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Abstract. We describe in this paper the building of a vision sensor able to 
provide video capture and the associated global motion between two 
consecutive frames. Our objective is to propose embedded solutions for mobile 
applications. The global motion considered here is the one typically produced 
by handheld devices movement, which is required for our purpose of video 
stabilization. We extract this global motion from local motion measures at the 
periphery of the image acquisition area. Thanks to this peculiar and “task-
oriented” configuration, the resulting system architecture can take advantage of 
CMOS focal plane processing capabilities without sacrificing the sensor fill 
factor. Our approach is currently implemented in a CMOS 0.13µm technology. 

1   Introduction 

Our objective is to develop a smart CMOS image sensor for mobile systems (PDA, 
cell phone). Such handheld devices are very shake prone and often provide trembling 
video; also we focus in this paper on video stabilization. The best way to stabilize 
video is to perform an optical correction using gyro sensors and mobile 
optics/sensors, stabilizing directly the incidence of the light onto the focal plane. 
Nevertheless, this is a costly and burdening solution for embedded devices. 

Another approach is completely electronic. It consists in analyzing the main 
displacement between two consecutive frames of the video, so called global motion or 
camera motion, in order to separate the intentional motion from the unwanted one. 
This last is then compensated, resulting in a video without jolts [1]. This is the 
stabilization scheme we have adopted. We focus in the present paper on the crucial 
global motion estimation stage of the processing. 

Considering the signal processing architecture, such a motion estimation task can 
be realized as a post-processing of digital images coming from the imager (Fig. 1). In 
a time to market point of view, this is a very efficient way to implement an image 
processing on silicon. However, that means to process the huge amount of video data 
serially, which is very time and power consuming [2].  

In this paper, we investigate another way to perform motion estimation task by 
reporting part of the processing at pixel level. This approach speeds up the processing 
time and alleviates the computing power by making use of parallelism of the pixels 
needed in image sensors for light spatial sampling. The main drawback of this kind of 



silicon integration is the increased area per pixel, which decreases the fill-factor and 
the image resolution. But we present and validate in this paper a new global motion 
estimation technique based on local motion measures at the periphery of the image 
acquisition area. Thanks to this peculiar and “task-oriented” configuration, we take 
advantage of CMOS focal plane processing capabilities without sacrificing the sensor 
fill factor. Indeed, the silicon area has become the main contribution to the cost of 
image sensors, accounting for around 70% of the overall cost.  
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Fig. 1 : Signal processing partitioning. 

We describe in section 2 our global motion estimation technique, based on 
peripheral local motion measures. Section 3 is dedicated to its validation by software 
implementation, and section 4 to the evaluation and the partitioning of the processing. 
Then we describe in section 5 the transfer of part of it onto focal plane, performing 
pixel level processing. 

2   Global motion estimation 

2.1  Principle and basis 

In order to describe the global motion between two consecutive frames, we make use 
of a four components parametric model, called similarity model. This model allows us 
to describe the main global movements perceived in the focal plane: that means 
rotations around the optical axis, zoom, and X-Y translations. Then, such a parametric 
motion can be ascribed to most of the pixels in an image. It is also a good tradeoff 
between complexity, noise sensitivity, and description of the inter frames movement. 

Two kinds of motion are generally present in common video captures with 
handheld devices like cell phones: the one due to mobile elements in the scene, and 
the background one (Fig. 2). In our purpose of video stabilization, that is this last 
background movement which is of main interest as it informs directly about the 
camera/global motion. 

Moreover we point out that the periphery of images are particularly interesting for 
this task. Indeed, this area of interest contain local motions that better constrain the 
global motion parameters. Also, these local motions are well distributed in the images 
and background is often on the periphery of images. Therefore, we only focus on this 
area to extract the desired global motion (Fig. 2). 



  

 
Fig. 2 : Example of a scene, with the associated 

local motion vectors for a left panning of the 
camera. Edges on the right picture 

 point out  the area of interest. 
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Fig. 3 : Geometric system setting. 

2.2  Global motion estimation procedure 

Let us suppose that a picture “n” is transformed according to a geometric combination 
of a rotation θ, a zoom factor α, and two translations Tx and Ty, in another picture 
“n+1”: a pixel “j” with cartesian coordinates (Xj(n),Yj(n)) in frame “n” become the 
pixel with cartesian coordinates (Xj(n+1),Yj(n+1)) in frame “n+1”. The system in  
Fig. 3 describes such a geometric transformation. Applying this transformation to all 
the points of the area of interest, that leads to the following linear over determined 
system: 

P = K×M     (1) 
Where P is the matrix positions (Xj(n+1),Yj(n+1)), K the matrix linking these 

positions to the ones of frame “n”, composed of (Xj(n),Yj(n)) coordinates with “0” 
and “1”, and M contains the four transformation parameters. These parameters are Tx, 
Ty, α.cosθ, and α.sinθ. Then knowing P and K, we are able to determine the four 
global motion parameters M thanks to an optimization process.  

Matrix P is obtained summing original cartesian positions of pixels in frame “n” 
with local motions of this pixels between frame “n” and “n+1”. The optimization 
operation is performed here in a least squares sense, and the resulting estimation can 
be written as [3]: 

M = (KT×K)-1×KT×P    (2)  

3   Software implementation 

In order to validate our approach, we first evaluate the performances by software. 
Hence, we need to compute the local movement estimations at the periphery on the 
two consecutive images.  

3.1  Local motion estimation 

Several algorithms exist to perform local motion estimation, but one of the most 
efficient ways is to carry out pixel, or area, correspondence [4]. We have chosen two 
algorithms for extracting local motion vectors: the first is the well known full search 



block matching (FSBM), and the other comes from [5]. The last technique, called 
Census transform, consists in a local texture coding which results in a binary code for 
each pixel, that is then tracked from one frame into the next.  

3.2  Performances 

Using Matlab software, we have characterized our global motion estimation technique 
with respect to outdoor and indoor scenes. Firstly we built synthetic video sequences 
starting from a high resolution picture which we transformed and from which we 
picked a CIF one with a known displacement. Then we also grabbed real video 
sequences thanks to the same digital camera, providing a 15 im/s CIF video. Both 
synthetic and real sequences contain the same image texture. They have been captured 
in the same illumination conditions with various constant amplitudes of movement. 
These amplitudes are always lower than : 5% of the image size for translation, 3° for 
rotation, 2% for zoom. Both represent indoor and outdoor scenes. The indoor ones 
contain an environment of work with desks and chairs (lowly textured) and the 
outdoor ones are a nature environment with trees and a river (highly textured). 

The inter frame global motion being unknown in real sequences, we apply the 
precise and robust algorithm developed by [6] in order obtain our reference motions 
(source code with makefiles are available on the IRISA website: 
http://www.irisa.fr/Vista/Motion2D/index.html). This algorithm is proven reliable in 
various applications like underwater vehicle positioning, or super-resolution, and car 
driving assistance. 

We report in the following Table 1 the first results of our characterizations in 
terms of error percentage to the reference, or known, motion. As we can see, raw 
Census transform motion estimation gives lower results than block matching. 

 
 

 
Census 

5*5 
Bloc 

matching
Synthetic 
outdoor  5.8 % 0.02 % 

Real outdoor 71 % 12% 
 Synthetic. 

Indoor 6.2 % 0 % 

Real indoor 82 % 15 % 

Table 1 : First results on performances 
achieved with a software implementation of 

the global motion estimation (in terms of 
error percentage to the reference motion ). 

 

Search 
area 

FSBM 5×5 
~2×M²×S²×N Census 5*5 

+/-16 
pixels 

~15 232 068 op 
99.92 % 

~4 394 495 op 
99.73 % 

+/- 12 
pixels 

~8 736 042 op 
99.87 % 

~3 369 087 
99.65 % 

+/- 8 
pixels 

~4 032 002 op 
99.31 % 

~ 2 330 367 
99.49 % 

Table 2 : Processing load of local motion 
estimation in elementary operations, and the 

associated ratio to the total computational load 
of the global motion estimation (with N=280 

local motions on the periphery). 

4   Towards a vision system on chip 

Our final objective is to integrate the proposed technique to an image sensor. The 
main constraint, as discussed in the introduction of the paper is the silicon area. But 
the sensor has to perform the global motion estimation in real time and is dedicated to 
embedded devices, hence additional constraints have to be taken into account. 



4.1  Complexity analysis 

In the hierarchy of vision sensor design flow, complexity analysis is the first step to 
optimize the digital hardware required. 

Firstly we can point out that the lines number for all matrix involved in our 
technique can be half the original one, while keeping exactly the same estimation 
robustness. Indeed, let us suppose that we consider N positions of local motion 
estimations, the resulting over determined system of equation (1) contains 2N lines, as 
each position is described in the image plane by two coordinates. 

Then if a local motion is erroneous, it constitutes a proportion of 2/2N=1/N of the 
system, which is the same proportion as if we consider only one of the two new 
coordinates (1/N). Therefore we choose this last solution and we will involve in the 
global estimation only the coordinate parallel to the considered side of the image 
periphery. This is the same as computing one-dimensional motion estimation, and the 
overall processing load in terms of elementary operations number is half of the 
original one. We have quantified the total number of elementary operations to 
perform the global motion estimation, leading to 42N+207 operations, where N is the 
number of local motion considered in the periphery of the image. 

Let us now consider the local motion estimation processing load which constitutes 
the main part of the total load. Indeed, as described earlier, we compute local 
movement estimations thanks to matching algorithms, just as the well-used MPEG 
scheme. Unfortunately, these algorithms lead to highly regular low-level tasks, and a 
huge amount of data access through frame buffer is also required. In a typical video 
encoder for example, it accounts for as much as 60% of total CPU cycles [2]. In our 
case, FSBM and Census algorithms are both quadratic algorithms, with respective 
complexity of 2×M²×S²×N and S²×N. Where M×M are blocks of pixels,  S is the 
search area in pixels, and N the number of local movements considered. Let us 
consider that we perform one local motion measurement each 10 pixels of a SVGA 
frame, that means that N=280. In that case, it accounts for as much as the overall 
number of operations presented in the following Table 2. 

4.2  Hardware requirements and partitioning 

As pointed out in Table 2, local motion estimations accounts for around as much as 
99% of the total processing load required to extract the global motion between two 
consecutive frames.  

On the other hand, we can perform in CMOS technology numerous kinds of 
analog and/or mixed signal processing, as soon as the phototransduction [7], avoiding 
to perform the computation in the processing stage (Fig. 1). This computation saving 
being then allocated to higher level tasks as image segmentation for tracking for 
example. This is the processing partitioning that we propose, performing the 
peripheral local motion measurements at pixel level thanks to dedicated motion 
detectors, and adding the least square global motion estimation procedure to the 
processing hardware (Fig. 1). Therefore, the resulting vision sensor architecture is the 
one shown on the right in Fig. 4. 
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Fig. 4 : Common image sensor architecture (left), and our two proposed achitectures (center 

and right). The prefered architecture is the right one. 

5   Focal plane local motion measures 

Focal plane signal processing performed in vision sensors are often elementary 
operations in order to keep relative simple pixels and preserve the sensor fill-factor 
while benefiting from the intrinsic massive parallelism of image sensors to obtain 
powerful computing architecture. It is also possible to design specific architectures 
dedicated to particular tasks.  

Motion estimation is one of them, and several local motion detectors have been 
designed for this purpose [8]. Some of them are inspired from biology and constitute 
silicon models of elementary biological functions. Each of these smart pixels embeds 
additional electronics (around 20 transistors), leading to larger silicon area per pixel, 
hence lower resolution and higher cost compared to pixels dedicated only to the 
image acquisition (3 transistors). That is the main reason why these kind of smart 
pixels are not widely used in industry. 

However, fixing our task of global motion estimation considering only the 
periphery of the image acquisition area avoids this antagonism between pixel level 
processing and silicon area required. Also, we propose in the following section two 
kinds of focal plane processing estimating the desired local motions. In the first 
solution we integrate a modified version of the census transform (center in Fig. 4), 
and in the second solution we propose the integration of the entire local motion 
estimations (right in Fig. 4). 

5.1  Ternary census transform 

We firstly consider the silicon integration of the census transform, which has been 
previously detailed in [9]. Then, based on our circuit characterizations, we have 
carried out further validations on the census transform. That brought us to introduce a 
new version of it, especially dedicated to a focal plane processing type, where no 
noise reduction is performed (due to silicon area saving). This new census transform 
has been shown to be more robust to fixed pattern noise due to CMOS process 



dispersions [10]. The resulting pixel architecture involves an hysteresis comparator to 
perform luminance comparisons between pixels, associated to a 3 transistors active 
pixel sensor (Fig. 5). 

 

Fig. 5 : Pixel architecture integrating the   
ternary census transform. 
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Fig. 6 : Local motion measurement.

Each pixel results in a 10×10µm² area, instead of 4×4µm² for pixels specialized in 
image acquisition only. Moreover, as explained in section 3, local motions are 
obtained performing pixel correspondence with neighbours. This implies to integrate 
not only a single line of ternary census pixels around the image, but several lines in 
order to be able to determine the magnitude of inter frame movements (b. in Fig. 4).  

For a SVGA video module for example (sensor size which is currently on sale), 
the magnitude is about 3% of the image size, which equals about 21 pixels (in terms 
of image pixels size, i.e. 4×4µm² area). However in terms of ternary census pixels, it 
is equal to a displacement between 8 and 9 pixels in both directions. Therefore we 
need to integrate 2*9+1=19 lines of ternary pixels, increasing the image area by 22% 
of the original SVGA image acquisition area. This integration induces 50% saving of 
the overall computation load to perform global motion estimation (see Table 2). 

It is important to point out that this silicon area proportion is more and more 
decreasing as the image sensor resolution grows (which is the actually evolution).  

5.2  Local motion detector 

As introduced at the beginning of this section, several motion detectors have been 
designed to measure local motions. We focus currently on the ones described in [11]. 
The main advantage of such a processing is the continuous time mode of measuring 
local motion. Indeed it avoids the problem of temporal aliasing [8]. The principle 
illustrated in Fig. 6 is to measure the time ∆t of travel of a spatial or temporal feature 
of the scene (an edge for example) between two photo elements distant of L, resulting 
in a crossing speed of :  

t∆
L

=V
 

This measure is asynchronous, that is why we are currently developing a 
technique to process a temporal integration over the inter frame period in order to 
synchronize our data with the video. 

This elementary motion sensor is integrated in a 30×30µm² pixel. Moreover, 
thanks to the continuous time processing, only one line of such detectors are 
necessary, resulting in an increase in silicon area of 4% of the original SVGA image 



acquisition area. These local motion measurements induce around 99% saving of the 
overall computational load (see Table 2).  

6   Conclusion 

We have presented in this paper a new approach in performing video stabilization. 
The global motion required to fix this task is extracted from local motion estimations 
at the periphery of the image acquisition area. We performed a least-squares global 
motion estimation and local motion estimations with two pixel correspondence 
techniques: the Census transform and the block matching. The block matching 
technique gave us the best results, allowing to get a global motion estimation error of 
12% of the true motion in real video sequences. Such an error is suitable for standard 
video captures but appears not precise enough in cases of large movements. 

We have also described the building of a vision sensor able to provide video 
capture and the associated global motion. The main advantage of the proposed 
technique, in a vision system architecture point of view, is to perform each task of 
image acquisition and motion estimation independently, with the optimized focal 
plane processing. Indeed it avoids the sensible tradeoff between image pixel area and 
pixel level processing.  
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