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Abstract

 

: This article describes an original method to track 2D
templates in a video sequence. This approach is based on robust
modelling of the interaction between pattern movement and grey
level variations in the image using fuzzy bimodal rules. Move-
ment estimation is performed by inverting these rules and polling
the results in a quasi-continuous histogram. Some experimental
results are given to illustrate the performance of this algorithm.

 

1. I

 

NTRODUCTION

 

.

Template tracking has various applications within the scope
of robotics (visual servoing), medical analysis, surveillance,
human-computer interaction, video databases and 3D-recon-
struction (stereo vision, structured light), to name but a few. 

 Template tracking generally consists of finding the position
of the projection of an object in the image plane while this ob-
ject is moving in front of the camera. The tracking problem is
to find the 

 

best

 

 set of parameter values describing the motion
of the target through a sequence.

When an object moves in front of a camera, the retina illu-
mination distribution is modified in a coherent manner, called

 

apparent motion

 

, which is the signature of projected motion.
Template tracking relies on an analysis of apparent motion to
compute correspondence through a sequence of images. How-
ever, other phenomena such as partial or total occlusion, light-
ing variations, changes of viewpoint, reflectance, sampling
and digitalization can modify the illumination in a quite coher-
ent manner which is only slightly or not related to projected
movement. Template tracking techniques can be divided in
three main groups: feature-based, area-based and optical flow-
based tracking.

Feature tracking consists of matching local primitives ex-
tracted from images such as segments of straight lines or
curves, characteristic points, blocks or regions. Matching is
based on minimizing statistical distances between attributes of
the primitives like brightness, local contrast, shape, relative
position, length, curvature, etc. One major advantage of these
methods is their robustness relative to unexpected movement
or variations of illumination such as global brightness, occlu-
sion, pose variation etc. However, in natural images, strong vi-
sual features can sometimes seldom be found unless artificial
beacons are placed in the environment. The fact that the tem-
plate to be tracked requires a model is one of the major draw-
backs of this kind of technique. 

Area-based matching techniques use statistical distance
measures directly on the grey-level. The tracked template is
supposed to be known by its projection on a limited region of
the image plane. It is generally assumed that the sought after
displacement of the tracked template belongs to a known pa-
rametrized motion function. No explicit modeling of the tem-

plate is needed. When using robust statistical distances, these
methods appear to be very robust with respect to random glo-
bal or local lighting modifications. However, due to their com-
putational complexity, real-time application of area-based
techniques is generally limited to translation, i.e. the higher the
dimensional space the higher the computational cost. 

More recently, a third efficient framework was proposed
that uses an optical-flow like differential representation of the
link between the target movement and grey level variations. In
this framework, the illumination of the target template is sup-
posed to be to be known in the first image. A learning process
computes the relation between temporal illumination varia-
tions and parametric apparent movement. This learning pro-
cess is able to directly estimate the projected movement by
comparing grey level values of the target template with grey
level values of a predicted region. The method we propose in
this paper is in line with this kind of framework.

2. D

 

IFFERENTIAL

 

 

 

TRACKING

 

.

This part is a simplified version of the explanations given in
[1] and [2]. The reader should refer to these publications for a
more detailed explanation.

 

A. Principle.

 

A sequence of images can be viewed as a function I(

 

x

 

,t) of
the brightness at the pixel location 

 

x

 

t

 

=(x,y) at time t. The target
to be tracked is defined, on the first image, with a list of n pix-
els located at 

 

x

 

i

 

t

 

=(x

 

i

 

, y

 

i

 

)

 

 i=1…n

 

. The illumination of this refer-
ence template is I(

 

x

 

i

 

,0). 

 

 

 

Figure 1: Two consecutive images of a running lizard

The motion of the target induces a variation in the grey level
distribution of the template (Fig. 1). Let us assume that the mo-
tion of each pixel of the target region can be completely de-
scribed by a function ƒ and a parameter vector 

 

ß

 

t

 

=(ß

 

1

 

, …, ß

 

m

 

).
Given two images at time 0 and time t, and assuming that there
are no changes in the illumination of the target, the grey level
distribution of the reference template follows:

I(ƒ(

 

x

 

i

 

,

 

ß(t)

 

),t) = I(

 

x

 

i

 

,0) + 

 

ε

 

i

 

 (1)

where 

 

ε

 

i

 

 represents unexpected variations in the grey level
distribution due to changes in the target pose, deformation or
partial occlusion. If the error 

 

ε

 

i

 

 has a known distribution, then
the motion parameter 

 

ß(t)

 

 of the target can be estimated by a
proper minimization of ( I(ƒ(

 

x

 

i

 

,

 

ß(t)

 

),t) - I(

 

x

 

i

 

,0) ).
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B. From motion to grey level variation.

 

Let us now suppose that the projected motion is small
enough (or the acquisition frequency is high enough) that
frame to frame disparity is low. Then a first order differentia-
tion of equation (1) allows us to compute grey level variations
at location 

 

x

 

i

 

 when the parametric movement 

  

∂∂∂∂

 

ß

 

 is known:

 

∂

 

I(

 

x

 

i

 

) = M

 

i

 

.

  

∂∂∂∂

 

ß

 

 + O

 

i

 

(

  

∂∂∂∂

 

ß

 

) (2)

where M

 

i

 

 is the partial derivative of I with respect to 

 

ß

 

 at the
location 

 

x

 

i

 

. M

 

i

 

 can be easily computed from image differences
and the parametrized function ƒ. O

 

i

 

(

  

∂∂∂∂

 

ß

 

) includes higher order
terms and modeling errors. Equation 2 is called 

 

optical flow
constraint

 

. It is the basis of differential tracking methods.

 

C. From grey level variation to motion.

 

The template tracking principle proposed by Hager [1] con-
sists of inverting equation (2) using the partial derivative of the
image with respect to 

 

ß

 

 and time parameter. Let 

 

∂

 

t be the time
delay between the acquisition of the first and the second image.
At time 

 

∂

 

t, at location 

 

x

 

i

 

 the illumination function is I(

 

x

 

i

 

,

 

∂

 

t).
The illumination variation at location 

 

x

 

i

 

 can be linked to pa-
rameter motion 

  

∂∂∂∂

 

ß

 

 using equation (2). Expression of equation
(2) for each pixel of the reference template gives n equations
with m unknowns that can be easily computed by a statistical
method minimizing a proper distance between 

 

∂

 

I(

 

x

 

i

 

) and
M

 

i

 

.

  

∂∂∂∂

 

ß

 

 (i.e. finding 

  

∂∂∂∂

 

ß

 

 such that I(ƒ(

 

x

 

i

 

,

  

∂∂∂∂

 

ß

 

),

 

∂

 

t) 

 

≈

 

 I(

 

x

 

i

 

,0)).

The advantage of this method (especially compared to area-
based matching methods) is that no coverage of the parameter
space is needed. It allows real time implementation because of
the low-complexity of this algorithm. However the use of the
standard least square solution to compute motion from grey
level variations is not robust enough since this kind of expres-
sion of the problem with is often ill-conditioned. In [3], M. La
Cascia et al. successfully combined regularization techniques
with robust non-linear least square methods. 

In a recent article [2], F. Jurie presents an efficient method
to avoid this hazardous least-square inversion. Let us rewrite
the m equations in a matrix format:

  

∂∂∂∂

 

I

 

 = 

 

M

 

.

  

∂∂∂∂

 

ß

 

 + 

 

O

 

(

  

∂∂∂∂

 

ß

 

) (3)

with 

  

∂∂∂∂

 

I

 

=[

 

∂

 

I(

 

x

 

1

 

)…

 

∂

 

I(

 

x

 

n

 

)]

 

T

 

, 

 

M

 

=[M

 

1

 

…

 

M

 

n

 

]

 

T

 

 and

 

O

 

(

  

∂∂∂∂

 

ß

 

)=[O

 

1

 

(

  

∂∂∂∂

 

ß

 

)…O

 

n

 

(

  

∂∂∂∂

 

ß

 

)]

 

T

 

. 

 

M

 

 is a (n,m) matrix. Inversion of
(3) gives:

  

∂∂∂∂

 

ß

 

 = 

 

H

 

.

  

∂∂∂∂

 

I

 

 + 

 

O

 

(

  

∂∂∂∂

 

I

 

) (4)

The 

 

hyperplane approximation

 

 method involves directly
learning matrix 

 

H

 

 from synthetic motion of the reference tem-
plate in the initial image. When matrix 

 

H

 

 has been estimated,
the motion can be directly computed from equation (4). Hyper-
plane approximation allows a very precise real time tracking. 

 

D. Template tracking.

 

Differential methods only allow small movement estima-
tion. If, after a certain time, the reference template is far from
its initial position, equations (3) and (4) can no longer be used
to compute its movement. Thus the tracking stage needs a

frame to frame modification of the reference template.

Let 

 

ß

 

k

 

 be the vector representing the position of the template
in image number k. In image number k+1, the position of the
template will be referred to as 

 

ß

 

k+1

 

=

 

ß

 

k

 

+ ∂∂∂∂ß. Let Ik(x) be the il-
lumination at location x on image number k. If unexpected
variations εi are neglected, then equation (1) becomes:

Ik(ƒ(xi,ßk)) ≈ Ik+1(ƒ(xi,ßk+∂∂∂∂ß)) ≈  I0(xi) (5)

Then differential equation (2) becomes:

Ik+1(ƒ(xi,ßk+∂∂∂∂ß)) - Ik(ƒ(xi,ßk)) ≈ M.∂∂∂∂ß (6)

Now Ik(ƒ(xi,ßk)) ≈  I0(xi) therefore:

Ik+1(ƒ(xi,ßk+∂∂∂∂ß)) - I0(xi) ≈ M.∂∂∂∂ß (7)

Which means that the computation of ∂∂∂∂ß only requires a
comparison between the illumination of the reference image I0
at location xi with the illumination at location ƒ(xi,ßk). Then
the position parameter ßk+1 is obtained by:

ßk+1=(ßk+∂∂∂∂ß) (8)

E. Limitation due to discretization.

The relation between movement and grey level variation is
modeled in a way that does not take the discrete and bounded
nature of the used information into account. Estimation of the
invert problem strongly relies on the hypotheses that errors can
more or less be assumed to be random centered and symmetri-
cal noise (use of least squares). Discretization is assumed to
produce simple additive noise. The fact that grey level varia-
tion and image location are bounded is ignored. 

Ignoring the discrete nature of both spatial localization and
grey level variation substantially limits the power of the pro-
posed solutions. In fact, normal hypotheses of discretization
effects can be assumed when the number of pixels of the refer-
ence template is large enough to apply the central limit theo-
rem. The tracking is biased when there are small patterns. 

Ignoring the bounded nature of both spatial localization and
grey level variation limits the use of derivative relations to pix-
els that are far from the bounds with respect to localization
(side effect) or grey level (saturation). Unfortunately, the most
reliable pixels are those whose illumination is close to satura-
tion. When using standard least square methods, such pixels
tend to bias the global estimation. If robust estimation is used,
saturated pixels are rejected as outliers. 

F. Limitations due to modeling.

In this framework, global or local changes in illumination
can bias the movement estimation. It is possible to take a
change of illumination into account by increasing the size of
parameter ß. However, the size of the template has to be also
increased to avoid bias due to over-learning. 

Finally, in both tracking and learning processes, it is neces-
sary to be able to represent a total ignorance of information es-
pecially because of boundary effects. In the learning stage, for
example, estimation of matrices M or H are computed by syn-
thetically moving the reference frame. To prevent the learning
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stage to take information from the background into account,
values outside of the template should be avoided (Fig. 2). This
is not possible with classical learning processes.

Figure 2: grey levels are unknown outside the template

If, during the tracking stage, the template reaches the bounds
of the image, then an analog situation will apply when infor-
mation about the grey level local distribution is not available.

A new framework is required to overcome all these limita-
tions. In this paper, we propose to shift from classical statistics
to possibilistic bipolar logic.

3. OPTICAL FLOW WITH BIPOLAR LOGIC.

A. Toward a new framework.

In a previous article [4], we presented an alternative to dif-
ferential optical flow like computation of main apparent mo-
tion. In this new framework, the localization imprecision due
to sampling was represented using a partition of the real plane
IR2 with fuzzy quantities. Grey level representation assumes
that the photoreceptive sensors of the camera perform a fuzzy
(imprecise) classification, splitting the set of image pixels into
two dual classes: bright (white) pixels and dark (black) pixels.
This classification is assumed to apply when the template is
moving, which is a very weak assumption. The middle gray
pixels are said to be least reliable. The algorithm derived from
this framework is based on a Hough-like imprecise vote proce-
dure using bipolar possibilistic logic. The use of a quasi-con-
tinuous histogram technique [5] allows accurate and robust
real modal estimation of motion.

However, this method is not suitable for template tracking.
As an area-based matching technique, its computing complex-
ity is very high. The computing time can be quite long since
voting and searching loops are intertwined. Sub-sampling
techniques have to be used for high order parametric models 

In the method presented here, the relation between move-
ment and grey level variation involves bipolar fuzzy rules. 

B. Associating motion and grey-level clusters with bipolar 
rules — a brief introduction.

Bipolar logic is very close to ternary logic. Instead of using
three symbols (1=true, 0=false,?=unknown), an item of infor-
mation A is associated with the pair  where Ac

is the contrary event. 

To simplify the explanation and illustrations of this new
concept, we will present the basis of grey-level-cluster-to-mo-
tion association with a simple binary rectangular template.

Pixels belonging to the template are numbered from 1 to 16,
as shown in Fig. 3. Each pixel is associated with a binary grey
level gi. The pixels are split in two dual clusters (white pixels

and black pixels) according to bipolar possibilistic logic. If the
binary grey level value of the pixel located at xi belongs to the
white cluster (rsp. black cluster) ∏W(xi)=1 and ∏B(xi)=0 (rsp.
∏W(xi)=0 and ∏B(xi)=1). If the binary grey level value gi of
the pixel located at xi is unknown ∏W(xi)=1 and ∏B(xi)=1.
The template and dual clusters are presented in Fig. 3.

Figure 3: Binary template

Let us now assume that the template movement can be rep-
resented by a simple translation of one pixel in each direction.
Tx is a horizontal translation towards the right and Ty is a ver-
tical down translation. All possible motion is represented by a
vector as (s=1…9).

Figure 4: Translation of one pixel towards the left

Fig. 4 shows the reference template modified by the move-
ment represented by a4, i.e. a translation of one pixel toward
the left (Tx =-1, Ty=0). If the outside of the template is un-
known, the grey-level of the pixels 4, 8, 12 and 16 (grey-col-
ored) are unknown after the translation. They can belong to
both clusters (black or white). 

We propose to link each motion as to the grey level cluster
associated to each pixel xi of the template by using two dual
rules: white rule  and black rule .

: If the template is modified with the motion as then the
pixel located at xi is white.

: If the template is modified with the motion as then the
pixel located at xi is black.

Clearly, possibility of the relation  is linked to the pos-
sibility that the pixel located at xi is be white. While necessity
of this rule is linked to the impossibility that this pixel is black.
Since the two clusters are dual, all information about these
rules can be represented by  and .

For example, concerning the pixel located at x6 of the refer-
ence template and the movement associated with a4,
∏(RW

6,4)=0 and ∏(RB
6,4)=1. Concerning the pixel located at

x8 on the reference template, ∏(RW
8,4)=1 and ∏(RB

8,4)=1 be-
cause the grey level of this pixel is unknown after the move-
ment associated with a4. Therefore it represents the lack of
knowledge about the class to which the pixel located at x8 will
belong after a movement a4. 

unknownunknown
grey levelsgrey levels

reference template before ... and after a synthetic motion

unknown
grey levels
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c
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C. Abduction-based rule inversion.

Abduction is a reasoning process that seeks possible expla-
nations for abnormal observations. The bipolar rules we use al-
lows us to deduce the grey level cluster of each pixel of the
reference template from the movement knowledge. Abduc-
tion-based reasoning has to be used to determine the move-
ment of the template from the new grey level assignment.

Let us explain abductive inversion concerning the pixel of
the template whose location is x6. The rule RB

6,4 (if the move-
ment is a4 then the pixel located at x6 is black) is true, i.e.
∏(RW

6,4)=0 and ∏(RB
6,4)=1. If, after a movement, pixel x6 is

black, no information can be obtained on the projected move-
ment. However, pixel x6 is white, then the movement a4 has to
be discarded. This is abductive reasoning. 

D. Fuzzy partition of grey-level.

To account for the grey level information, we propose to use
a fuzzy partition of the grey-level values. Fig. 5 shows this
fuzzy partition. μB(g) (rsp. μB(g)) is the membership function
of the grey level g to the white (rsp. black) cluster. 

This partition allows a straighforward representation of the
quantization. Let us suppose that the digital grey level of the
pixel located at xi is gi=I(xi)=100. Imprecision due to sampling
is associated with an interval whose width is 1. Then the grey
level value is an interval [100, 101]:

∏W(xi) =∏(xi is white) =  ≈  

∏B(xi)=∏(xi is black) =  ≈ 

NW(xi) = 1 - ∏B(xi) ≈  < ∏W(xi).

If the grey level of the pixel located at xi is unknown then:

∏W(xi) =  = 1 and ∏B(xi) =  = 1 

 
Figure 5: Linear membership function. 

E. Fuzzy movement.

The parameter space representing the movement is parti-
tioned in p fuzzy-subsets. Each fuzzy subset As is an imprecise
domain that restricts parameter ß which describes the move-
ment. Fig. 6 represents a regular fuzzy partition of p=25 clus-
ters of the space of horizontal and vertical translations. 

F. Fuzzy pixel.

We take the imprecision induced by sampling of the image
into account by considering each pixel as a fuzzy quantity of
IR2. Each image pixel is represented by the fuzzy box Xi (Fig.
7) that restricts the possible locations x of the pixel whose grey

level is gi=I(xi). The mode of the fuzzy pixel is defined by xi.
Its support is defined by its neighbor pixels.

Figure 6: Partition of the translation space.

Figure 7: fuzzy pixel Xi.

G. Fuzzy rules.

If both pixel and movement are represented by fuzzy sub-
sets, then the computation of the possibilities ∏(RW

is) and
∏(RB

is) have to be modified. We use the extension principle
[6] to compute the fuzzy domain Xi’=F(Xi,As), i.e. the image
of fuzzy pixel Xi by the function ƒ parametrized by the fuzzy
subset As (Fig. 8).

Figure 8: fuzzy movement.

Computation of the possibility of the two dual rules associ-
ated with Xi and As involves computation of the possibility
that the domain F(Xi,As) belong to the white (rsp. black) clus-
ter. Let ∧ be the T-norm, this computation is given by:

(9) 

(10)

H. Fuzzy abduction.

Here we estimate the vote of the pixel number i of the tem-
plate for the movement As. This vote is imprecise because the
information that enables this vote is imprecise. The upper and
lower bounds of the vote are given by ∏(As;Xi) and N(As;Xi)
computed by abduction-based reasoning:

N(Ac
s;Xi) = ∨ (11)

∏(Ac
s;Xi) = ∨ (12)

∏(As;Xi)= 1-N(Ac
s;Xi) and N(As;Xi)= 1-∏(Ac

s;Xi).
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with ∏W/B(Xi)=∏(pixel located at Xi is white / black). The
pair [N(As;Xi), ∏(As;Xi)] is the imprecise vote of the pixel ap-
proximately located at Xi to the imprecise domain As of the
movement parameter ß.

4. MOVEMENT ESTIMATION: USE OF QUASI-CONTINUOUS HIS-
TOGRAMS.

The previous stage gives a vote of each pixel imprecisely lo-
cated at Xi for the movement represented by the imprecise pa-
rameter As. Known imprecisions due to modeling of all
information involved in the process are taken into account and
propagated to the imprecise vote (the greater the information
imprecision, the greater the vote imprecision). N(As;Xi) is
called the pro-vote (or necessary vote) and ∏(As;Xi) is called
the supporting vote (or possible vote).

 All variations that affect the link between the grey-level dis-
tribution and pattern motion are not represented in this model-
ing. Thus, a conjunctive fusion of the votes would result in a
void decision. Therefore we use a statistical polling process via
quasi-continuous histograms.

A. Quasi-continuous histograms (QCH).

The theoretical framework of quasi-continuous histogram
(QCH) is based on the fuzzy rough sets theory [7]. The main
goal is to provide a framework that generalizes the histogram
concept by dissociating the histogram’s granularity from the
precision of the information computed using this histogram
[5]. QCH are built on a fuzzy partition to lower the effect of the
arbitrary partitioning. QCH accounts for the imprecision and
uncertainty of the data to perform moment, modal or rank sta-
tistics. 

Here we are interested in modal statistics, i.e. finding the
movement which maximizes the number of votes [4]. In this
case, an imprecise accumulator is associated to each cluster As
of the partition of the motion parameter space. An imprecise
accumulator is an interval whose lower bound is the sum of the
lower votes (necessary votes) and the upper bound is the sum
of upper votes (possible votes):

 Searching the main mode in a QCH amounts to searching
for the position of a crisp (or fuzzy) subset B with a certain
granularity  polling a locally or globally maximum number
of votes [4]. Usually B is chosen to be a crisp or fuzzy symmet-
ric quantity. To perform this maximization, the number of
votes purporting to any subset B has to be estimated. This es-
timation is achieved by transferring the imprecise number of
votes of each cluster As to the subset B. The pignistic transfer
we use is defined in [9]. 

This technique gives a robust estimation of B in that sense
that the estimation is insensitive to small deviations from the
assumptions. Phenomena like occlusion, change of reflective
properties, or orientation variations have little effect on the es-
timation since few pixels are altered. The insensitivity to illu-
mination changes is due to the grey-level pre-classification.

Finally, the value of ∂∂∂∂ß assigned to the movement of the
template between consecutive images is given by the mode, or

the center of gravity of the subset B. 

B. Tracking and update.

Let us suppose that the position ßk of the template on image
k is known. The position of each fuzzy pixel Xi’ of the tem-
plate can thus be computed by using the extension principle:
Xi’=F(Xi,ßk). For each pixel Xi’ the possibilities ∏W(Xi’) and
∏B(Xi’) are computed on the (k+1)th image using the Sup-min
principle. Abduction based reasoning provides an imprecise
estimation of the vote of each pixel Xi’ for each fuzzy move-
ment As. These imprecise votes are accumulated in the QCH
associated with the partition of the parameter space. The esti-
mation step provides the restriction B of the differential posi-
tion of the template. The mode of B is used as the estimation
of ∂∂∂∂ßk+1. Finally, ßk+1 is given by updating ßk with ∂∂∂∂ßk+1.

5. EXPERIMENTATIONS.

We performed numerous experiments on real and synthetic
image sequences in order to test the ability of the tracker to fol-
low the template in various conditions. We present experi-
ments that highlighted some noteworthy properties of the
tracker. All experiments presented here are based on a planar
translation motion model.

A. Precision

 
Figure 9: tracking Lena’s eye.

To evaluate the precision of the estimator, we generated var-
ious image sequences from a single image. We illustrate these
experimentations with results obtained by randomly translat-
ing the famous Lena image (Fig. 11). The movement is planar
with maximum amplitude of 15 pixels. The tracking template
is made of about 1500 pixels around the left eye. For sake of
simplicity, the discretization step of the parameter space
(translation space) is 1 pixel. The synthetic images are ob-
tained by a bicubic interpolation.

The granularity of the histogram (surface of each cluster As)
is equal to 1. The error is centered (mean equals 0), the average
error is close to 0.07 and the maximum error is less than 0.3.
Note that the error is lower than the histogram granularity.

B. Robustness.

The robustness of the estimator was tested on a standard PC
pentium IVM 2.2 GHz workstation with a standard Web Cam.
The templates were manually selected. In these experiments,
the camera and template were moving with motions that corre-
sponded or not to the modeled motion. We illustrate these ex-
periments with two sequences of among 200 frames involving
a toy-robot. We tried to track the head of the robot. In the first
sequence, the camera is rotating around the vertical and the

Γ
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horizontal axes. The robot is not moving (Fig. 10). In the sec-
ond sequence, the robot is moving towards the camera (Fig.
11). 

Figure 10: Still robot with moving camera.

Figure 11: Moving robot with still camera. 

In both cases, the projected movement does not fulfill the
working hypothesis. The motion is assumed to be a simple
translation while the real movement involves zoom effects and
rotations. The tracker does not drop out while the movement
can still be approximated by a simple translation, i.e. the hy-
pothesis is fulfilled by around 50% of the template.

The last group of experimentations revealed the insensitivity
of this method to illumination variation. To illustrate this abil-
ity, we synthetically increased the brightness of the lizard se-
quence (16 frames) up to 30% of the full grey level range. Fig
12 shows the first and last image of the sequence.

Figure 12: Brightness variation.

6. CONCLUSION AND DISCUSSION.

We have presented an original framework for performing
template tracking in a video sequence. This method is based on
a new representation and inversion of the link between grey-
level variation and projected motion. This representation in-
volves bipolar partitioning of the grey-level space, assuming
that the photo-receptive sensors of the camera perform a fuzzy
(imprecise) classification of the image. It is assumed that there
will be compliance to classification while the template is mov-
ing. The projected motion of the template is assumed to be de-
scribed by a parameterized function. The parameter space is
partitioned in a fuzzy way. We use the extension principle to
estimate the possibility of linking each cluster of the parameter
space to the grey level classification of each pixel of the tem-
plate. This estimation is performed in the first image of the se-
quence.

While the object is moving, we use abduction-based reason-

ing to deduce, from the rules and the new grey level assign-
ment of the pixels of the template, the vote of each pixel to
each motion cluster. Then we use the quasi-continuous histo-
gram technique to find the best parameter fuzzy subset i.e. the
subset which polls a locally or globally maximum number of
votes. Then the position of the template is updated.

Our method allows real-time tracking on a standard work-
station (less than 1/25 sec.) in case of simple movements. Nu-
merous experimentations have shown that this solution is
efficient and robust with respect to outliers and unexpected
phenomena like change of illumination, partial occlusions,
pose variation and movements that are not taken into account
in the model (in this paper zoom effect and rotations). This ro-
bustness is obtained without any modification of the algorithm
while other methods require explicit modeling of unexpected
variations like time-varying illumination.

Usually, with differential methods frame to frame changes
have to be small, limiting the speed at which the template can
move. Our algorithm does not have the same kind of limita-
tion. Its ability to perform movement estimation is linked to the
coverage of the parameter space by the fuzzy partition. It is
also linked to the intersection area of the target region before
and after movement. If this area is less than 50% of the tem-
plate area, the estimation cannot be guaranteed. To improve
tracking, a straightforward solution is to use a multi-hypothesis
algorithm based on a (fuzzy) set description of the parameter.

In the future, we plan to perform an objective comparison of
the area-based and differential-based tracking methods involv-
ing a benchmark of image sequences with known realistic
movement. We are also investigating the application of this
method to perform template recognition. Finally, we study a
simplification of the algorithm to allow a high order represen-
tation of movement using a coarse to fine strategy. 
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