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FUZZY MORPHOLOGY FOR OMNIDIRECTIONAL IMAGES

Olivier Strauss, Frédéric Comby

LIRMM, Université Montpellier II, 161, rue Ada,
34392 Montpellier Cedex 5, France
e-mail : Olivier.Strauss@lirmm.fr

1. ABSTRACT.

This paper describes morphological tools that have been
adapted to omnidirectional catadioptric images.

2. INTRODUCTION.

The field of mathematical morphology contributes a wide
range of operators to image processing, all based on a few
simple mathematical concepts derived from set theory [1].
Two baseline operations in mathematical morphology are
erosion and dilation — names illustrating their properties
when applied to binary images.

Morphological operations involve comparing the image
with a kernel (also known as structuring element) so as to
transform the image through expanding, contracting, ana-
lyzing, filtering, etc. Opening (dilation of an eroded image)
and closing (erosion of a dilated image) are done to filter
features smaller than the structuring element. When com-
paring a dilation to an erosion of an image, the resulting im-
age shows the boundaries of the projected objects — this
operation is called morphological gradient.

Classical mathematical morphology has been based on

Boolean set theory and therefore requires binary images and

binary kernels. Different extensions have been proposed to

provide a coherent set of operations able to process grey-

level images and functional kernels. In [2], Isabelle Bloch

proposed to divide these different extensions into three fam-

ilies:

 grey-level mathematical morphology with binary struc-
turing elements and functional images,

e functional mathematical morphology with functional
structuring elements and binary images,

e the fuzzy mathematical morphology where both images
and structuring elements are assumed to be functional.

Fuzzy set theory generalization fits our intuitive knowledge
concerning diffuse localization of projected objects in an
image due to noise, discretization, digitalization and instris-
tic modelling imprecision. Fuzzy sets can represent both im-
precision and uncertainty from the signal level to the highest
decision level.

The ability of morphological tools to provide transforma-
tions that are suitable for real projective images is related to
the potential for positioning the camera and the objects to be
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analyzed in such a manner that a regular mesh on the objects
projects regular mesh on the image. Therefore, a morpho-
logical modification of the image is the projection of an
equivalent morphological operation on the object.

Otherwise, due to perspective effects, a morphological oper-
ation in the image is not the projection of an equivalent mor-
phological operation on the objects to be analyzed. Figure 1
illustrates this inadequacy: an erosion does not uniformly al-
ter the lines of a grid pattern.

|

Figure 1: Erosion with perspective.

With catadioptric omnidirectional images, its almost impos-
sible to place the sensor such that the projection of a regular
mesh on the scene is a regular mesh on the image (Fig. 2).
Nevertheless, with proper calibration of a central catadiop-
tric system, the projection of a regular kernel in a scene can
be determined for each point on the image.
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Figure 2: omnidirectional image.

The aim of this paper is to present new morphological oper-
ators that use this projective property. These operators make
use of a structural element with a varying shape. Since this
varying shape cannot be represented as a binary union of
pixels, we propose to use a fuzzy extension of the classical
grey-level morphology to account for this phenomenon.
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3. OMNIDIRECTIONAL MORPHOLOGY.

3.1. Introduction.

In [3], Geyer et al. introduced an unifying theory for all cen-
tral catadioptric systems. They showed that the anamorpho-
sis provided by a central panoramic projection is isomorphic
to a projective mapping from the sphere to a plane with a
projection center located perpendicular to the plane. The
proposed model involves only two parameters (¢ and &) to
map a 3D visible point M(X,Y,Z) with its projection m(X,y)
on the image:

x = @HE)X o (@+E)Y i R2x2v272 (1)
ER-Z ER-_Z

The retina and digital processing associate the projected

point m with its image coordinate (u,v):

u=kx+u,v=Kky+v, 2)

where (ky, ky, u,, v,,) are the intrinsic parameters of the im-
age acquisition process. A combination of (1) and (2) gives
the fundamental equations of central catadioptric systems.

As illumination is a sampled value, a pixel can be viewed as
an image coordinate domain, i.e. an imprecise image loca-
tion value.

3.2. Anti-anamorphosis of omnidirectional images.

Central catadioptric systems allow the construction of pure
perspective images by mapping (and interpolating) sensed
brightness values onto a plane placed at a given distance.
Local inversion of equations (1) and (2) generates images
that preserve linear perspective geometry.

To obtain an omnidirectional view, one solution is to project
the omnidirectional image on a cylinder surrounding the
mirror (Fig.3). This omnidirectional view is still distorted
but is consistent with the way we are used to seeing images.
Let M be a point on the cylinder located at coordinate (X, Y,
Z).Let D be the radius of the cylinder. M is the projection of
the pixel Py located at (u,vy):

u, = k,dcos(6) +u,, v, = k,dsin(0) +v, 3)
with X = Dcos(0) and Y = Dsin(0).
Then, based on equation (1):

(9+8)
gll+p’—p

Local inversion of (4) gives:

d = f(p) = with p = Z/D “

gy (048 -EJ°(1-8) + (9+E)’

p="1"(d) ; 5)
d(1-€’)
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Figure 3: Projection on the cylinder.

3.3. Projection with a variable kernel.

Our goal was to build a discrete morphology on omnidirec-
tional images that match our intuitive requirements on per-
spective images: the transformation of the projection of an
object should be she same regardless of its position relative
to the system if its distance to the central point is preserved.

This morphology can be achieved in two ways. The first
way involves applying usual morphological operations on a
reconstructed image (plane, cylindrical, spherical, etc.).
However, this method involves interpolations and smooth-
ing that modify the image information. A second solution is
to project, on each pixel, a kernel whose geometry is defined
in a more suitable space using the calibration parameters of
the system (¢, &, k. ky, u,, v,)-

An illustration of such a process is given here by using the
surrounding cylinder as the suitable space. Figure 4 shows
the projection on the image of a cartesian kernel defined on
the cylinder.
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Figure 4: Projecting the kernel.

3.4. Interaction matrix.

A morphological operation can be viewed as an estimation
of the grey level of a pixel within a neighborhood defined by
the structuring element. Fuzzy morphology considers the
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gray level as a fuzzy classification. Therefore, a morpholog-
ical operation can be considered as a modification of this
classification within this neighborhood.

For simplicity, an image is considered as a set of N pixels P
whose grey level is I (k=1...N) and location is (uy, v}). Il-
lumination on the image is considered as information whose
location is imprecise due to sampling and uncertain due to
noise. Each pixel Py is thus considered as a fuzzy domain of
IR? (Fig. 5)

(A i i i

Figure 5: Fuzzy pixel.

Let E be a fuzzy kernel defined in the cylinder space. Each
pixel can be associated with a neighborhood V(P}) by using
the extension principle [4] and equation (4) by projecting the
kernel E on the image. The interaction |3k, . between each
pixel P, of the omnidirectional image and the neighborhood
V(Py) of each pixel Py is defined by the possibility of P, re-
stricted to V(Py):

By = TI(P,:V(PY) ©)

L1 T—

Figure 6: Interaction between a pixel and a neighborhood.

We call interaction matrix, the NxN matrix of the interac-
tion possibilities B, , . This matrix is the basis of our mor-
phological operations.

3.5. Practical computation of an interaction matrix.

Direct use of the extension principle to estimate [3k,n is
computationally expensive. Computation of Bk,n can be
simplified by considering P} as the cross-product of two
fuzzy numbers Uy and Vy: P, = U, x V, . The mode of Uy
(rsp. Vy) is u (rsp. vy), and its spread is defined by the im-
age sampling du (rsp. dv). Usually du = dv =1.

The membership function of V(Py) is then given by the use
of arithmetical calculus of fuzzy numbers [4]. The spread of
0 is not modified by the projection. However, the spread of
d is given by:

2
Ad =4
Q+§

2
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with p given by equation (5) and

2
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3.6. Extension of dilation using a Choquet integral.

Use of a Choquet integral to generalize dilation relies on the
interpretation of a fuzzy set as a stack of crisp sets (c-cut).
From a morphological standpoint, the value DI, of a dilated
image at pixel k is the maximum value of the illumination
within the neighborhood defined by the structuring element
around Py.

A similar approach is given in [2]:
1
= Su
DIy { 0.2y (V) ®)

where I(u,v) is the illumination at location (u,v) and V(P),
is the a-cut of the fuzzy subset V(P,). To account for dis-
cretization of the image, the continuous Choquet integral
has to be replaced by a discrete Choquet integral [5, 6]:

N
DI, = E I(n>(V(A(n))—V(A(n+1))) ©)

n=1

where (.) indicates a permutation such that Iy <Ip) < ... =<
I(Ni. The sets A(n)={P(n), ot Py} are binary co‘alitions'of
IR” of all the image locations whose grey-level is superior
or equal to Ip). V(A,) is a confidence measure of the set
A giving the true value of the dilated image grey level at
imprecise location Py, assuming that the threshold I, is
used to transform the grey-level image into a binary image.

The coalition A, can also be considered as a discrete fuzzy
subset of the image pixels. The highest confidence value
that can be given to coalition A, is:

V(A = izslnle{Bk,(i)} (10)

If this confidence measure (or capacity) is used, then our
definition is in line with that proposed by I. Bloch in [2].

3.7. Extension of erosion, opening, closing and gradient.

We use the duality principle to define erosion. The EI} value
of the eroded image at location Py is given by:

N
Elk = - 2 —I(n)(V(A(n))_V(A(n+1))) (10)

n=1

where (.) indicates a permutation such that -I(jy < -Ip) < ...
< -Iiny. Coalition A,y and the confidence measure are de-
fined in the same manner as above. Closing, opening and
gradient are defined in a classical manner.
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4. EXPERIMENTS.

We present two examples illustrating the properties of the
obtained morphological operators. Figure 7 shows an omni-
directional image of the frame used to calibrate the sensor.
This frame is made of four black planes with regular white
lines. There is a black dot at the junction of the white lines.

Figure 7: image of the frame and detail

In the first experiment, a kernel was chosen in order to re-
move (filter) the small black dots by closure. In Figure 8(a),
a grey-level morphological closure has been processed
while figure 8(b) shows the same experiment with omnidi-
rectional closure. In both cases, the chosen kernel is the
smallest that allows removal of all dots. In case of classic
grey-level closure, the intersections of the white lines are
not uniformly corrupted while omnidirectional fuzzy clo-
sure uniformly alters the general shape of the white lines.

In the second experiment, the kernel was chosen so that om-
nidirectional and classical kernels would match on the
fringe of the paraboloid. The gradient is homogeneous in the
frame plane in case of omnidirectional morphology 9(b),
while this gradient is homogeneous in the image frame when
using classical morphology 9(a).

Figure 8: Classical (a) and omnidirectional (b) closure

(b)

Figure 9: Classical (a) and omnidirectional (b) gradient.

5. CONCLUSION.

The ability of morphological tools to provide transforma-
tions that are suitable for real projective images is related to
the potential for positioning the camera and the objects to be
analyzed to remove perspective from image to be analyzed.

When a catadioptric omnidirectional system is used, it is not
possible to remove all perspective effects in an image. We
have proposed a new extension of morphological operators
that account for the geometry of the sensor to obtain a trans-
formation of the image that respects their projective proper-
ties.

As shown in [2], some of the properties of usual morpholog-
ical operators (like compatibility with union) have to be re-
placed by weaker ones. If stronger properties are needed,
then a Sugeno integral should be chosen. But then, both the
grey level and the neighboring level have to be expressed in
the same space (i.e. [0,1]). This work is currently under way.
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