
HAL Id: lirmm-00106470
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106470v1

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient RNS Bases for Cryptography
Jean-Claude Bajard, Nicolas Méloni, Thomas Plantard

To cite this version:
Jean-Claude Bajard, Nicolas Méloni, Thomas Plantard. Efficient RNS Bases for Cryptography. 17th
IMACS World Congress Scientific Computation, Applied Mathematics and Simulation, Jul 2005, Paris,
France. �lirmm-00106470�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106470v1
https://hal.archives-ouvertes.fr

1

Efficient RNS bases for Cryptography
Jean-Claude Bajard, Nicolas Meloni and Thomas Plantard
LIRMM UMR 5506, University of Montpellier 2, France,

{bajard,meloni,plantard}@lirmm.fr

Abstract— Residue Number Systems (RNS) are useful for
distributing large dynamic range computations over small
modular rings, which allows the speed up of computations.
This feature is well known, and already used in both DSP
and cryptography. In this paper we deal with implementa-
tion for huge numbers like those used for ciphering as with
RSA or ECC on prime finite fields. Modular multiplication
is the main operation of these protocols. We find very in-
teresting modular multiplication algorithms in RNS where
the conversion from an RNS basis to another represents
the main part of the complexity. Hence, we propose in
this paper an analysis of the criteria for selecting some
bases giving efficient conversions. We conclude by giving
methods for constructing an efficient basis in function of
the size of different parameters like the basic operators,
the key of the cryptosystem, etc. Residue Number Systems
(RNS) are useful for distributing large dynamic range
computations over small modular rings, which allows the
speed up of computations. This feature is well known, and
already used in both DSP and cryptography. In this paper
we deal with implementation for huge numbers like those
used for ciphering as with RSA or ECC on prime finite
fields. Modular multiplication is the main operation of these
protocols. We find very interesting modular multiplication
algorithms in RNS where the conversion from an RNS
basis to another represents the main part of the complexity.
Hence, we propose in this paper an analysis of the criteria
for selecting some bases giving efficient conversions. We
conclude by giving methods for constructing an efficient
basis in function of the size of different parameters like
the basic operators, the key of the cryptosystem, etc. -

Index Terms— RNS, MRS, modular reduction, division
by a constant, bases conversion.RNS, MRS, modular re-
duction, division by a constant, bases conversion.-

I. I NTRODUCTION

The Residue Number Systems (RNS) are based on the
very old Chinese Remainder Theorem (CRT) [Knu81]
[Gar59]. This theorem can be written as following:

Theorem 1 (Chinese Remainder Theorem):We con-
sider a set of coprime numbers
(m1,m2, . . . ,mn) . We note M =

∏n
i=1 mi, If we

consider(x1, x2, . . . , xn) of integer such thatxi < mi.
Then there exits an uniqueX which verifies:

0 ≤ X < M and
xi = X mod mi = |X|mi

for 1 ≤ i ≤ n.
(1)

The set(m1,m2, . . . ,mn) of coprimes is generally
called RNS basis.

An obvious remark is that the main interest of the
Residue Number Systems is to distribute integer opera-
tions on the residues values. Thus an operation with large
integers is made on the residues which are small numbers
and where computations can be executed independently
for each modulo allowing a complete parallelization of
the calculus.

One domain where those systems are helpful, is
cryptography [PP95] [BDK98]. The numbers used are
huge,160 bits for Elliptic Curves Cryptography (ECC)
and 1024 bits for RSA. These systems offer a good
alternative to implemente parallel computing.

Addition and multiplication are easily parallelizable
with RNS. But some operations, like division [Gam89]
or modular multiplication[PP95], [BDK01], [BI04], need
conversions from RNS to an other RNS basis. Those
operations have been studied in [BP04] where some
criteria for RNS basis was given. We propose to take into
account in this approach, the basic modulo algorithms
used on a RNS operator on one modulo.

The organization of the paper is the following. We
first present conversion algorithms from RNS to RNS,
analyzing them through the point of view of the RNS
bases. Then, we give algorithms for addition and multi-
plication implemented in the basic modulo operators. We
show that the condition for efficient basic operators are
compliant to the criteria useful for the bases conversion
in RNS.

II. CONVERSION FROMRNS TO RNS

There are two main methods for conversion: one
directly based on the CRT, and one which uses an aux-
iliary representation named Mixed Radix Representation
(MRS).

We note B = (m1,m2, . . . ,mn) and B̃ =
(m̃1, m̃2, . . . , m̃n) two RNS bases.

A. With the Chinese Remainder Theorem

In the proof of the Chinese Remainder Theorem we
show, that the system given by (1) has a solutionX such

2

that:

X =

∣∣∣∣∣
n∑

i=1

∣∣∣x1 |Mi|−1
mi

∣∣∣
mi

Mi

∣∣∣∣∣
M

(2)

Where,Mi =
M

mi
for 1 ≤ i ≤ n and |Mi|−1

mi
represents

the inverse ofMi modulomi .
The conversion fromB to B̃, is obtained from the

equation (2) which becomes forj ∈ {1, ..., n}:

X =

∣∣∣∣∣
n∑

i=1

∣∣∣x1 |Mi|−1
mi

∣∣∣
mi

|Mi|fmj

∣∣∣∣∣ fmj

−
∣∣∣α |M |fmj

∣∣∣ fmj

(3)

whereα is such that:X +αM =
n∑

i=1

∣∣∣x1 |Mi|−1
mi

∣∣∣
mi

Mi

The main drawbacks of this approach are due to
two elements: first the difficulty to evaluateα [SK89]
[HP94], [PP95], then the random aspect of the constant
factors|Mi|−1

mi
and |Mi|fmj

in (3).

B. Using a mixed radix system

Like for RNS, we define as a MRS basis a set of
integers(m1,m2, . . . ,mn) and an integerX, inferior to
M , is represented by(x′1, ..., x′n), with x′i < mi for
i ∈ {1, ..., n}, such that:

X = x′1+x′2m1+x′3m1m2+...+x′nm1...mn−1 (4)

A naive approach [ST67] consists in applying to the RNS
representation ofX , the extraction of a residue and the
division by the radix (which is different at each step).
We notem−1

i,j the inverse ofmi modulo mj such that:
mi.m

−1
i,j ≡ 1 (mod mj). Thus the conversion can be

described by the following equations:

x′1 = x1 mod m1

x′2 = (x2 − x′1)m
−1
1,2 mod m2

x′3 = ((x3 − x′1)m
−1
1,3 − x′2)m

−1
2,3 mod m3

...
x′n = (.(xn − x′1)m

−1
1,n · · · − x′n−1)m

−1
n−1,n mod mn

(5)
There is another approach [Knu81] where we factorize
all the inverses in (5). But in this case we loose all the
possibilities to parallelize.

When the MRS representation is known we apply the
expression (4) to each modulo:

x̃j = X mod m̃j

x̃j = |x′1 + m1(x′2 + m2(x′3 + ... + mn−1x
′
n)...)| m̃j

(6)
We will see that, with the conversion using MRS, it

is possible to use some properties of the elements of the
two bases to reduce the cost of this operation.

III. A LGORITHMS FOR BASIC MODULO OPERATORS

All the RNS complexities are given in number of
basic modulo operations on small modulimi (or m̃j).
It is clear that costs of RNS algorithms depends also
of the efficiency of such operators. We present in this
section the addition and the multiplication modulomi

(or m̃j). We will see in the next section that another
operator; a multiplier by an inverse, could be useful for
the conversions.

In this section we consider that the moduli of the RNS
bases used are represented with the same numberk of
digits. We note, fori = 1...n, mi = 2k − ci (resp.
m̃i = 2k − c̃i). For the momentci is just a number
lower than2k, we will show that for certain values the
operators could be very efficient.

A. The addition

We consider two integersa andb such that0 ≤ a, b <
mi and their sums that we want to reduce modulomi.

We have the following identities:

a + b = s = s12k + s0 = s1mi + cis1 + s0

So considering the reduction modulomi we obtain
a+b ≡ cis1+s0 (mod mi). Furthermore, as0 ≤ a, b <
mi, we know thata + b < 2mi − 1, in other words
a+b < 2k+(2k−2ci−1). We can obviously deduce that
s1 ≤ 1. It means that only one reduction bymi could be
needed. We note that we have two possible resultsa+ b
if this sum is lower thanmi, or elsea + b + c− 2k. We
remark that this second possibility implies thata+ b+ c
is greater than2k. Thus we only have to test the overflow
bit to know which is the right solution.

The addition modulomi is given by the following
algorithm

Algorithm 1 : modadd(a, b, mi)
Data: 0 ≤ a, b < mi

Result: s = a + b mod p
d0 ← a + b;
d1 ← d0 + ci;
if d1 ≥ 2k then

s← d1 mod 2k;
else

s← d0;
end

To resume algorithm 1, the moduli addition is equiv-
alent to two additions, the comparisond1 > 2k corre-
sponds to the overflow which is used for selecting the
result.

3

B. The multiplication

As for the addition, the operands area and b such
that 0 ≤ a, b < mi. We notep = a × b the product
of those two values, and we will reducep modulo mi.
For this, we decomposep such that:p = p12k + p0 =
p1mi + cip1 + p0. Thus,a× b ≡ cip1 + p0 (mod mi).
We notep′ = cip1 + p0

The condition0 ≤ a, b < mi, gives thatp < m2
1−1 <

22k andp1 < 2k. Now, if we suppose thatci < 2t, then
we obtain with this first reductionp′ = cip1 + p0 <
2k(2t − 1) + 2k = 2k+t.

A second reduction is needed. We decomposep′ such
that p′ = p′12

k + p′0. Like previously, we obtaina× b ≡
cip

′
1 + p′0 (mod mi). We notep′′ = cip

′
1 + p′0 and we

remark immediately that , asp′ < 2k+t, p′1 < 2t. Now
if we consider that2t < k − 1 then we assume that
p′′ < 2k + 22t < 2mi. Thus we just need to reducep′′

like in the addition algorithm to find the final result.
For1 < t < (k−1)/2 we have the following algorithm

for the moduli multiplication operator.

Algorithm 2 : modprod(a, b, mi)
Data: 0 ≤ a, b < mi

with mi = 2k − ci andci < 2t and
1 < t < (k − 1)/2
Result: r = a× b mod p
p← a× b;
p1 ← p÷ 2k; p0 ← p mod 2k;
p′ ← cip1 + p0;
p′1 ← p′ ÷ 2k; p′0 ← p′ mod 2k;
p′′ ← cip

′
1 + p′0;

ρ← p′′ + ci;
if ρ ≥ 2k then

r ← ρ mod 2k;
else

r ← p′′;
end

This algorithm gives the modular product with one
multiplication of twok-bits integers, one multiplication
of a k-bits number by at-bits constant, one multiplica-
tion of a t-bits number by at-bits constant, and three
additions ofk-bits numbers. The operations÷2k and
mod2k are pure register handling.

If, we consider that a multiplier of ak-bits number by
a t-bits constant is equivalent to the half of a multiplier
of two k-bits integers, and a multiplier of at-bits number
by at-bits constant is equivalent to the quarter of a multi-
plier of twok-bits integers, (we note that here we did not
take into account the constant operands which could have
some properties useful for improving the complexity)
then, the multiplication modulomi (or m̃j) is done with

a complexity equivalent to one plus three quarters of a
k-bits multiplier. If we noteM(k) the complexity of a
k-bits multiplier, the obtained complexity for the modulo
operator is7

4M(k).
The conclusion of this section is that withmi = 2k−ci

such thatci < 2t and 1 < t < (k − 1)/2, we assume
that addition and multiplication modulomi are efficient.

IV. A NEW USEFUL ALGORITHM FOR THE BASIC

MODULAR OPERATORS

Most of the studies on RNS propose to use a basis
like {2k − 1, 2k, 2k + 1}. This kind of basis is very
useful in digital signal processing where the values are
bounded and not too huge. The algorithms proposed in
the literature [Pie94], [CN99] use generally the CRT
approach. But it is not clear that it is the best choice.
Conversion using Mixed Radix System (MRS) are often
a good approach even for a three elements basis{2k −
1, 2k, 2k + 1}. If we observe the equation (5) we can
considerm1 = 2k + 1, m2 = 2k − 1, and m3 = 2k,
then , sincem1 mod m2 = 2, m1 mod m3 = 1 and
m2 mod m3 = −1, we deduce thatm−1

1,2 = 2n−1,
m−1

1,3 = 1 and m−1
2,3 = −1. Thus the conversion from

binary to MRS can be reduced to one shift and four
additions, then conversion to binary needs at most two
shifts and four additions.

Now if we consider huge numbers like those used
in cryptography, then we show in this section, that the
use of MSR can be efficient for some RNS bases. Like
in the previous section we consider that fori = 1...n,
mi = 2k − ci (resp.m̃i = 2k − c̃i) with 0 ≤ ci < 2t

(resp. 0 ≤ c̃i < 2t) and 1 < t < (k − 1)/2. The
conversion via MRS use the equations (5) and (6).We
find in them two operations: modular multiplication by
the modular inverse of a small number for (5) and
modular multiplication by a small number for (6).

A. Modular multiplication by a modular inverse of a
small number

In fact, in the equations (5), we have to multiply by
|mj |−1

mi
for 1 ≤ j < i ≤ n. Considering that,mi =

2k − ci we have|mj |−1
mi

= |ci − cj |−1
mi

. We know that
−2t < ci− cj < 2t. Thus, as1 < t < (k−1)/2, we can
considerci− cj like a small value represented ont bits.
The sign is not a real problem but to simplify the study
we assume that the elements of the basis are decreasing
ordered,mj > mi for 1 ≤ j < i ≤ n.

To resume, the main operations in (5) are of the form
y = x ∗ |d|−1

m mod m where x and m are two k-bits
integers andd a small value (iet bits number).

4

P. Montgomery [Mon85] has proposed a reduction
where an inverse factor appears in the result. We propose
to use it to computey = x ∗ |d|−1

m mod m. Thus, we
will construct a multiple of the valued by adding tox
a multiple of m, this multiple of d is equivalent tox
modulo m. Then we divide it byd, which is an exact
operation, and we obtainy a reduced value lower than
m, which is equivalent tox ∗ |d|−1

m modulom.
In other words, we must constructµ such that:µ < d

andx + µm is a multiple ofd, then, as the division of
x + µm by d is exact, we obtain the expected valuey.

This evaluation is done with the algorithm 3 where
scdiv(x, d) returns(rx, qx) which are the remainder and
the quotient of the euclidian division byd (such that:
x = rx + qx × d with 0 ≤ rx < d). The procedure
scdiv(x, d) is described in the algorithm??.

Algorithm 3 : : moddiv(x,d,m)
Data: two given integersd, m with 0 < d < m

andgcd(m, d) = 1
and an integerx, 0 ≤ x < m
Precomputed: rm, qm and Im such that:
m = rm + qmd with rm < d and
Im = (−m)−1 mod d
Result: an integery with y = x× |d|−1

m mod m
(rx, qx)← scdiv(x, d);1

(µ, .)← bardiv(rx × Im, d);2

ν ← (rx + µ× rm) ;3

(0, ρ)← bardiv(ν, d) ;4

y ← ρ + qx + µ× qm ;5

Now, we analyze the complexity of this algorithm step
by step, we note2δ−1 ≤ d < 2δ ≤ 2t:

1) rx andqx are the remainder and the quotient of the
euclidian division of ak-bits integerx by a small
given integerd (δ-bits number) . For this operation
we call a specific procedure scdiv(x, d) which will
be described below.

2) rx and Im are smaller thand, so µ is obtained
with a classical Barret modular reduction [Bar86]
on a 2δ-bits number, applied to the productrx ×
Im. This supposes also that we will store

⌊
22δ

d

⌋
for each possible value ofd. µ is the remainder
obtained with bardiv(rx × Im, d)

3) ν is evaluated with one product of aδ-bits by a
(k − δ)-bits numbers and one addition of ak-bits
number with aδ-bits one.

4) ρ is obtained with bardiv which evaluates the
quotient of the euclidian division ofν a 2δ-bits
integer by a givenδ-bits integerd.

5) y is the result of one product of aδ-bits by a

(k − δ)-bits numbers, one addition of twoδ-bits
integers and one addition.

We can easily verify that:

y = rx+µrm

d + qx + µqm

= x+µ×m
d

and

y =
x + µ×m

d
< m sincex < m andµ < d

Hence, as the division is exact,x + µ×m is a multiple
of d, we gety = x× |d|−1

m mod m.

We note that, for this algorithm 3, some values are
pre-computed, and need to be stored. For each value of
d, we will have to storerm, qm and Im, and this for
each elementmi of the basis. Thus taking into account
that d < 2t and the equation (5), the size of the tables
needed is equal ton

2−n
2 × (k + 2t) bits1.

1) the procedure scdiv of division by a small constant
d: The procedure scdiv evaluates the remainderrx and
the quotientqx of the euclidian division of an integerx
by a small given integerd.

As d is known, we are in a context close to the one
of Barrett’s algorithm [Bar86]. We propose to adapt this
algorithm to our purpose.

The main idea of the Barrett algorithm is based on
finding the quotientq of the division byd for x < 22δ

using the following equation:

q =

(⌊

22δ

d

⌋ ⌊
x

2δ−1

⌋)
2δ+1

 + ε , with, ε = 0, 1, 2

⌊
22δ

d

⌋
is a pre-computed value, thus we just have one

mutiplication of two (δ + 1)-bits numbers, other oper-
ations are truncations, findingε can need one or two
substraction.

The algorithmbardiv(x, d) returns (q, r) such that

q =

⌊“j
22δ

d

k
b x

2δ−1 c
”

2δ+1

⌋
and r = x − dq, for x < 2δ+l

and2δ−1 ≤ d < 2δ.

1It is possible to reduce those tables ton2−n
2

× (k + t) if we
consider thatk bits are enough to storerm andqm

5

Algorithm 4 : : bardiv(x, d)

Data: x < 22δ and2δ−1 ≤ d < 2δ

Precomputed:
⌊

22δ

d

⌋
Result: (r, q) such thatr = x− dq < 3d

q ←
(⌊

22δ

d

⌋ ⌊
x

2δ−1

⌋)
;1

q ←
⌊

q
2δ+1

⌋
;2

r ← x− qd (r < 3d);3

while r > d do4

r ← r − d ;
q ← q + 1 ;

end

The complexity analysis gives:

1) one product of two(δ + 1)-bits numbers,
2) one shift,
3) one product of(δ + 1)-bits numbers, and one

subtraction of(δ + 2)-bits numbers.
4) at most two subtractions of(δ)-bits numbers,

Now in algorithm 3 we need to dividex a k-bits
integer byd a δ-bits number. So, bardiv cannot be used
directly. We propose the algorithm 5 which consider the
values written in radix2δ and uses bardiv to find the
digits of the remainder and the quotient.

Algorithm 5 : : Division by a small constant
scdiv(x, d)

Data: two integersx < 2k and2δ−1 ≤ d < 2δ

Result: two integersR,Q with R + Qd = x and
0 ≤ R < d

R← x;
Q← 0;
for i← dk

δ e − 2 to 0 do
R′ ← R÷ (2δ)i; R← R mod (2δ)i;1

(R′, Q′)← bardiv(R′, d);2

R← R′(2δ)i + R;3

Q← Q′(2δ)i + Q;4

end

Analysis of the complexity of algorithm 5:

1) we just consider thatR is split into two parts, the
2δ upper bits and thelδ lower bits.

2) we callbardiv to make a reduction ofR′ (a 2δ-bits
number) byd (a δ-bits constant), and to recoverQ′

which is the quotient of this reduction.
3) we rebuildR with the reduced upper partR′. Since

R′ is on δ-bits, we just shiftR′.
4) we build Q with the quotient of the reduction of

R′.

We have to notice thatQ′ could be onδ + 1-bits. In
order to avoid making an addition on each loop, we can

consider thatQ =
∑(d k

δ e−2)
i=0 Q′

i(2
δ)i, whereQ′

i is the
value of the variableQ′ at the ith step of algorithm 5.

Then we notice that computingL =
∑(d k

δ e−2)
i=0 (Q′

i mod
2δ)(2δ)i andU =

∑(d k
δ e−2)

i=0 (Q′
i÷ 2δ)(2δ)i can be done

without any additions (but only with shifts) because
(Q′

i mod 2δ) and(Q′
i÷2δ) areδ-bits integers. AsQ′

i =
(Q′

i mod 2δ)+ (Q′
i÷ 2δ)(2δ), we haveQ = L+U(2δ).

So Q can be computed with only one addition.
Finally the cost ofscdiv is dk

δ e− 1 call to bardiv and
onek-bits addition.

Now we can evaluate the complexity of a call to
moddiv. We begin by a call toscdiv with two integers,
one ofk-bits and one ofδ-bits. We also callbardiv twice
to reduce a2δ-bits number by aδ-bits number. Moreover,
we have to compute two multiplication ofδ-bits number
and one multiplication of a number ofδ-bits by a number
of k − δ + 1-bits. At last, we compute one addition of
2δ-bits , one ofδ + 1-bits and two ofk-bits.

If we set l = dk
δ e, we can evaluate the complexity of

moddivto (l + 1) multiplications and(4l + 1) additions
of δ-bits number. We also callbardiv (l + 1) times, but
if we consider that the cost ofbardiv can be evaluated to
two δ-bits multiplications and fourδ-bits additions, we
have a final complexity of(3l + 3) multiplications and
(8l + 5) additions.

So our approach to make a multiplcation by the
inverse of a small number is about(3l + 3) δ-bits
multiplications. Yet, the classical way to compute a
multiplcation by an inverse is to precompute the inverse
and to make a modular multiplication. If we use Barrett’s
algorithm to make the modular multiplication, we obtain
a 2l2 + 4l δ-bits multiplications complexity.

B. Analysis of this conversion from RNS to RNS via MRS

To make the whole conversion we have in fact two
conversions to do.

First we have a RNS to MRS conversion, made of
n(n−1)

2 steps. Each step being composed of one call
to a k-bits modaddand one multiplication of ak-bits
numbers by a inverse of aδ-bits number usingmoddiv.

Secondly we have a MRS to RNS conversion, made of
n(n−1) steps. Each steps being composed of a modular
multiplication of at-bits number by ak-bits number and
a call to ak-bits modadd. If we look at the progress of
the algorithm of the modular multiplication we have one
multiplication of ak-bits number by at-bits number, one
multiplication of at-bits number by at-bits number and
two k-bits additions.

We can simplify the complexity of the RNS to RNS
conversion ton(n−1)

2 (5l + 5) t-bits multiplications and

6

n(n−1)
2 (20l+5) t-bits additions. In table I we recapitulate

the different compexities of our algorithms (we just give
the number oft-bits multiplications). We compare our
method to the general case where themi’s are choosen
without any special properties.

Operation Our method Classic way
modprod l2 + l + 1 2l2 + 4l
moddiv 3l + 3 2l2 + 4l

RNS-MRS 3
2
n(n− 1)(l + 1) n(n− 1)(l2 + 2l)

MRS-RNS n(n− 1)(l + 1) n(n− 1)(2l2 + 4l)
RNS-RNS 5

2
n(n− 1)(l + 1) 3n(n− 1)(l2 + 2l)

TABLE I

COMPARAISON OF OUR METHOD AND THE CLASSIC WAY FOR THE

COST OF THE DIFFERENTRNS OPERATIONS

V. CONSTRUCTION OF EFFICIENTRNS BASES

Now the problem is to find RNS bases such that those
differences are minimal. To simplify this study we can
consider that the two bases are ordered such that:m1 >
m2 > ... > mn > m̃1 > m̃2 > ... > m̃n. Thus we set
δmax the maximum number of bits to represent the max
of m1 −mn and m̃1 − m̃n. So, the question is: What
is the minimal interval of k-bits integers, which contains
2n coprime numbers? Or, how many coprimes can we
get in an interval of sizeδmax?

In the table II, we give theδmax one have to use on
16, 32 or 64-bits systems, in order to obtain RNS basis
for classic cryptographic lengths.

Cryptographic length
160 192 320 1024

16 6 6 7 10
k 32 4 5 6 8

64 - 3 5 7

TABLE II

DIFFERENTδmax NEEDED TO USE DIFFERENT SYSTEMS AND

CRYPTOGRAPHIC LENGTHS

Example 1: If we compute on a32-bits system and
if we want to execute an ECC on160 bits, we can
use the two bases build withmi = 232 − ci where
ci is in [3, 5, 9, 15, 17] and m̃i = 232 − c̃i where c̃i is
in [19, 21, 23, 27, 29]. So we haveδmax = 4 and the
cost of a multipliciation by an inverse is about27 4-bits
multiplications.

Example 2: If we compute on a32-bits system and
if we want to execute an RSA on1024 bits, we can
use the two bases build withmi = 232 − ci where ci

is in [3, 5, 17, 23, 27, 29, 39, 47, 57, 65, 71, 75, 77, 83, 93,

99, 105, 107, 113, 117, 129, 135, 143, 149, 153, 159, 167,
168, 173, 185, 189, 195] and m̃i = 232 − c̃i where c̃i is
in [285, 297, 299, 303, 309, 315, 323, 327, 329, 339, 353,
359, 363, 365, 369, 383, 387, 395, 413, 419, 429, 437, 453,
465, 467, 479, 483, 485, 489, 497, 507, 509]. So we have
δmax = 8 and the cost of a multiplication by an inverse
is about15 8-bits multiplications.

VI. CONCLUSION

We have seen in this paper that choosing successive
coprime numbers can allow to construct efficient RNS
implementations. As all the values of an RNS bases are
close, we can choose one reference element and define
the others by their differences to it, thus we just use
small values. With this choice of moduli, the storage
is reduced tonlog2(t) + k bits for the mi.We also
have proposed some specific algorithms, wich take into
account our choice of moduli, in order to obtain efficient
RNS to RNS base conversions. Moreover, one should
notice that it is easy to find such bases for cryptographic
applications, as shown in table II. At last, we do not have
taken into account the possibility of selecting random-
ized bases [BILT04] which is interesting in cryptography.
It is a new very interesting use of RNS, which needs to
be studied in future works.

REFERENCES

[Bar86] P. Barrett. Implementing the rivest, shamir and adleman
public key encryption algorithm on a standard digital pro-
cessor. In A. M. Odlyzko, editor,Advances in Cryptology,
Proceedings of Crypto’86, pages 311–323, 1986.

[BDK98] J.-C. Bajard, L.-S. Didier, and P. Kornerup. An RNS
montgomery modular multiplication algorithm.IEEE Trans-
actions on Computers, 47(7):766–776, 1998.

[BDK01] J.-C. Bajard, L.-S. Didier, and P. Kornerup. Modular mul-
tiplication and base extension in residue number systems.
In L. Ciminiera N. Burgess, editor,15th IEEE Symposium
on Computer Arithmetic, pages 59–65, Vail Colorado, USA,
2001. IEEE Computer Society Press.

[BI04] J.-C. Bajard and L. Imbert. A full rns implementation of rsa.
IEEE Transactions on Computers, 53(6):769–774, 2004.

[BILT04] J.-C. Bajard, L. Imbert, P.LY. Liardet, and Y. Teglia. Leak
resistant arithmetic. In L. Ciminiera N. Burgess, editor,
CHES 2004, pages 59–65, Boston MA, USA, 2004. LNCS
Kluwer.

[BP04] J.C. Bajard and T. Plantard. Rns bases and conversions.
In SPIE Annual Meeting 2004, Advenced Signal Processing
Algorithms, Architectures, and Implementation XIV, pages
60–69, 2-6 August 2004 Denver, Colorado, USA, 2004.

[CN99] Richard Conway and John Nelson. Fast converter for 3
moduli rns using new property of crt.IEEE Transactions
on Computers, 48(8):852–860, 1999.

[Gam89] D. Gamberger. Incompletely specified numbers in the
residue number system - definition and applications. In
M. D. Ercegovac and E. Swartzlander, editors,9th IEEE
Symposium on Computer Arithmetic, pages 210–215, Santa
Monica, U.S.A, 1989. IEEE Computer Society Press.

7

[Gar59] H. L. Garner. The residue number system.IRE Transactions
on Electronic Computers, EL-8(6):140–147, June 1959.

[HP94] C. Y. Hung and B. Parhami. An approximate sign detection
method for residue numbers and its application to RNS
division. Computers and Mathematics with Applications,
27(4):23–35, Feb. 1994.

[Knu81] Donald Knuth.Seminumerical Algorithms, volume 2 ofThe
Art of Computer Programming. Addison-Wesley, 2 edition,
1981.

[Mon85] Peter Montgomery. Modular multiplication without trial
division. Mathematic of Computation, 44(170):519–521,
April 1985.

[Pie94] Stanislaw J. Piestrak. Design of high-speed residue-to-
binary number system converter based on chinese remainder
theorem. InICCD 1994, pages 508–511, 1994.

[PP95] K. C. Posch and R. Posch. Modulo reduction in residue
number systems.IEEE Transaction on Parallel and Dis-
tributed Systems, 6(5):449–454, 1995.

[SK89] A. P. Shenoy and R. Kumaresan. Fast base extension
using a redundant modulus in RNS.IEEE Transactions
on Computer, 38(2):292–296, 1989.

[ST67] N. S. Szabo and R. I. Tanaka.Residue Arithmetic and its
Applications to Computer Technology. McGraw-Hill, 1967.

