

1 Introduction

The reconstruction of evolution scenarios based on genome rearrange-
ments has proven to be a powerful tool in understanding the evolution
of close species [8,13]. The computation of such evolution scenarios re-
lies on the problem of sorting signed permutations by reversals: given
two chromosomes, represented as sequences of genomic segments, find a
parsimonious sequence of reversals that transforms a chromosome into
the other one. However, the number of parsimonious sequences of rever-
sals can be exponential [5]. It is then natural to ask for some additional
criteria that can help to select putative scenarios. We are interested in
scenarios that do not break combinatorial structures that are present in
both chromosomes. In this work, the combinatorial structures that we
consider are common intervals [21,14]. A rearrangement scenario is said
to be perfect if it does not break any common interval. It was stated in
[12] that computing a parsimonious perfect scenario is difficult [12], but
recent works [2, 17] showed that in some non-trivial cases, such scenarios
can be computed efficiently. In this paper we describe a class of instances
that allow efficient computation of a parsimonious perfect scenario.

* A complete version including proofs is available in [3].

In Section 2, we define the links between sorting by reversals and
structure conservation, and we state precisely the problem we address in
this paper. In Section 3, we relate common intervals and perfect scenarios
to a basis of common intervals, the strong intervals tree, that can be repre-
sented with a classical data structure in graph theory, the PQ-trees. These
observations are consequences of deep relationships between common in-
tervals and the modular decomposition of permutation graphs. This point
is central in our approach since we rely, in Section 4, on the combinato-
rial structure of strong intervals trees to design algorithms that are both
efficient — subquadratic time, even linear time in some cases — and simple.
We apply these results to the comparison of the human, mouse and rat
X chromosomes, based on data of [13].

2 Sorting by reversals and common intervals

A signed permutation on n elements is a permutation on the set of inte-
gers {1,2,...,n} in which each element has a sign, positive or negative.
Negative integers are represented by placing a bar over them. An inter-
val of a signed permutation is a segment of consecutive elements of the
permutation. One can define an interval by giving the set of its unsigned
elements, called the content of the interval.

The reversal of an interval of a signed permutation reverses the order
of the elements of the interval, while changing their signs. Note that every
reversal is an interval of the permutation on which it is performed, which
lead us to often treat reversals as intervals, and to represent a reversal
by the corresponding interval. If P is a permutation, we denote by P the
permutation obtained by reversing the complete permutation P.

Definition 1. Let P and @Q be two signed permutations on n elements.
A scenario between P and @ is a sequence of distinct reversals that
transforms P into @, or P into Q. The length of such a scenario is the
number of reversals it contains. When @ is the identity permutation, a
scenario between P and () is called a scenario for P.

Given a signed permutations P on n elements, the problem of sorting
by reversals asks for a scenario for P of minimal length among all possible
scenarios, also called a parsimonious scenario. Currently, the best known
algorithm for this problem runs in O(n®?log(n)) worst-case time [19].

Definition 2. Two distinct intervals I and J are said to commute if
either I € J,or J C I,or INJ = (. If intervals I and J do not commute,
they are said to overlap.

Definition 3. Let P be a signed permutation on n elements. A common
interval of P is a set of one or more integers that is an interval in both
P and the identity permutation Id,. Note that any such set is also an
interval of P and of Id,,. The singletons and the set {1,2,...,n} are called
trivial common intervals.

The notion of common interval was introduced in [21]. It was studied,
among others, in [14], to model the fact that a group of genes can be
rearranged in a genome but still remain connected.

Definition 4. Let P be a signed permutation. A scenario S for P is called
a perfect scenario if every reversal of S commutes with every common
interval of P. A perfect scenario of minimal length is called a parsimonious
perfect scenario.

Ezample 1. Let P = (3254 1) be a signed permutation.

1. Reversing the interval (2 5 4 1), or equivalently the set {1,2,4,5},
yields the signed permutation (314 5 2).

2. The common intervals of P are {2,3},{4,5},{2,3,4,5},{1,2,3,4,5}
and the singletons {1}, {2}, {3}, {4} and {5}.

3. ({1,2,3,4,5},{2,3,4,5},{2,3},{4,5},{1}) is a perfect scenario that
transforms P into Ids.

4. ({2,3,4,5},{2,3},{4,5},{1}) is a parsimonious perfect scenario for
P, transforming P into the reverse Ids of the identity.

5. ({1,4,5},{1,2,3}) is a parsimonious scenario, but it is not perfect
since the reversal {1,4,5} overlaps the common interval {2,3,4,5}.

As shown in [12], given a signed permutation P, there exists at least
one perfect scenario for P. However, the construction of parsimonious
perfect scenarios is believed to be computationally difficult, as discussed
in [12], where it is stated that computing a parsimonious perfect sce-
nario between two signed permutations is NP-hard in general. Hence the
difficulty of the problem relies in the parsimonious aspect.

The main goal of this paper is to propose algorithms for computing
parsimonious perfect scenarios that are efficient for large classes of signed
permutations (Section 4). Our results rely on the strong intervals tree of
a signed permutation described in the next section.

3 Strong intervals tree

As the number of common intervals of a permutation P on n elements
can be quadratic in n, an efficient algorithm (i.e. subquadratic time) for

computing perfect scenarios should rely on a space efficient encoding of
the set of common intervals. In [16], the author pointed out a correspon-
dence between common intervals of permutations and the concept, well
studied in graph theory, of modules of graphs. Inspired from the modular
decomposition theory?, this section formally states structural properties
of the set of common intervals of a permutation P that are central in the
design of the algorithms in Section 4.

Let us first remark that being a common interval for a set I has noth-
ing to do with the sign of the elements of I. Therefore all the structural
results presented in this section are valid for both signed and unsigned
permutations. For the sake of simplicity, we omit the signs which will be
reintroduced in the next section.

Definition 5. A common interval I of a permutation P is a strong in-
terval of P if it commutes with every common interval of P.

For example, the strong intervals of P = (1 42537 8 6 9) are
{2,3,4,5}, {7,8}, {6,7,8}, {1,2,3,4,5,6,7,8,9} and {1},..., {9}. The
singletons and {1,2,...,9} are the trivial strong intervals of P.

It follows from Definition 5 that the inclusion order of the set of strong
intervals defines an n-leaves tree, denoted by Ts(P), whose leaves are the
singletons, and whose root is the interval containing all elements of the
permutation. We call the tree T5(P) the strong intervals tree of P (Fig. 1),
and we identify a node of Ts(P) with the strong interval it represents.

Since each strong interval with more than one element, or equivalently
each internal node of Ts(P), has at least two children in Ty(P), we have
immediately:

Proposition 1. A permutation on n elements has O(n) strong intervals.

Let I be a common interval of a permutation P on n elements and
xz € {1,2,...,n} such that x ¢ I. It follows from the definition of common
interval that either x is larger than all elements of I or x is smaller than
all elements of I. Hence, for two disjoint common intervals I and J, we
can define the relation I < J by extending the order relation on integers
that belong to I and J.

Definition 6. Let P be a permutation and Z = {I3,..., I;} be a parti-
tion of the elements of P into strong intervals. The quotient permutation
of P with respect to Z, denoted Fz, is the permutation on k elements
such that i precedes j if and only if I; < I;.

4 All the results presented in this section can be seen as direct consequences or corol-
laries of well known graph theoretical results (see [10] for example).

For example, for the permutation P = (14253786 9) of Fig. 1,Z =
{{1},1{2,3,4,5},{7,8}, {6},{9}} is a partition of P into strong intervals,
and Pz = (12435).

1

| 1,4,2,5,7,8,6,9 |

Fig. 1. The strong intervals tree Ts(P) of the permutation P = (142537 86 9).
Prime and linear nodes (described later in this section) are distinguished by their shape.
There are two non-trivial linear nodes, the rectangular nodes: (7,8) is increasing and
(7,8, 6) is decreasing. There is only one prime node, the round node (4,2, 3,5).

Theorem 1. Let P be a permutation on n elements and T = {I,..., I}
be the partition of P into strong intervals given by the children of the root
of Ts(P). Then exactly one of the following is true:

1. Pz is Idy (the identity permutation on k elements).

2. Pz is Id;, (the reverse of the identity permutation on k elements).
3. The only common intervals of Pz are trivial.

Theorem 1 induces a classification of the nodes of the strong intervals
tree T5(P) that is central in the design of our algorithms: let P be the
quotient permutation defined by the children of an internal node I of
Ts(P). The node I, or equivalently the strong interval I of P, is:

1. Increasing linear, if P is the identity permutation;
2. Decreasing linear, if Pr is the reverse of the identity permutation;
3. Prime, otherwise.

For example, in Fig. 1, the rectangular nodes are the linear nodes, and
the round node (4,2, 5,3) is the unique prime node. The only decreasing
linear node in this tree is (7,8, 6).

Property 1. In a strong intervals tree, a child of an increasing (resp. a
decreasing) linear node is either a prime node or a decreasing (resp. an
increasing) linear node.

Finally, we show that the strong intervals tree is a compact represen-
tation — it only requires O(n) space — of the set of all common intervals,
which is possibly a set of quadratic size.

Proposition 2. Let P be a signed permutation. An interval I of P is a
common interval of P if and only if it is either a node of Ts(P), or the
union of consecutive children of a linear node of Ts(P).

This representation for strong intervals was first given implicitly in
[14], and explicitly in [15], where it was shown that Ts(P) can be related
to a data structure widely used in graph theory, called PQ-tree. It can
be computed in O(n) worst-case time using algorithms similar to the
ones given in [14,15]. A formal link between PQ-trees and conserved
structures in signed permutations was first proposed in [4], in the context
of conserved intervals, a subset of common intervals.

4 Computing perfect scenarios

We now turn to the description of our main results, the design of efficient
algorithms for computing parsimonious perfect scenarios for large classes
of signed permutations. The central point of this section is a characteri-
zation of perfect scenarios in terms of Tg(P):

Proposition 3. A scenario S for a permutation P is perfect if and only
if each of the reversals of S is either a node of Ts(P), or the union of
children of a prime node of Ts(P).

Computing a perfect scenario .S thus amounts to identify leaves, linear
nodes and union of children of prime nodes of Ts(P) that are the rever-
sals of S. We now show that, even if the general problem of computing
parsimonious perfect scenarios is believed to be difficult [12], it can be
done efficiently for a large class of signed permutations, defined in terms
of the structure of their strong intervals tree.

A strong intervals tree Tg(P) is unambiguous if every prime node
has a linear parent, and definite if it has no prime nodes. We will show
that, for definite trees, there is essentially a unique perfect scenario for P
(Theorem 2), and for unambiguous trees, we can compute a parsimonious
perfect scenario in subquadratic time (Theorem 3).

Remark 1. Note that definite strong intervals trees are also known as
co-trees in the theory of modular decomposition of graphs [10].

A signed tree is a tree in which each node has a sign, + or —. We
associate to an unambiguous tree Ts(P) the following signed tree T¢(P):

1. The sign of a leaf x is the sign of the corresponding element in P.

2. The sign of a linear node is +, if the node is increasing, and — if the
node is decreasing.

3. The sign of a prime node is the sign of its parent.

Fig. 2, Fig. 3 and Fig. 4 show signed strong intervals trees associated to
the permutations obtained by comparing 16 synteny blocks of the human,
mouse and rat X chromosomes [13].In Fig. 2 the labels of the nodes are
given with respect to the order of the blocks of the mouse chromosome.

Human=1 2 3 4 5 6 7 8 910111213141516
Mouse= 6 5 4 13141516 1 3 9 101112 7 8 2
Rat=134 5 6 128 7 2 1 3 91011141516

Theorem 2. IfTs(P) is definite, the set of nodes having a sign different
from the sign of their parent is a parsimonious perfect scenario for P.

Given the tree Ts(P), Theorem 2 implies that computing a parsimo-
nious perfect scenario for P is almost immediate, when Ts(P) is definite.
The comparison of the rat and mouse X chromosomes yields a definite
tree, Fig. 2, and the corresponding scenario can be obtained by comparing
the signs of the O(n) nodes. When such a scenario exists, it is unique up
the order of the reversals, as each of them commutes with all the others.

9 101112131415 16
8 91011125 6 7

13, 15, 14, 16
15, 14 8,9, 10 11,12

e ol

Fig. 2. Comparing the rat and mouse X chromosomes. The set of nodes hav-
ing a sign different from the sign of their parent form a parsimonious perfect
scenario that transforms the rat X chromosome into the mouse X chromosome:
(4,3,2,1), (1), (13,15,14,16,8,9,10,11,12,5,6,7), (13,15, 14, 16), (13), (15, 14), (14),
(16), (8,9,10,11,12), (11), (5,6,7).

We next turn to the more general case of unambiguous trees. Recall
that a prime node inherits its sign from its parent, and that any reversal
that is a union of children of a prime node commutes with all common
intervals, thus may belong to a perfect scenario.

Algorithm 1 describes how to obtain a parsimonious perfect scenario
in the case of unambiguous trees. The basic idea is to compute, for each
prime node I of the tree, any parsimonious scenario that sorts the children
of node I in increasing or decreasing order, depending on the sign of I.
Then, it suffices to deal with linear nodes whose parent is linear in the
same way than for a definite tree.

Algorithm 1: Computing a parsimonious perfect scenario for unambiguous Ts(P)

S is an empty scenario.
For each prime node I of Ts(P)
Pr is the quotient permutation of I over its children
If the sign of I is positive
Then compute any parsimonious scenario T' from Py to Id
Else compute any parsimonious scenario T from Pr to Id
Deduce the corresponding scenario T’ on the children of Pr
Add the reversals of T’ to scenario S
Add to S the linear nodes and leaves having a linear parent and a sign different
from the sign of their parent.

Fig. 3 shows the signed tree associated to the permutations of the
human and rat X chromosomes. This tree is unambiguous: it has one
prime node (4,5,6,12,8,7,2,1,3,9,10,11) whose parent is a decreasing
linear node. The quotient permutation of this node over its five children
is P = (253 14), and a parsimonious scenario that sorts Py to Id is
given by: {1, 3,4}, {1,3}, {1}, {2,3,4,5}, {3,4,5}. Note that if the corre-
sponding five reversals are applied to the rat chromosome, the resulting
permutation has a definite tree.

The time complexity of Algorithm 1 depends on the time complexity
of the sorting by reversals algorithm used compute a reversal scenario
that sorts the children of a prime node. Using the O(ng/ 2log n) algorithm
described in [19], we have:

Theorem 3. If Ts(P) is unambiguous, Algorithm 1 computes a parsi-
monious perfect scenario for P in subquadratic time.

7 8 91011121314 1516
721 3 91011141516
’ 13,4,5,6,12,8,7,2,1,3,9, 10, 11, 14, 15, 16

e

9,10, 11

= =

4,5,6 8,7 2,1
= 4 #H [e e = e = = I 5 = B = B =
) s {7 L2][o[[9 J[ro][rt][1a]fs]]1e]

Fig. 3. Comparing the human and rat X chromosomes: a parsimonious perfect scenario
is obtained by sorting the five children (4,5, 6), (12), (8,7), (2,1,3) and (9, 10,11) in
decreasing order using any parsimonious scenario that sorts the quotient permutation
P; = (253 14), and then reversing the linear nodes and leaves whose linear parent
have a different sign: (13,4,5,6,12,8,7,2,1,3,9,10,11), (4), (6), (2,1), (2), (1), (3),
(15). The length of the scenario is 13.

When Ts(P) is ambiguous, the sign of some prime nodes is undefined.
A general algorithm to compute parsimonious perfect scenario would re-
peatedly apply Algorithm 1 to all possible sign assignments to prime
nodes that do not have linear parents. As an example, consider Fig. 4
that shows the signed tree associated to the permutations of the human
and mouse X chromosomes.

This tree is ambiguous since its root is a prime node, and we must try
to sort this node both to Id and to Id. In this case, both parsimonious
scenarios have the same length. Such an algorithm, that is a generalization
of the algorithms we described in this section for unambiguous trees,
and was described using another formalism in [12], has a worst-case time
complexity that is exponential in the number of prime nodes whose parent
is prime, and thus is efficient if the number of such edges is small.

Permutations that arise from the comparison of genomic sequences are
not “random”, and this could partly explain why perfect sorting is not
difficult for the permutations we considered. Constructing permutations
that are hard to perfectly sort requires to break almost any structure in
a given permutation. The smallest example of a hard to sort permutation
is given in Fig. 5.

1011 1213 14 15 16
91011127 8 2

9
3

6,5,4,13,14,15,16,1,3,9,10,11,12,7, 8,2

[9.10,11,12,7.8 |

[+

= +]
[6.5.4] [13,14,15, 16] 9,10, 11,12

Shrdbned i b

Fig. 4. Comparing the human and mouse X chromosomes: the root has no sign but
its children can be sorted to Id or Id in 6 reversals using a parsimonious scenario that
sorts the quotient permutation Py = (4 6 1 3 5 2), A parsimonious perfect scenario
would also contain the reversals: (4), (15), (9,10,11,12), (10), (7,8), (7). The total
length of the scenario is 12.

Fig. 5. A hard to sort permutation: if both nodes are sorted in increasing order, or both
are sorted in decreasing order, then the resulting perfect scenarios are not parsimonious.

5 Conclusion

From the algorithmic point of view, the central aspect of our work is
the detailed description of the link between computing perfect scenarios
and the strong intervals tree of a signed permutation. We gave a new
description of the exponential time algorithm of [12] that highlights many
of its properties. In particular, in Section 4, we characterized classes of
signed permutations for which the computation of a parsimonious perfect
scenario can be done efficiently.

In [17], it was shown that when, for a given signed permutation, there
exists a parsimonious scenario that is also a perfect scenario, then com-
puting such a scenario can be done in subquadratic time, extending a
previous result of [2]. In the present work, one can, once a parsimonious

10

perfect scenario has been computed, check whether this scenario is also
parsimonious, using for example one of the linear time algorithm for com-
puting the reversal distance proposed in [1, 6]. However, the computation
of a parsimonious perfect scenario can ask for an exponential time de-
pending on the strong intervals tree. Hence, it would be interesting to
characterize, in terms of strong intervals tree, the class of signed permu-
tations for which a parsimonious perfect scenario is also parsimonious
among all possible scenarios.

From a practical point of view, it is worth to recall that the interest in
computing scenarios that do not break any common intervals relies on the
assumption that genes, or other genomic markers, cluster in such groups
for functional reasons, like co-transcription for example. Of course, it is
possible that clusters of genes exist by “chance”, or are not supported
by any functional evidence, and it would not be relevant to impose that
such intervals should not be broken. Note however, that the algoprithms
developed in this work apply without any modification: given a set of
common intervals that are believed to be pertinent from the evolutionary
point of view, they define a set of strong intervals, and then a PQ-tree,
and one can apply our method on this PQ-tree.

Among other future directions, it would be interesting to consider
the median problem, that is one of the main tools in the computation
of reversals scenarios [7].This problem has been shown to be NP-hard [9]
in the general case, but the question has not been settled if one restricts
every scenario to be perfect. Finally, the most natural extension would
be to consider signed sequences instead of signed permutations. Some
work has been done on common intervals of signed sequences [11, 18], but
representations of these that could play the role of strong intervals are
yet to be discovered.

References

1. D. A. Bader, B. M. E. Moret and M. Yan. A linear-time algorithm for comput-
ing inversion distance between signed permutations with an experimental study.
J. Comp. Biol., 8(5):483-491, 2001.

2. S.Bérard, A. Bergeron and C. Chauve. Conserved structures in evolution scenarios.
In RCG 2004, volume 3388 of Lecture Notes in Bioinformatics, p. 1-15, 2005.

3. S. Bérard, A. Bergeron, C. Chauve and C .Paul. Perfect sorting by reversals is not
always difficult. Research Report RR 05777 LIRMM (Montpellier, France), 2005.

4. A. Bergeron, M. Blanchette, A. Chateau and C. Chauve Reconstructing ancestral
gene orders using conserved intervals. In WA BI 2004, volume 3240 of Lecture Notes
in Bioinformatics, p. 14-25, 2004.

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. A. Bergeron, C. Chauve, T. Hartman and K. St-Onge. On the properties of se-

quences of reversals that sort a signed permutation. In JOBIM 2002, p. 99-108,
2002.

A. Bergeron, J. Mixtacki and J. Stoye. Reversal distance without hurdles and
fortresses. In CPM 2004, volume 3109 of Lecture Notes in Comput. Sci., p. 388~
399, 2004.

G. Bourque and P. A. Pevzner. Genome-scale evolution: Reconstructing gene
orders in the ancestral species. Genome Res., 12(1):26-36, 2002.

G. Bourque, P. A. Pevzner and G. Tesler. Reconstructing the genomic architecture
of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome
Res., 14(4):507-516, 2004.

A. Caprara. Formulations and hardness of multiple sorting by reversals. In RE-
COMB’99, p. 84-94, ACM Press, 1999.

M. Chein, M. Habib and M. C. Maurer. Partitive hypergraphs. Discrete Math.,
37(1):35-50, 1981.

G. Didier. Common intervals of two sequences. In WABI 2003, volume 2812 of
Lecture Notes in Bioinformatics, p. 17-24, 2003.

M. Figeac and J.-S. Varré. Sorting by reversals with common intervals. In WABI
2004, volume 3240 of Lecture Notes in Bioinformatics, p. 26—37, 2004.

R. A. Gibbs et al. Genome sequence of the brown norway rat yields insights into
mammalian evolution. Nature, 428(6982):493-521, 2004.

S. Heber and J. Stoye. Finding all common intervals of £ permutations. In CPM
2001, volume 2089 of Lecture Notes in Comput. Sci., p. 207-218, 2001.

G.M. Landau, L. Parida and O. Weimann. Using PQ trees for comparative ge-
nomics. In CPM 2005, volume 3537 of Lecture Notes in Comput. Sci., p. 128143,
2005.

F. de Montgolfier Décomposition modulaire des graphes. Théorie, extensions et
algorithmes. Ph.D. thesis, Université Montpellier II (France), 2003.

M.-F. Sagot and E. Tannier. Perfect sorting by reversals. To appear in COCOON
2005, (to be published in Lecture Notes in Comput. Sci.), 2005.

T. Schmidt and J. Stoye. Quadratic time algorithms for finding common inter-
vals in two and more sequences. In CPM 2004, volume 3109 of Lecture Notes in
Comput. Sci., p. 347-358, 2004.

E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In CPM
2004, volume 3109 of Lecture Notes in Comput. Sci., p. 1-13, 2004.

G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics, 18(3):492—
493, 2002.

T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290-309, 2000.

12

