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Abstract. We provide new tools, such as k-troikas and good subtree-
representations, that allow us to give fast and simple algorithms comput-
ing branchwidth. We show that a graph G has branchwidth at most k if
and only if it is a subgraph of a chordal graph in which every maximal
clique has a k-troika respecting its minimal separators. Moreover, if G
itself is chordal with clique tree T" then such a chordal supergraph exists
having clique tree a minor of 7. We use these tools to give a straight-
forward O(m + n +¢*) algorithm computing branchwidth for an interval
graph on m edges, n vertices and ¢ maximal cliques. We also prove a
conjecture of F. Mazoit [I3] by showing that branchwidth is polynomial
on a chordal graph given with a clique tree having a polynomial number
of subtrees.

1 Introduction

Branchwidth and treewidth are connectivity parameters of graphs and when-
ever one of these parameters is bounded by some fixed constant on a class of
graphs, then so is the other [14]. Since many graph problems that are in general
NP-hard can be solved in linear time on such classes of graphs both treewidth
and branchwidth have played a large role in many investigations in algorithmic
graph theory. Recently there has been a focus on branchwidth [GI5[4I7I]] to give
e.g. good heuristics for the travelling salesman problem and fast parameterized
algorithms for various types of optimization problems. These algorithms always
involve a stage that constructs a branch-decomposition with small branchwidth,
and another stage solving the problem using the decomposition by a running
time depending heavily on that branchwidth. Efficient algorithms computing
optimal branch-decompositions, like we give in this paper, could therefore be
the crucial factor that can make or break the application.

The study of branchwidth has not enjoyed the rich toolbox that treewidth has
with its connections to k-trees, chordal graphs of maximum clique size, intersec-
tion graphs of subtrees of a tree etc. We try to rectify this in the current paper,
by introducing various new tools like k-troikas, k-good chordal graphs and good
subtree representations, whose definitions will follow later. To give an example
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using only standard terminology, we remark that using these tools we arrive at a
succinct expression of the common basis of treewidth and branchwidth: For any
k > 2 a graph G on vertices vy, va, ..., v, has branchwidth at most k (treewidth
at most k — 1) if and only if there is a cubic tree T' with subtrees 11,75, ..., T),
such that if v; and v; adjacent then subtrees T; and T} share at least one edge
(node) of T, and each edge (node) of T is shared by at most k of the subtrees
(replace underlined words by the words in parenthesis.)

The understanding of branchwidth of special graph classes is relatively lim-
ited. We give a brief overview of the literature. In a paper from 1994 Seymour and
Thomas showed that branchwidth is NP-complete in general, and followed this
by their celebrated ratcather method computing branchwidth of planar graphs
in polynomial time [I5]. In 1997 Bodlaender and Thilikos used fairly brute-force
methods to give a linear-time algorithm deciding if a graph has branchwidth at
most some constant k [I] and a very elegant algorithm for graphs of branchwidth
3 [2]. Then in 1999 Kloks, Kratochvil and Miiller [T2/TT] pushed into new territory
by showing that branchwidth is NP-complete already for split graphs and bipartite
graphs, with the bulk of their paper being an O(n3logn) algorithm for branch-
width of interval graphs with the comment that ”it is somewhat surprising that
this algorithm is by no means straightforward and its correctness proof requires a
nontrivial proof.” In contrast, using our branchwidth tools for the case of interval
graphs we arrive at a straightforward O(n?) algorithm whose self-contained cor-
recteness proof is easy to follow. In fact, our algorithm has runtime O(m +n+ ¢?)
for an interval graph on m edges, n vertices and ¢ maximal cliques. In a recent in-
vestigation Mazoit gave a polynomial-time algorithm for branchwidth of circular-
arc graphs and conjectured that branchwidth can be computed in polynomial-time
for chordal graphs given with a clique tree having a polynomial number of subtrees
[13]. We prove his conjecture in this paper. Indeed, it follows by a generalization
of the interval graph algorithm since we show a structural property stating that
branchwidth of a chordal graph with clique tree T' can be found by considering
chordal supergraphs whose clique tree is a minor of 7.

In Section 2 we give some standard definitions. In Section 3 we use subtree-
representations to characterize graphs of branchwidth & as subgraphs of chordal
graphs. In Section 4 we study the central new concept of k-troikas in a purely set-
theoretic setting. In Section 5 we give a simple algorithm computing branchwidth
for interval graphs and more generally for chordal graphs with a clique tree
having a polynomial number of subtrees.

2 Standard Definitions

We consider simple undirected and connected graphs G with vertex set V(G)
and edge set F(G). We denote G subgraph of H by G C H which means that
V(G) = V(H) and E(G) C E(H). For a set A C V(G), G(A) denotes the
subgraph of G induced by the vertices in A. A is called a clique if G(A) is
complete. The set of neighbors of a vertex v in G is N(v) = {u | uwv € E(G)}.
A vertex set S C V(G) is a separator if G(V(G) \ ) is disconnected. Given two
vertices v and v, S is a u,v-separator if u and v belong to different connected
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components of G(V(G) \ S). A u,v-separator S is minimal if no proper subset
of S separates u and v. In general, S is a minimal separator of G if there exist
two vertices u and v in G such that S is a minimal u,v-separator. A graph is
chordal if it contains no induced cycle of length > 4. In a clique tree of a chordal
graph G the nodes are in 1-1 correspondence with the maximal cliques of G and
the set of nodes whose maximal cliques contain a given vertex form a subtree.
For further terminology, see e.g. [10]. We usually refer to nodes of a tree and
vertices of a graph.

A branch-decomposition (T, 1) of a graph G is a tree T with nodes of degree
one and three only, together with a bijection p from the edge-set of G to the
set of degree-one nodes (leaves) of T. For an edge e of T let 77 and Ty be
the two subtrees resulting from 7'\ {e}, let G; and G2 be the graphs induced
by the edges of G mapped by u to leaves of T; and T5 respectively, and let
mid(e) = V(G1) N V(G2). The width of (T, u) is the size of the largest mid(e)
thus defined. For a graph G its branchwidth bw(G) is the smallest width of any
branch-decomposition of G. [

3 Good Subtree-Representations

Definition 1. A subtree-representation R = (T, {11, T, ...,T,}) is a pair where
T is a tree with vertices of degree at most three and Ty, Ts, ..., T, are subtrees of
T. Its edge intersection graph EI(R) has vertex set {vq,va,...,v,} and edge set
{viv; : T; and T share an edge of T}, while its vertex intersection graph VI(R)
has the same vertex set but edge set {v;v; : T; and T; share a node of T'}. For a
node w of T, we call the set of vertices X,, = {v; : T; contains u} the bag of u,
and {X,, :u € V(T)} the bags of R.

With the above terminology we can easily move between the view of a subtree-
representation R as a tree T with a set of subtrees {11, 75, ..., T,,} or as a tree T
with a set of bags { X, : u € V(T)}. When manipulating the latter we must simply
ensure that for any vertex in EI(R) the set of bags containing that vertex corre-
sponds to a set of nodes of T inducing a subtree, i.e. a connected subgraph.

Definition 2. The edge-weight of subtree-representation R = (T,{Th,....,Tn})
is the maximum, over all edges uv of T, of the number of subtrees in {T1,...,Tn}
that contain edge uwv. R is a good subtree-representation if EI(R) = VI(R).

We are in this paper only interested in the edge intersection graphs of subtree-
representations having bounded edge-weight k. We start by showing that we can
restrict ourselves to good subtree-representations if we want.

Lemma 1. For any subtree-representation R of edge-weight k there exists a good
subtree-representation R’ of edge-weight k with EI(R) = EI(R') = VI(R').

! The graphs of branchwidth 1 are the stars, and constitute a somewhat pathological
case. To simplify we therefore restrict attention to graphs having branchwidth k > 2,
in other words our statements are correct only for graphs having at least two vertices
of degree more than one.
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Lemma 2. A graph G has branchwidth at most k < there is a good subtree-
representation R of edge-weight at most k with G C EI(R).

Proof: =-: Take a branch-decomposition (T, 1) of G of width k, i.e. |mid(e)| < k
for each e € E(T'). We construct a subtree-representation R = (77, 5) of edge-
weight k& with G C EI(R). T’ is constructed from T by for each leaf [ of T
adding a new leaf I’ and making it adjacent to [. For vertex a € V(G) consider
the smallest spanning subtree of T' containing all leaves of T' that are mapped
by @ to an edge incident with a. The subtree T, will be this subtree augmented
by leaf I’ for each leaf [ of T that it contains. This completes the description of
R = (T',{T, : a« € V(G)}. For any two adjacent vertices {a,b} of G we have
pu= (1) = {a, b} for some leaf [ of T, and thus the subtrees corresponding to a and
b share the edge II’ of T’ which implies that G C EI(R). If vertex a has subtree
T, containing edge e of T', then there are edges incident with ¢ mapped to leaves
in both subtrees of T arising from deleting the edge e, and thus a € mid(e). But
this means that the edge-weight of R is at most k. If R is not good then we can
make it good by applying Lemma [I1

<: Let R = (T, S) be a good subtree-representation R of edge-weight at most
k with G C EI(R). We construct a branch-decomposition (7”7, 1) of G with width
k. Associate each edge ab of G with an edge e of T" such that the subtrees T, and
Ty corresponding to a and b both contain e. Subdivide the tree edge e by as many
new nodes as there are edges of GG associated to e, thus creating for each edge ab
associated to e a new tree node egyp. Furthermore, add a new leaf node 5, make
it adjacent to e, and set p(ab) = lup. Let T be the tree we have constructed
so far. It contains T' as a minor. Consider the smallest spanning subtree T" of
T"" having the set of leaves {ls : ab € E(G)}. Tteratively contract edges of T
incident to a vertex of degree two until all inner vertices have degree three. The
resulting tree is T”. Note that as we constructed 7" from T in stages we could
at each stage have updated the subtree T, corresponding to vertex a to a new
subtree 7', so that we would still have a subtree-representation R’ = (17, 5") with
G C EI(R’). For example, T(; should contain every ’subdivision node’ on a tree
edge f if T, contained f, it should contain l,; for any edge ab incident with a,
and it should naturally shrink if it contained a removed leaf or contracted edge.
Moreover, (T”,5’) has edge-weight at most &k since never during this process
did we increase the edge-weight beyond what it was. 7' has nodes of degree
one and three only and p is a bijection between its leaves and the edges of
G so (T',u) is a branch-decomposition of G. It remains to show that it has
width k, i.e. that for any edge e of T’ we have |mid(e)| < k. We claim that
mid(e) C {a : T, contains edge e}. Consider a € mid(e). There must exist two
leaves lap, Lo of T”, one in each of the two subtrees of T”\e, such that a € =1 (14p)
and a € u‘l(lac). Since the subtree T(; of a contains both I, and [,. it must
also contain e. |

We introduce the concept of k-troikadd which is a central tool in our investi-
gation of branchwidth.

2 A troika is a horse-cart drawn by three horses, and when the need arises any two of
them should also be able to pull the cart.
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Definition 3. A k-troika (A, B,C) of a set X are 3 subsets of X, called the three
parts, such that |A| <k, |B| <k, |C| <k, and AUB=AUC=CUB=X.
(A, B, C) respects S1,59,...,5¢ if any S;,1 <1i < q is contained in at least one
of A,B or C.

Definition 4. A k-good chordal graph is a chordal graph in which every maxi-
mal clique X has a k-troika respecting the minimal separators contained in X.

Theorem 1. A graph G has branchwidth at most k < G is subgraph of a k-good
chordal graph

R w
R

P X Y
Q U

AQ Q Cq Cu Ay Cy

Fig. 1. On right a clique tree of a k-good chordal graph H with k-troika of any maximal
clique M being (A, Ba, Car). On left, the constructed subtree-representation R’ of
edge-weight k such that H C EI(R’). The square nodes correspond to the ternary
subtree associated with clique Y and the grey nodes to the ternary subtree associated
to clique X. Both ternary subtrees share the leaf X N'Y where they connect.

Proof: =-: By Lemma [2 there exists a good subtree-representation R of edge-
weight k with G C FI(R) = VI(R). Since VI(R) is a vertex intersection graph
of subtrees of a tree it is a chordal graph [9], and H = EI(R) = VI(R) will
indeed be our chordal graph H having G as a subgraph. By the Helly property
of (vertex) intersection of subtrees of a tree, every maximal clique of H is a
bag X, for some node u of the tree. If | X,| < k then it clearly has a k-troika
respecting any subset, so let us assume |X,| > k. Since any pair a,b of nodes
from X, is adjacent in H, we must have {a,b} contained also in one of the
neighboring bags. Let the intersection of X, and the bags of its three neighbors
be A, B and C. This means that any two of A, B, C' must have union X, since
if for example a € X,, but a € AU B then we would be forced to have C = X,
since C' would have to contain a and all its neighbors in X, contradicting the
fact that R has edge-weight k. Any minimal separator S of the chordal graph
H is the intersection of two maximal cliques corresponding to two bags X,,, X,.
If we assume A = X, N X, for w the neighbor of v on the path from u to v in
T, then we have S = X, N X, C A since the subtree corresponding to a vertex
a € (X, NX,)\ A would be disconnected.
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«<: Consider any clique tree of the k-good chordal graph H containing G. In
fact this can be viewed as a pair R = (T, S) just as our subtree-representations
with H = VI(R) and every bag inducing a maximal clique of H, except that
nodes of T' can have degree larger than 3. We construct from this a subtree-
representation R' = (T7,5") of edge-weight k with G C H C EI(R') which by
Lemma 2] and Lemma [0 will imply that G has branchwidth at most k. Let X
be a maximal clique whose node in T has ¢ neighbors corresponding to maximal
cliques Z1, Za, ..., Z4, and let (A, B, C') be the k-troika of X respecting minimal
separators X N Zy,...,X N Z,;. This means there exists a partition Py, Pg, Pc
of {1,2,....,q} such that X NZ; C Afori € Py, XNZ; C B for i € Ppg,
XNZ; CC for i € Po. For maximal clique X we construct a ternary subtree
as follows: We have a central node with bag X adjacent to three paths: one
path with max{1,|Pa|} bags A, one path with max{1,|Pg|} bags B and one
with max{1, | Pc|} bags C. For each i € {1, 2, ..., ¢} we have a leaf-node with bag
X NZ; as neighbor of a node on these paths, e.g. if i € P4 the leaf-node should be
the neighbor of a node with bag A, if i € Pp then B, and if i € Po then C, such
that g of the nodes on the 3 paths get one leaf each. (see Figure [Il). Construct
such a ternary subtree for each maximal clique X, i.e. for each node of T'. Then,
for each pair of maximal cliques X,Y that are bags of two neighboring nodes in
T we identify the following two leaves into a single node: X NY in the subtree
constructed for X and YN X in the subtree constructed for Y. The resulting tree
T’ has no node of degree more than three and together with bags as indicated
it forms the subtree-representation R’ = (T7,5’). R’ has edge-weight at most
k since any part of a k-troika has size at most k. We show that H C EI(R').
For any edge ab € E(H) we have {a,b} C X for some maximal clique X. The
k-troika (A, B,C) of X has the property that any vertex a € X must be in two
out of A, B, C, so that we must have {a, b} contained in one of A, B or C. Thus
the edge ab is in FI(R') and H C EI(R’). O

4 k-Troikas

This section will be devoted to a study of the conditions under which a set X
has a k-troika respecting a given set of subsets. As with branchwidth, we restrict
attention to the case k > 2. These conditions on the given sets, which will turn
out to be testable by simple algorithms, will in conjunction with Theorem [ be
useful for designing algorithms computing branchwidth of graphs.

Observation 1. If X has a k-troika respecting S1,S2, ..., Sq then |S;| < k for
each 1 <1i<q and |X| < [3k/2].

The above is obvious, every subset must be of size at most k since it must
be contained in a part of size at most k, and the fact that every pair of parts
must have union X means that every element of X must belong to at least two
parts which implies 2| X| < 3k. Note that the case of respecting a single subset
is trivial, the necessary and sufficient conditions are that the subset has at most
k elements and | X| < [3k/2]. Likewise, if [S1 U So U ...U Sy < k then G has a
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k-troika respecting S1,S2, ..., 94 precisely when |X| < |3k/2] since we may as
well view the union of all the subsets as a single subset.

4.1 k-Troikas Respecting Two Subsets

In this section we consider conditions under which a set X has a k-troika respect-
ing two subsets S7, S2. As mentioned above we assume that [S; U Sa| > k and
also wlog that any k-troika (A, B, C) respecting S1, 52 has S; C A and S, C B.
Note that if X has a k-troika respecting S, .52 then it has one where no element
of X belongs to all three parts. This motivates the following definition.

Definition 5. A k-tripartition of a set X is a partition of X into three (disjoint)
partition classes, such that the sum of sizes of any two partition classes is at most
k. A k-tripartition (T, T>, T3) of X respects Sy, Sa if S1NS2 C T5, 51 C T1NT5,
and So CToNT3.

Observation 2. If (11,15, T3) is a k-tripartition of X then (ThUT5, ToUTs, ToU
T1) is a k-troika of X, and the former respects Si,Ss iff the latter does. Con-
versely, if (A, B, C) is a k-troika of X with ANBNC = ) then (ANC, BNC, BNA)
is a k-tripartition of X, and the former respects S1,S2 iff the latter does (as-
suming |S1 U Sa| > k as discussed above).

In view of this observation, when it comes to k-troikas respecting two subsets
S1,S2 we need only consider those that arise from k-tripartitions. In Observation
[ we gave some obviously necessary conditions on |X]|,|S1[,|S2|. What other
necessary conditions do we have? Note that if |X| = 3k/2 and k is even then
only a ’'balanced’ k-tripartition with each partition class having k/2 vertices will
do. Since we must have S; NSy C T3 the case where |S1 N Sa| > k/2 therefore
implies a stronger size restriction on X. The best we could hope for is to set
T5 = 51N Sy and put k — |S; N Ss| vertices into each of Ty and T which yields:

Observation 3. If X has a k-troika respecting S1,S2 then |X| < |S1 N Sa| +
2(/€ — |Sl ﬁSQD =2k — |Sl n 52|

Note that we did not need to preface this observation by the condition ”if
|S1 N Sa| > k/2” since | X| < |3k/2] and |S; N Sz| < k/2 together imply | X| <
2k —|S1 N Sa|. As the next theorem shows, these obviously necessary conditions
are also sufficient (ONCAS).

Theorem 2. A set X has a k-troika respecting S1,S2 (assume |S1 U Sa| > k) if
and only if | X| < [3k/2], |S1] <k, [S2] <k and |X| < 2k — [S1N S

Corollary 1. The smallest k such that X has a k-troika respecting Sy, So is
max{|S1|, |S2], [2|X|/3], min{|S1 U Sa|, ([|X| + |S1 N S2|)/2]}} and can be com-
puted in constant time given |S1],]S2|,|X], |S1 N Sa|.

Note that |\S; U S| is easily found from |Si],]S2[, [S1 N Sz|. The two terms
inside the minimum covers the two cases where the resulting smallest k-troika
(A, B,C) has either S; USy; C A or S; C A and Sy C B, respectively. Let us
remark that for the interval graph algorithm the above Corollary suffices, since
we then only deal with 2 minimal separators for each maximal clique.
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4.2 k-Troikas Respecting q Subsets

We first consider the case of a set X respecting three subsets Si, 52,53 and
denote by L the elements of X not belonging to any subset and by U;,1 <i <3
the elements belonging to S; only: L = X \ (51 U S U S3), Uy = S1\ (S2 U S3),
Us; = 55 \ (Sl U Sg), Uz = S5 \ (SQ @] Sl) (see FigureIZI).

Fig. 2. Venn diagram of a set X consisting of the 6 circles S1, 52,53, Fr, L, Rr. If X
has k-troika (A, B, C) respecting S1, S2, 53 then we may as well require S1 NSz NS5 =
ANBNC. The sets A, B, C are illustrated using the dotted lines at 2, 6 and 10 o’clock,
e.g. A contains elements between 6 and 2 o’clock. Elements belonging to only one of
the S; sets are named U, and further partitioned in two parts by the dotted lines.

Lemma 3. X has a k-troika A,B,C with S; C A,S; C B,S3 C C < the
following system of linear equations in 5 non-negative integer variables a,b, c,d, e
has a solution:
a < |Ui;b < |Uzfie < |Usfid+ e < |L]
|S3| + Uz +a—b+d+e<k
|S1|+|Us| + |L|+b—c—e<k
[So| + U1+ L] —a+c—d<k

The only other possibility is that the union of two of the subsets is at most
k and in this case we may appeal to the conditions for respecting two subsets,
giving:

Lemma 4. X has a k-troika respecting S1,S2,S3 < it has one satisfying the
conditions of Lemmal3 or it has one where either S1 U Sa, S5 or S1 U S3,Ss or
So U S3, S1 satisfies the conditions of Lemma[2.

To respect ¢ > 3 subsets we simply note that since each subset must be
contained in one of the three parts of the k-troika, there must exist a partition
of the subsets into three classes such that every subset in the same class is
contained in the same part.
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Theorem 3. X has a k-troika respecting S1, 52, ..., Sq & there exists a partition
of {1,2,...,q} into three classes Py, Pa, Py such that by Lemma[f] X has a k-troika
respecting the 3 subsets Wy = Si, Wo = Uiep2 Si, W3 = Uiep3 S;.

Since a set of size ¢ has 37 partitions into three classes we have:

i€ Py

Corollary 2. In time O(poly(|X|)3%) we can decide if a set X has a k-troika
respecting subsets Si,.Ss, ..., 9.

5 Algorithms Computing Branchwidth

Throughout this section G is a chordal graph with m edges, n vertices, maximal
cliques {X1,X>,...X,}, having a clique-tree T with nodes {1,2,...,¢} such
that node i corresponds to maximal clique X;. Mazoit [13] conjectured that
branchwidth is computable in polynomial-time for any chordal graph given with
a clique tree having polynomially many subtrees. We will prove his conjecture,
but along the way we also give a fast algorithm for the case of interval graphs,
i.e. when the clique tree is a path. We first define a merged supergraph of G
which is obtained by taking certain sets of maximal cliques that are connected
in T and merging each set into a larger clique.

Definition 6. H is a merged supergraph of G if there exists a partition of
Tq into subtrees {Hy...Hp} (each node j € V(Tg) belongs to one and only
one subtree H;) such that the set of mazimal cliques in H is: {X] = Ujen, X, }
(1<i<h)

It is straightforward to see that a merged supergraph H of a chordal graph
G is chordal with clique-tree Ty built by making maximal cliques X! and X ]'
adjacent iff H; and H; contains two adjacent nodes of T, in other words T} is
a minor of T. We first show that to find the branchwidth k of G it suffices to
search for k-good chordal graphs among the merged supergraphs of G.

Lemma 5. Let G be a chordal graph of bw(G) = k and let H be a k-good chordal
supergraph of G. Let X be a maximal clique of G whose neighboring mazimal
cliques in Tg are X1,Xo...X;. If X does not have a k-troika respecting the
minimal separators in X, then there exists X; (1 <1 < 1) such that X; UX is a
clique in H.

Lemma 6. A chordal graph G has bw(G) < k < there exists a k-good chordal
graph H that is a merged supergraph of G.

Proof: <: By Theorem [I] the existence of a k-good chordal graph H that is a
merged supergraph of G implies that bw(G) < k.

=-: By induction on the number ¢ of maximal cliques of G. If G has at most
2 maximal cliques, then Lemma [l establishes the claim. Assume by induction
that the property holds for any chordal graph of branchwidth k£ having ¢ > 2
maximal cliques. If G is not a k-good chordal graph, then it has a maximal
clique X which does not have a k-troika respecting the minimal separators X; N
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X, XonX,...,X; N X, where X;...X; are the neighbors of X in the clique
tree T. Since G has branchwidth k it has some k-good chordal supergraph in
which, by Lemma [ some neighbor X, (1 < j <) has been merged with X
into a bigger clique. But then consider the merged supergraph of G arising from
merging exactly X and X; into one clique. It has ¢ — 1 maximal cliques and by
the induction hypothesis there is a k-good chordal graph H which is a merged
supergraph of G’ and therefore also of G. O

5.1 Branchwidth of Interval Graphs

A graph is an interval graph iff it enjoys a consecutive clique arrangement (cca)
that is an ordering of its maximal cliques C = (Xi,...X,) such that for any
vertex x, the maximal cliques containing x occur consecutively. From any lin-
ear time interval graph recognition algorithm such a cca can be computed (see
e.g. [3]). It is well known that for any 1 < @ < ¢, the set S; = X;_ 1 NX; is a
minimal separator. Let S; = Sg41 = () be dummy separators. Let us denote by
Xij = UiggiXg (1 <i < j < q) amerged set of consecutive cliques.

Given a cca Cqg = (X1 ...X,) of an interval graph G, a merged supergaph
H of G has caa Cy = (X{...X}) with h < g such that for any 1 < i < h,
X/ =Xy, withly =1,1; =r;_1 + 1 for i > 1 and r;, = ¢q. Note that a merged
supergraph of an interval graph is also an interval graph.

Our algorithm first computes for each pair 1 < i < j < g the smallest value
K3, j] such that if we merge the consecutive cliques X; ; into one big clique, it
will have a KTi, j]-troika respecting S; and S;41. Then by simple dynamic pro-
gramming it computes the best way of merging various such sets into a merged
supergraph, see FigureBl Incrementally, in step j, we optimize over the possible
cutoff points 1 < ¢ < j that define the 'rightmost’ merged set of cliques X; ;. We
prove correctness before considering the running time.

Pre-processing (see below) to find |Si|, | Xl |:S: N Syl | Xs,5]

For 1 <i<j<g+1 Do Compute KJi, j] by the formula of Corollary []
Al0]=0

For j =1 to ¢ Do A[j] = min{maz{Ali — 1], K[i,j]} : 0 < i < j}

Fig. 3. Computation of bw(G) = Alg] for interval graph G

Theorem 4. The computed value Alq] is the branchwidth of interval graph G.
Proof: Let us prove by induction that, for 1 < i < ¢, A[i] = bw(G;) where G;
is the graph induced by X, ; with an extra dummy vertex x; adjacent to S;yi.
By Corollary [ K[i, j] is the minimum such that set X; ; has a K[i, j]-troika
respecting S; and S;11. As A[1] = K[1,1], X; has a A[l]-troika respecting Ss.
Therefore {1} U S5 also has a A[1]-troika respecting Ss. Theorem [Ilimplies that
bw(G1) = A[l]. Assume that A[j—1] = bw(G;_1) for j > 1. Let H; be the merged
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supergraph of G; such that bw(G;) = bw(H;). Then by Lemma [ the maximal
clique X is contained in H; in a maximal clique X' = X, ; for some 1 < i < j.
It therefore follows from Lemmalf] that bw(G;) < max{Ali —1], K[i, j]} for any
1 < i < j and thus bw(G;) = A[j]. We proved that bw(G4) = Alg]. Since G,
is the union of two connected components, the first one being G itself and the
second an isolated vertex zq, bw(G) = bw(G,). O

By Corollary [l the computation of matrices K and A takes time O(q?) if the
values |S;|, | X;|, [SiNSj41], and | X, ;| can be accessed in O(1) time. We now show
that these values can be made available in array locations S[i], X [j], S[¢, 7], X [, 7]
by pre-processing stage. Any interval graph recognition algorithm [3] is able to
ouput in O(n+m) time the size X[i| = |X;| of any maximal clique and S[i] = |.9;|
of any minimal separator, and also for any vertex x the range [Le ft(x), Right(z)]
of consecutive cliques containing x. From those values, assuming for any 1 < ¢ <
q X[i,i] = |X;|, we have for i + 1 < j < q, X[i,j5] = X[i,7 — 1] + X[j] — S[j].
To find the values S[i, j] = |S; N Sj4+1] fast, we first compute the intermediary
g x g-matrix M such that for i < j, M[i, j] = [(S; NS;j)\ Sj+1]. Since |S; NS;| =
> o< [(Si M S5) \ Sjsal, the array Sli, j] can be computed as follows:

Initialize each entry of M|i, j] to 0;
For any S; (2 < i< q) and z € S; Do If Right(z) = j Then add 1 to M[i, j]
For i =2 to g Do | S[i,q] = M[i, q]

For j = g — 1 downto ¢« Do S[i, j] = S[i,j + 1] + M[i, j]

As the sum of the sizes of the minimal separators of an interval graph is
bounded by m, this preprocessing requires O(m +n + ¢?) time. We have shown:

Theorem 5. Branchwidth of an interval graph G = (V, E) on m edges, n ver-
tices and g < n mazimal cliques can be computed in time O(n +m + ¢?).

5.2 Clique Trees with Polynomial Number of Subtrees

For a subtree T” of a tree T we define its connection points as the pairs of vertices
a1by, agba, ..., apb, such that a;b; is an edge of T' with a; € T" and b, € T'\ T".
Assume clique tree T of chordal graph G has a polynomial number of subtrees
11,15, ..., Ty, ordered by size. Let T; have connection points a1bi, asba, ..., apby,.
Define the connection separators of T; to be S; = X, N Xy, for 1 < j < p, where
Xq,, Xp; are the maximal cliques of G' corresponding to tree nodes aj, b;. Define
K[i] to be True if V(T;) has a k-troika respecting the connection separators
S1, 82, ..., Sp of T;. The following algorithm will in polynomial time decide if G
has branchwidth at most k:

Theorem 6. For a chordal graph G given with a clique tree having a polyno-
mial number t of subtrees the above algorithm will in polynomial time decide if
branchwidth of G' is at most k.
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For i =1 to t Do Compute boolean K[i] by the system of equations of Theorem [3]

Al =T if K[{] =T or if 3e € E(T;) with Afe1] =T and Ales] =T
for subtrees Te,, T, of T; \ e; otherwise A[i] = F'

Fig. 4. Branchwidth of G < k iff A[t]=T
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