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Efficient RNS bases for Cryptography

Jean-Claude Bajard, Nicolas Meloni and Thomas Plantard
LIRMM UMR 5506, University of Montpellier 2, France,
{bajard,meloni,plantafd@®lirmm.fr

Abstract— Residue Number Systems (RNS) are useful for ~ The set(mj,mo,...,m,) of coprimes is generally
distributing large dynamic range computations over small called RNS basis.
modular rings, which allows the speed up of computations.  an obvious remark is that the main interest of the
This feature is well known, and already used in both DSP Residue Number Svst is to distribute int i
and cryptography. In this paper we deal with implementa- 'eSI ue Num gr ystems is 1o distribute m_ eger opera
tion for huge numbers like those used for ciphering as with tions on the residues values. Thus an operation with large
RSA or ECC on prime finite fields. Modular multiplication  integers is made on the residues which are small numbers
is the main operation of these protocols. We find very in- and where computations can be executed independently

teresting modular multiplication algorithms in RNS where 41 aach modulo allowing a complete parallelization of
the conversion from an RNS basis to another represents the calculus

the main part of the complexity. Hence, we propose in . .
this paper an analysis of the criteria for selecting some  One domain where those systems are helpful, is
bases giving efficient conversions. We conclude by giving cryptography [PP95] [BDK98]. The numbers used are
methods for constructing an efficient basis in function of huge, 160 bits for Elliptic Curves Cryptography (ECC)

tEe Ifize ?fhdiﬁerent parameters like ghe basicboperators, and 1024 bits for RSA. These systems offer a good
the key of the cryptosystem, etc. Residue Number Systems . . .

(RNS) are useful for distributing large dynamic range alternative to implemente parallel computing.
computations over small modular rings, which allows the Addition and multiplication are easily parallelizable
speed up of computations. This feature is well known, and Wwith RNS. But some operations, like division [Gam89]
already used in both DSP and cryptography. In this paper or modular multiplication[PP95], [BDKO01], [BI04], need
we deal with implementation for huge numbers like those ¢gnversions from RNS to an other RNS basis. Those
used for ciphering as with RSA or ECC on prime finite : . .

fields. Modular multiplication is the main operation of these OPer"?‘“O”S have bgen stutﬁed in [BPOA4] where S(_)me
protocols. We find very interesting modular multiplication ~ Criteria for RNS basis was given. We propose to take into
algorithms in RNS where the conversion from an RNS account in this approach, the basic modulo algorithms
basis to another represents the main part of the complexity. used on a RNS operator on one modulo.

Hence, we propose in this paper an analysis of the criteria  The organization of the paper is the following. We

for selecting some bases giving efficient conversions. Weg-; nresent conversion algorithms from RNS to RNS
conclude by giving methods for constructing an efficient ’

basis in function of the size of different parameters like analyzing them through the point of view of the RNS
the basic operators, the key of the cryptosystem, etc. -  bases. Then, we give algorithms for addition and multi-

Index Terms—RNS. MRS. modular reduction. division Plication implemented in the basic modulo operators. We
by a constant, bases conversion.RNS, MRS, modular re- Show that the condition for efficient basic operators are
duction, division by a constant, bases conversion.- compliant to the criteria useful for the bases conversion

in RNS.

. INTRODUCTION Il. CONVERSION FROMRNSTO RNS

The Residue Number Systems (RNS) are based on therhere are two main methods for conversion: one

very old Chinese Remainder Theorem (CRT) [Knu8l§irectly based on the CRT, and one which uses an aux-

[Gar59]. This theorem can be written as following: jjiary representation named Mixed Radix Representation
Theorem 1 (Chinese Remainder TheoremW)le con- (MRS).

sider a set of coprime numbers We note B = (my,ma,...,m,) and B =
(m1,ma,...,m,) . We noteM = T[], m; If we (i1, M, . . ., 771, two RNS bases.

consider(xy,xs, ..., x,) of integer such that; < m;.

Then there exits an uniqu& which verifies: A. With the Chinese Remainder Theorem

0<X <M and 1) In the proof of the Chinese Remainder Theorem we
z; = X mod m; = |X|,, for1<i<n. show, that the system given by (1) has a solut®dsuch



that: I11. ALGORITHMS FOR BASIC MODULO OPERATORS

X = Z‘xl | M; |m ‘ Mi (2) All the RNS complexities are given in number of
i=1 M basic modulo operations on small moduti; (or m;).
It is clear that costs of RNS algorithms depends also
Where, M; = — for 1 <i <n and|M,],,} represents of the efficiency of such operators. We present in this
the inverse ofM modulom; . section the addition and the multiplication modulg
The conversion fromB to B, is obtained from the (or m;). We will see in the next section that another
equation (2) which becomes fgre {1,...,n}: operator; a multiplier by an inverse, could be useful for

the conversions.
In this section we consider that the moduli of the RNS
i bases used are represented with the same nuiioér
(3) digits. We note, fori = 1..n, m; = 2* — ¢; (resp.
M— m; = 2¥ — ¢ ). For the moment; is just a number
' lower than2*, we will show that for certain values the
The main drawbacks of this approach are due rperators could be very efficient.
two elements: first the difficulty to evaluate [SK89]
[HP94], [PP95] then the random aspect of the constaRt

~ ol

n
-1
= > o L]l
i=1 "

mj

wherea is such thatX + oM = Z ):cl |M;|

m;

factors|M; \m and [ M/ in (3). The addition
We consider two integets andb such thal) < a,b <
B. Using a mixed radix system m; and their suns that we want to reduce moduta;.
Like for RNS, we define as a MRS basis a set of We have the following identities:
integers(ml,mQ, ...,my) and an integeR’, inferior to a+b=5=52"+50=s1m; + ;51 + 5o
M, is represented byx'y,...,2',), with 2/; < m; for
i €{1,...,n}, such that: So considering the reduction modutln; we obtain

a+b = c¢;s1+s0 (mod m;). Furthermore, a8 < a,b <
m;, we know thata + b < 2m; — 1, in other words
A naive approach [ST67] consists in applying to the RN&+b < 2F 4 (2% —2¢; —1). We can obviously deduce that
representation ok , the extraction of a residue and thes; < 1. It means that only one reduction by; could be
division by the radix (which is different at each step)needed. We note that we have two possible result$
We notem; | the inverse ofin; modulom; such that: if this sum is lower thann;, or elsea + b+ ¢ — 2. We
m;. rrf.1 = 1 (mod m;). Thus the conversion can beremark that this second possibility implies that b+ ¢
descrlbed by the following equations: is greater tha®. Thus we only have to test the overflow
bit to know which is the right solution.

The addition modulom; is given by the following

X =21+2omi+2'smimo+.. 2 ymy..m, 1 (4)

ml = 1 mod my
xhy = (z9 — )My o mod my
/

algorithm
zy = ((v3 — 331)m1:1’, xz)mz 3 mod mg g -
Algorithm 1: modadda, b, m;)
_ Data: 0 <a,b<m;
7y = ((on —@)myy oo =, )my Ty , mod & Results—a+bmodp
There is another approach [Knu81] where we factorize do —a+b;
dl — dO + Cll

all the inverses in (5). But in this case we loose all the
possibilities to parallelize. k.
When the MRS representation is known we apply the | s —di mod 2%
expression (4) to each modulo: else .
| s« do;
z; = X mod m; end
=2/t + mi(a's +ma(2's + ... + mp_12'y)...)| My
(6) To resume algorithm 1, the moduli addition is equiv-
We will see that, with the conversion using MRS, ifalent to two additions, the comparisalh > 2% corre-
is possible to use some properties of the elements of thgonds to the overflow which is used for selecting the
two bases to reduce the cost of this operation. result.

if dy > 2% then




B. The multiplication a complexity equivalent to one plus three quarters of a

As for the addition, the operands aseand b such k-bits multiplier. If we noteM (k) the complexity of a
that0 < a,b < m,;. We notep = a x b the product k-bits multiplier, the obtained complexity for the modulo

of those two values, and we will redugemodulom,. OPerator isg M (k).

For this, we decomposg such thatp = p;2* + py = The conclusion of this section is that with; = 2% —c¢;

p1mi + ¢ip1 + po. Thus,a x b = ¢ipy + po (mod m;).  Such thate; < 2! and1 <t < (k—1)/2, we assume

We notep’ = ¢;p1 + po that addition and multiplication modula; are efficient.
The condition) < a,b < m;, gives thatp < m? —1 <

22k andp; < 2*. Now, if we suppose that; < 2¢, then IV. A NEW USEFUL ALGORITHM FOR THE BASIC

we obtain with this first reduction’ = ¢;p1 + po < MODULAR OPERATORS

28 (2" — 1) + 2F =2+ Most of the studies on RNS propose to use a basis
A S,econld ;edugtlon is needed. We decomp@such |ike {2* — 1,2% 2¥ 4 1}. This kind of basis is very

thatp’ = p12" + p. Like previously, we obtaim x b = yseful in digital signal processing where the values are

cipy + po (mod m;). We notep” = ¢;p} + pj, and we pounded and not too huge. The algorithms proposed in
remark immediately that , g8 < 2"*', p; < 2'. NOW the literature [Pie94], [CN99] use generally the CRT
if we consider that2t < k — 1 then we assume thatapproach. But it is not clear that it is the best choice.
p" < 2% +2% < 2m,. Thus we just need to redug¢  Conversion using Mixed Radix System (MRS) are often
like in the addition algorithm to find the final result. 4 good approach even for a three elements bgis-
Forl <t < (k—1)/2 we have the following algorithm 1 ok ok | 1}. If we observe the equation (5) we can

for the moduli multiplication operator. considerm; = 2F + 1, my = 2% — 1, andms = 2%,
Algorithm 2: modproda, b, m;) then , sincem; mod ms = 2, m; mod mz = 1 and
Data 0<a,b<m; my mod mg = —1, we deduce thatnyj = 21,
with m; = 2% — ¢; and¢; < 2¢ and mi3 = 1 andm; 3 = —1. Thus the conversion from
1<t<(k-1)/2 binary to MRS can be reduced to one shift and four
Result r = a x bmod p additions, then conversion to binary needs at most two
p—axb shifts and four additions.
p1 — p =2k py — p mod 2F; Now if we consider huge numbers like those used
' — ¢ip1 + po; in cryptography, then we show in this section, that the
p) — p' + 2%, pj) « p’ mod 2%; use of MSR can be efficient for some RNS bases. Like
p’ — cipl + ph; in the previous section we consider that for= 1...n,
p—p' +ci; m; = 28 —¢; (resp.m; = 2% — ¢ ) with 0 < ¢; < 2
if p> 2k then (resp.0 < ¢ < 2 and1 < ¢t < (k—1)/2. The
| 7« p mod 2%; conversion via MRS use the equations (5) and (6).We
else find in them two operations: modular multiplication by
| r—p" the modular inverse of a small number for (5) and
end modular multiplication by a small number for (6).

This algorithm gives the modular product with on
multiplication of two k-bits integers, one multiplication
of a k-bits number by a&-bits constant, one multiplica-
tion of a ¢-bits number by a-bits constant, and three  In fact, in the equations (5), we have to multiply by
additions of k-bits numbers. The operations2® and |™mjl,,, for 1 < j < i < n. Considering thatm; =
mod2* are pure register handling. 2k — ¢; we have|m;|.)} = |e; —¢;|;.} . We know that

If, we consider that a multiplier of &-bits number by —2' < ¢; —¢; < 2'. Thus, asl <t < (k—1)/2, we can
at-bits constant is equivalent to the half of a multiplieconsiderc; — ¢; like a small value represented orbits.
of two k-bits integers, and a multiplier oftabits number The sign is not a real problem but to simplify the study
by at-bits constant is equivalent to the quarter of a multiwe assume that the elements of the basis are decreasing
plier of two k-bits integers, (we note that here we did nobrdered,m; > m, for 1 <j <i <n.
take into account the constant operands which could havelo resume, the main operations in (5) are of the form
some properties useful for improving the complexityy = x  |d|;,} mod m wherex and m are two k-bits
then, the multiplication module; (or ;) is done with integers andl a small value (ie bits number).

e S .
A. Modular multiplication by a modular inverse of a
small number



P. Montgomery [Mon85] has proposed a reduction (k — §)-bits numbers, one addition of twébits
where an inverse factor appears in the result. We propose integers and one addition.
to use it to computey = z * |d|,! mod m. Thus, we
will construct a multiple of the valud by adding tox
a multiple of m, this multiple of d is equivalent tox
modulom. Then we divide it byd, which is an exact y =THm g4 g,
operation, and we obtaip a reduced value lower than ”“%

m, which is equivalent tac * |d|,.1 modulom.

In other words, we must construgtsuch thaty < d gpq
andx + pum is a multiple ofd, then, as the division of
x + pum by d is exact, we obtain the expected valye T4 puxm _

This evaluation is done with the algorithm 3 where ¥ = —— ;—— <m SINCéx <m andu <d
scdi(z, d) returns(r,, ¢,.) which are the remainder and
the quotient of the euclidian division by (such that:
T =1y + g, Xx dwith0 < r, < d). The procedure
scdi(z, d) is described in the algorithra?.

We can easily verify that:

Hence, as the division is exaat+4 1 x m is a multiple
of d, we gety = = x |d|7_n1 mod m.
We note that, for this algorithm 3, some values are

Algorithm 3: : moddiv(x,d,m) pre-computed, and need to be stored. For each value of
Data: two given integersl, m with 0 < d <m d, we will have to storer,,, ¢, and I,,, and this for
andgcd(m,d) =1 each elementn; of the basis. Thus taking into account
and an integer, 0 <z <m thatd < 2¢ and the equation (5), the size of the tables
Precomputed: 7y, g, and I, such that: needed is equal t&5 x (k + 2t) bits’.

m = ry, + qnd With r,,, < d and

Iy, = (—=m)~! mod d

Result an integery with y = z x |d|_." mod m
1 (rg,qs) < scdi(z, d);

1) the procedure scdiv of division by a small constant
d: The procedure scdiv evaluates the remaingdeand
the quotienty, of the euclidian division of an integer
) by a small given integet.
2 (u,.) < bardi(r, x I,,,d); Y _ g g :
RN As d is known, we are in a context close to the one
3 v (Ted 10X Tm) ; f 's algorithm [Barg6]. Wi dapt thi
4 (0, p) — bardiv(z, d) ; o] Ba_rretts algorithm [Bar86]. We propose to adapt this
algorithm to our purpose.

The main idea of the Barrett algorithm is based on

Now, we analyze the complexity of this algorithm steffinding the quotient; of the division byd for x < 2%
by step, we not@’~! < d < 2% < 2t using the following equation:

5Y<—p+qr+ 1 XGqm;

1) r, andq, are the remainder and the quotient of the
euclidian division of ak-bits integerz by a small Q%J Lz%lj)
given integerd (0-bits number) . For this operation qg=
we call a specific procedure scdiv d) which will
be described below.

2) r, and I,,, are smaller thani, so n is obtained 25
with a classical Barret modular reduction [Barg6] % | is a pre-computed value, thus we just have one
on a24-bits number, applied to the product x mutiplication of two (6 + 1)-bits numbers, other oper-
I,,. This supposes also that we will sto é;lJ ations are truncations, finding can need one or two

for each possible value of. ;i is the remainder Substraction.

St e, with,e=0,1,2

obtained with bardi{r, x I,,,,d) The algorithmbardiv(z,d) returns(q,r) such that

3) v is evaluated with one product of &bits by a (E3IE=3)) il
(k — 6)-bits numbers and one addition ofkabits ¢ = 23F1 andr = x —dg, for o < 2°°
number with aj-bits one. and 25! < d < 29,

4) p is obtained with bardiv which evaluates the
qguotient of the euclidian division of a 20-bits

int?ger by a giverd-bits integerd. . 1it is possible to reduce those tables B % (k +t) if we
5) y is the result of one product of &bits by a consider that bits are enough to store,, and g,



Algorithm 4: : bardiv(z, d)

AW N R

Data: z < 2% and2°~' <d <29

. 220
Precomputed: | =-

Result (r,¢) such thatr = z — dgq < 3d
25

0 (|2 ] L))

¢ =[]

re—x—qd (r<3d);

while r > d do

‘ re—r—d,
q—q+1;

end

digits of the remainder and the quotient.

The complexity analysis gives:

1) one product of twdd + 1)-bits numbers,

2) one shift,

3) one product of(é + 1)-bits numbers, and one

subtraction of(d 4 2)-bits numbers.

4) at most two subtractions @b)-bits numbers,

consider that) = ZZ(.L%FQ) Q4(2%)!, where @/, is the
value of the variable)’ at thei*" step of algorithm 5.
Then we notice that computing = 252%172)(@ mod
29)(2%) andU = EZ(L%]_Q)(Q; +2%)(2%)% can be done
without any additions ( but only with shifts ) because
(Q% mod 2°) and(Q/, = 2%) ared-bits integers. ALY =
(Q% mod 2°) + (Q} +2°)(27), we haveQ = L+U(2%).
So  can be computed with only one addition.

Finally the cost ofscdivis [%1 — 1 call to bardiv and
one k-bits addition.

Now we can evaluate the complexity of a call to
moddiv We begin by a call tascdivwith two integers,
one ofk-bits and one o6-bits. We also calbardiv twice
to reduce &4-bits number by @-bits number. Moreover,
we have to compute two multiplication éfbits number
and one multiplication of a number 6fbits by a number
of k£ — ¢ + 1-bits. At last, we compute one addition of
20-bits , one ofé + 1-bits and two ofk-bits.

If we setl = [%], we can evaluate the complexity of

Now in algorithm 3 we need to divide a k-bits  moddivto (I + 1) multiplications and(4l + 1) additions
integer byd a -bits number. So, bardiv cannot be usegs s-pits number. We also cabardiv (I +1) times, but
directly. We propose the algorithm 5 which consider thg e consider that the cost dfardiv can be evaluated to
values written in radix2’ and uses bardiv to find the o §-bits multiplications and fous-bits additions, we

Algorithm 5

sediv(z, d)

Division by a small constant

A WD P

Data: two integerse < 2 and2°~! < d < 29
Result two integersR, @ with R+ Qd = x and

0<R<d
R «— x;
Q0
for i — [%] —2to 0 do
R+ R+ (2°)% R« Rmod (2°)F
(R, Q") « bardiv(R',d);
R— R(2) +R;
Q= Q(2) +Q;

end

Analysis of the complexity of algorithm 5:
1) we just consider thak is split into two parts, the

260 upper bits and théy lower bits.

2) we callbardivto make a reduction oR’ (a 24-bits
number) byd (a d-bits constant), and to recovéY
which is the quotient of this reduction.

3) we rebuildR with the reduced upper paR'. Since

R’ is on é-bits, we just shiftR’.

have a final complexity of3/ + 3) multiplications and
(81 + 5) additions.

So our approach to make a multiplcation by the
inverse of a small number is abo@8! + 3) d-bits
multiplications. Yet, the classical way to compute a
multiplcation by an inverse is to precompute the inverse
and to make a modular multiplication. If we use Barrett’s
algorithm to make the modular multiplication, we obtain
a 212 + 41 6-bits multiplications complexity.

B. Analysis of this conversion from RNS to RNS via MRS

To make the whole conversion we have in fact two
conversions to do.

First we have a RNS to MRS conversion, made of
@ steps. Each step being composed of one call
to a k-bits modaddand one multiplication of &:-bits
numbers by a inverse of &bits number usingnoddiv

Secondly we have a MRS to RNS conversion, made of
n(n—1) steps. Each steps being composed of a modular
multiplication of at-bits number by &-bits number and
a call to ak-bits modadd If we look at the progress of
the algorithm of the modular multiplication we have one

multiplication of ak-bits number by &-bits number, one

4) we build @ with the quotient of the reduction of yytiplication of at-bits number by a@-bits number and

R'.

We have to notice thaf)’ could be ond + 1-bits. In

two k-bits additions.
We can simplify the complexity of the RNS to RNS

order to avoid making an addition on each loop, we caronversion tow@l + 5) t-bits multiplications and



%(2017%) t-bits additions. In table | we recapitulate99, 105,107, 113,117,129, 135, 143,149, 153, 159, 167,

the different compexities of our algorithms ( we just give 68, 173,185, 189, 195] andm; = 232 — ¢; whereg; is
the number oft-bits multiplications ). We compare ourin [285,297,299, 303, 309, 315, 323, 327, 329, 339, 353,
method to the general case where thgs are choosen 359, 363, 365, 369, 383, 387, 395,413,419, 429,437, 453,

without any special properties. 465, 467,479,483, 485,489,497, 507,509]. So we have
_ ' dmae = 8 and the cost of a multiplication by an inverse

Operation | _ Our method Classic way is about15 8-bits multiplications.

modprod Pri+1 212 + 41

moddiv 31+3 202 + 41

RNS-MRS| 3n(n—1)(14+1) | n(n—1)(*+20) VI. CONCLUSION

MRS-RNS| n(n—1)(I+1) | n(n—1)(202 + 4i) ) . ) )
RNS-RNS| Sn(n—1)(1+1) | 3n(n—1)(12 +2]) We have seen in this paper that choosing successive

coprime numbers can allow to construct efficient RNS
implementations. As all the values of an RNS bases are
close, we can choose one reference element and define
the others by their differences to it, thus we just use
small values. With this choice of moduli, the storage
is reduced tonlogs(t) + k bits for the m,;.We also
have proposed some specific algorithms, wich take into
) ] account our choice of moduli, in order to obtain efficient
_Now the problem is to find RNS bases such that thogé\s o RNS base conversions. Moreover, one should
differences are minimal. To simplify this study we camqice that it is easy to find such bases for cryptographic
consider that the two bases are ordered such that>  gppjications, as shown in table II. At last, we do not have
My > oo > My > My > Mg > ... > M. ThUS We Set tauen into account the possibility of selecting random-
Omaz the maximum number of bits to represent the May g pases [BILT04] which is interesting in cryptography.

of my —my, andm; —my,. So, the question is: What | is 3 new very interesting use of RNS, which needs to
is the minimal interval of k-bits integers, which containg)s siudied in future works.

2n coprime numbers? Or, how many coprimes can we
get in an interval of sizé,,,,.?
In the table I, we give thé,,,, one have to use on

16, 32 or 64-bits systems, in order to obtain RNS basifBarg6] P. Barrett. Implementing the rivest, shamir and adleman

for classic crvptoaraphic lenaths. public key encryption algorithm on a standard digital pro-
yptograp 9 cessor. In A. M. Odlyzko, editoAdvances in Cryptology,

Proceedings of Crypto'86pages 311-323, 1986.

TABLE |
COMPARAISON OF OUR METHOD AND THE CLASSIC WAY FOR THE
COST OF THE DIFFERENTRNS OPERATIONS

V. CONSTRUCTION OF EFFICIENTRNS BASES

REFERENCES

Cryptographic Tength [BDK98] J.-C. Bajard, L.-S. Didier, and P. Komerup. An RNS
160 | 192 | 320 | 1024 montgomery modular multiplication algorithfEEE Trans-
16| 6 6 7 10 actions on Computersi7(7):766—776, 1998.
k|32 4 5 6 8 [BDKO1] J.-C. Bajard, L.-S. Didier, and P. Kornerup. Modular mul-
64 - 3 5 v tiplication and base extension in residue number systems.
TABLE II In L. Ciminiera N. Burgess, editod,5th IEEE Symposium
on Computer Arithmetjgpages 59-65, Vail Colorado, USA,
DIFFERENT §ynqe NEEDED TO USE DIFFERENT SYSTEMS AND 2001. IEEE Computer Society Press.
CRYPTOGRAPHIC LENGTHS [BI0O4]  J.-C. Bajard and L. Imbert. A full rns implementation of rsa.

IEEE Transactions on Computers3(6):769-774, 2004.
[BILTO4] J.-C. Bajard, L. Imbert, P.LY. Liardet, and Y. Teglia. Leak
. . resistant arithmetic. In L. Ciminiera N. Burgess, editor,
Example 1:1f we compute on a32-bits system and CHES 2004pages 59-65, Boston MA, USA, 2004. LNCS
if we want to execute an ECC ob60 bits, we can Kluwer.
use the two bases build with,; = 232 _ ¢; where [BPO4] J.C. Bajard and T. Plantard. Rns bases and conversions.
. — 39 ~ ~ . In SPIE Annual Meeting 2004, Advenced Signal Processing
¢ 1S 1In [3a5795 15, 17] andm; = 2°° — ¢; whereg; is Algorithms, Architectures, and Implementation Xpages
in [19,21,23,27,29]. So we haved,,,, = 4 and the 60-69, 2-6 August 2004 Denver, Colorado, USA, 2004.

cost of a multipliciation by an inverse is abaiit 4-bits [CN99] Richard Conway and John Nelson. Fast converter for 3
moduli rns using new property of crtiEEE Transactions

multiplications. on Computers48(8):852—860, 1999.
Example 2:If we compute on &32-bits system and [Gam89] D. Gamberger. Incompletely specified numbers in the
if we want to execute an RSA oh024 bits, we can residue number system - definition and applications. In
. . 32 M. D. Ercegovac and E. Swartzlander, editodth IEEE
use the two bases build with; = 2°¢ — ¢; wherec; Symposium on Computer Arithmetgages 210-215, Santa
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