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THE MINIMUM EVOLUTION DISTANCE-BASED
APPROACH TO PHYLOGENETIC INFERENCE

Richard Desper and Olivier Gascuel

Distance algorithms remain among the most popular for reconstructing
phylogenies, especially for researchers faced with data sets with large num-
bers of taxa. Distance algorithms are much faster in practice than character
or likelihood algorithms, and least-squares algorithms produce trees that
have several desirable statistical properties. The fast Neighbor Joining
heuristic has proven to be quite popular with researchers, but suffers some-
what from a lack of a statistical foundation. We show here that the balanced
minimum evolution approach provides a robust statistical justification and
is amenable to fast heuristics that provide topologies superior among the
class of distance algorithms. The aim of this chapter is to present a compre-
hensive survey of the minimum evolution principle, detailing its variants,
algorithms, and statistical and combinatorial properties. The focus is on
the balanced version of this principle, as it appears quite well suited for
phylogenetic inference, from a theoretical perspective as well as through
computer simulations.

1.1 Introduction

In this chapter, we present recent developments in distance-based phylogeny
reconstruction. Whereas character-based (parsimony or probabilistic) methods
become computationally infeasible as data sets grow larger, current distance
methods are fast enough to build trees with thousands of taxa in a few minutes on
an ordinary computer. Moreover, estimation of evolutionary distances relies on
probabilistic models of sequence evolution, and commonly used estimators derive
from the maximum likelihood (ML) principle (see Chapter 2, this volume). This
holds for nucleotide and protein sequences, but also for gene order data (see
Chapter 13, this volume). Distance methods are thus model based, just like
full maximum likelihood methods, but computations are simpler as the starting
information is the matrix of pairwise evolutionary distances between taxa instead
of the complete sequence set.

Although phylogeny estimation has been practiced since the days of Darwin,
in the 1960s the accumulation of molecular sequence data gave unbiased
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sequence characters (in contrast with subjective morphological characters) to
build phylogenies, and more sophisticated methods were proposed. Cavalli-Sforza
and Edwards [9] and Fitch and Margoliash [19] both used standard least-squares
projection theory in seeking an optimal topology. While statistically sound, the
least-squares methods have typically suffered from great computational com-
plexity, both because finding optimal edge lengths for a given topology was
computationally demanding and because a new set of calculations was needed
for each topology. This was simplified and accelerated by Felsenstein[18] in the
FITCH algorithm [17], and by Makarenkov and Leclerc [35], but heuristic least-
squares approaches are still relatively slow, with time complexity in O(n4) or
more, where n is the number of taxa.

In the late 1980s, distance methods became quite popular with the appear-
ance of the Neighbor Joining algorithm (NJ) of Saitou and Nei [40], which
followed the same line as ADDTREE [42], but used a faster pair selection
criterion. NJ proved to be considerably faster than least-squares approaches,
requiring a computing time in O(n3). Although it was not clear what criterion
NJ optimizes, as opposed to the least-squares method, NJ topologies have been
considered reasonably accurate by biologists, and NJ is quite popular when used
with resampling methods such as bootstrapping. The value of NJ and related
algorithms was confirmed by Atteson [2], who demonstrated that this approach
is statistically consistent; that is, the NJ tree converges towards the correct tree
when the sequence length increases and when estimation of evolutionary dis-
tances is itself consistent. Neighbor Joining has spawned similar approaches that
improve the average quality of output trees. BIONJ [21] uses a simple biological
model to increase the reliability of the new distance estimates at each matrix
reduction step, while WEIGHBOR [5] also improves the pair selection step using
a similar model and a maximum-likelihood approach.

The 1990s saw the development of minimum evolution (ME) approaches
to phylogeny reconstruction. A minimum evolution approach, as first sugges-
ted by Kidd and Sgaramella-Zonta [31], uses two steps. First, lengths are
assigned to each edge of each topology in a set of possible topologies by some
prescribed method. Second, the topology from the set whose sum of lengths
is minimal is selected. It is most common to use a least-squares method for
assigning edge length, and Rzhetsky and Nei [39] showed that the minimum
evolution principle is statistically consistent when using ordinary least-squares
(OLS). However, several computer simulations [11, 24, 33] have suggested that
this combination is not superior to NJ at approximating the correct topology.
Moreover, Gascuel, Bryant and Denis [25] demonstrated that combining ME with
a priori more reliable weighted least-squares (WLS) tree length estimation can be
inconsistent.

In 2000, Pauplin described a simple and elegant scheme for edge and
tree length estimation. We have proposed [11] using this scheme in a new
“balanced” minimum evolution principle (BME), and have designed fast tree
building algorithms under this principle, which only require O(n2 log(n)) time
and have been implemented in the FASTME software. Furthermore, computer
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simulations have indicated that the topological accuracy of FASTME is even
greater than that of best previously existing distance algorithms. Recently, we
explained [12] this surprising fact by showing that BME is statistically consistent
and corresponds to a special version of the ME principle where tree length is
estimated by WLS with biologically meaningful weights.

The aim of this chapter is to present a comprehensive survey of the min-
imum evolution principle, detailing its variants, mathematical properties, and
algorithms. The focus is on BME because it appears quite well suited for phylo-
genetic inference, but we shall also describe the OLS version of ME, since it was
a starting point from which BME definitions, properties, and algorithms have
been developed. We first provide the basis of tree metrics and of the ME frame-
work (Section 1.2). We describe how edge and tree lengths are estimated from
distance data (Section 1.3). We survey the agglomerative approach that is used
by NJ and related algorithms and show that NJ greedily optimizes the BME
criterion (Section 1.4). We detail the insertion and tree swapping algorithms we
have designed for both versions of ME (Section 1.5). We present the main con-
sistency results on ME (Section 1.6) and finish by discussing simulation results,
open problems and directions for further research (Section 1.7).

1.2 Tree metrics

We first describe the main definitions, concepts, and results in the study
of tree metrics (Sections 1.2.1 to 1.2.5); for more, refer to Barthélemy and
Guénoche [4] or Semple and Steel [43]. Next, we provide an alternate basis
for tree metrics that is closely related to the BME framework (Section 1.2.6).
Finally, we present the rationale behind distance-based phylogenetic inference
that involves recovering a tree metric from the evolutionary distance estimates
between taxa (Section 1.2.7).

1.2.1 Notation and basics
A graph is a pair G = (V,E), where V is a set of objects called vertices or
nodes, and E is a set of edges, that is, pairs of vertices. A path is a sequence
(v0, v1, . . . , vk) such that for all i, (vi, vi+1) ∈ E. A cycle is a path as above with
k > 2, v0 = vk and vi �= vj for 0 ≤ i < k. A graph is connected if each pair
of vertices, x, y ∈ V is connected by a path, denoted pxy. A connected graph
containing no cycles is a tree, which shall be denoted by T .

The degree of a vertex v, deg(v), is defined to be the number of edges con-
taining v. In a tree, any vertex v with deg(v) = 1 is called a leaf. We will use the
letter L to denote the set of leaves of a tree. Other vertices are called internal.
In phylogenetic trees, internal nodes have degree 3 or more. An internal vertex
with degree 3 is said to be resolved, and when all the internal vertices of a tree
are resolved, the tree is said to be fully resolved.

A metric is a function with certain properties on unordered pairs from a set.
Suppose X is a set. The function d: X × X → � (the set of real numbers) is
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a metric if it satisfies:

1. d(x, y) ≥ 0 for all x, y, with equality if and only if x = y.
2. d(x, y) = d(y, x) for all x, y.
3. For all x, y, and z, d(x, z) ≤ d(x, y) + d(y, z).

For the remainder of the chapter, we shall use dxy in place of d(x, y). We will
assume that X = L = [n] = {1, 2, . . . , n} and use the notation Met(n) to denote
the set of metrics on [n].

Phylogenies usually have lengths assigned to each edge. When the molecular
clock holds [49], these lengths represent the time elapsed between the endpoints
of the edge. When (as most often) the molecular clock does not hold, the evolu-
tionary distances no longer represent times, but are scaled by substitution rates
(or frequencies of mutational events, for example, inversions with gene order
data) and the same holds with edge lengths that correspond to the evolutionary
distance between the end points of the edges.

Let T = (V,E) be such a tree, with leaf set L, and with l: E → �+ a length
function on E. This function induces a tree metric on L: for each pair x, y ∈ L,
let pxy be the unique path from x to y in T . We define

dTxy =
∑

e∈pxy

l(e).

Where there is no confusion about the identity of T , we shall use d instead of dT .
In standard graph theory, trees are not required to have associated length

functions on their edge sets, and the word topology is used to describe the shape of
a tree without regard to edge lengths. For our purposes, we shall reserve the word
topology to refer to any unweighted tree, and will denote such a tree with calli-
graphic script T , while the word “tree” and the notation T shall be understood
to refer to a tree topology with a length function associated to its edges.

In evolutionary studies, phylogenies are drawn as branching trees deriving
from a single ancestral species. This species is known as the root of the tree.
Mathematically, a rooted phylogeny is a phylogeny to which a special internal
node is added with degree 2 or more. This node is the tree root, and is denoted
as r; when r has degree 2, it is said to be resolved.

Suppose there is a length function l: E → �+ defining a tree metric d.
Suppose further that all leaves of T are equally distant from r, that is, there
exists a constant c such that dxr = c for all leaves x. Then d is a special kind of
tree metric called spherical or ultrametric. When the molecular clock does not
hold, this property is lost, and the tree root cannot be defined in this simple way.

1.2.2 Three-point and four-point conditions
Consider an ultrametric d derived from a tree T . Let x, y, and z be three leaves
of T . Let xy, xz, and yz be defined to be the least common ancestors of x and
y, x and z, and y and z, respectively. Note that dxy = 2dx(xy) and analogous
equalities hold for dxz and dyz. Without loss of generality, xy is not ancestral



Oliv: “chap01” — 2005/1/20 — 15:28 — page 5 — #5

TREE METRICS 5

zx
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Fig. 1.1. Four-point condition.

to z, and thus xz = yz. In this case, dxz = 2dx(xz) = 2dy(yz) = dyz. In other
words, the two largest of dxy, dxz, and dyz are equal. This can also be written
as: for any x, y, z ∈ L,

dxy ≤ max{dxz, dyz}.
This condition is known as the ultrametric inequality or the three-point con-
dition. It turns out [4] that the three-point condition completely characterizes
ultrametrics: if d is any metric on any set L satisfying the three-point condition,
then there exists a rooted spherical tree T such that d = dT with L the leaf
set of T .

There is a similar characterization of tree metrics in general. Let T be a tree,
with tree metric d, and let w, x, y, z ∈ L, the leaf set of T . Without loss of
generality, we have the situation in Fig. 1.1, where the path from w to x does
not intersect the path from y to z. This configuration implies the (in)equalities:

dwx + dyz ≤ dwy + dxz = dwz + dxy.

In other words, the two largest sums are equal. This can be rewritten as: for all
w, x, y, z ∈ L,

dwx + dyz ≤ max{dwy + dxz, dwz + dxy}.
As with the three-point condition, the four-point condition completely charac-
terizes tree metrics [8, 52]. If d is any metric satisfying the four-point condition
for all quartets w, x, y, and z, then there is a tree T such that d = dT .

1.2.3 Linear decomposition into split metrics
In this section, we consider the algebraic approach to tree metrics. It is common
to represent a metric as a symmetric matrix with a null diagonal. Any metric d
on the set [n] can be represented as the matrix D with entries dij = d(i, j). Let
Sym(n) be the space of symmetric n by n matrices with null diagonals. Note
that every metric can be represented by a symmetric matrix, but Sym(n) also
contains matrices with negative entries and matrices that violate the triangle
inequality. It is typical to call Sym(n) the space of dissimilarity matrices on [n],
and the corresponding functions on [n] are called dissimilarities. Let An denote
the vector space of dissimilarity functions.

For all 1 ≤ i < j ≤ n, let E(ij) be the matrix with e
(ij)
ij = e

(ij)
ji = 1, and all

other entries equal zero. The set E = {E(ij): 1 ≤ i < j ≤ n} forms the standard
basis for Sym(n) as a vector space. We shall also express these matrices as vectors
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indexed by pairs 1 ≤ i < j ≤ n, with d(ij) being a vector with 1 in the (ij) entry,
and zero elsewhere. In the following discussion, we will consider other bases for
Sym(n) that have natural relationships to tree metrics.

The consideration of the algebraic structure of tree metrics starts naturally by
considering each edge length as an algebraic unit. However, as edges do not have
a meaning in the settings of metrics or matrices, our first step is to move from
edges to splits. A split, roughly speaking, is a bipartition induced by any edge
of a tree. Suppose X ∪ Y is a non-trivial bipartition of [n]; that is, X �= ∅ �= Y ,
and X ∪ Y = [n]. Such a bipartition is a split, and we will denote it by the
notation X|Y .

Given the split X|Y of [n], Bandelt and Dress [3] defined the split metric,
σX|Y on [n] by

σ
X|Y
ab =

{
1, if |X ∩ {a, b}| = 1,
0, otherwise.

Any tree topology is completely determined by its splits. Let e = (x, y) be
an edge of the topology T . Then define Ue = {u ∈ L : e ∈ pxu}, the set of leaves
closer to y than to x, and define Ve = L \ Ue. We define the set S(T ) to be the
set of splits that correspond to edges in T : S(T ) = {Ue | Ve : e ∈ E(T )}. For
the sake of simplicity, we shall use σe to denote σUe|Ve . This set shall prove to
be useful as the natural basis for the vector space associated with tree metrics
generated by the topology T .

Suppose X is a set of objects contained in a vector space. The vector space
generated by X, denoted 〈X〉, is the space of all linear combinations of elements
of X. Given a tree topology T , with leaf set [n], let Met(T ) be the set of
tree metrics from trees with topology T , and let A(T ) = 〈Met(T )〉. Any tree
metric can be decomposed as a linear sum of split metrics: if d is the metric
corresponding to the tree T (of topology T ),

d =
∑

e∈E(T )

lT (e)σe.

Thus A(T ) is a vector space with standard basis Σ(T ) = {σe : e ∈ E(T )}.
Note that dimA(T ) = |Σ(T )| = |E(T )| ≤ 2n − 3 (with equality when T is

fully resolved), and dimAn = n(n − 1)/2, and thus for n > 3, A(T ) is strictly
contained in An. Note also that many elements of A(T ) do not define tree
metrics, as edge lengths in tree metrics must be non-negative. In fact, the tree
metrics with topology T correspond exactly to the positive cone of A(T ), defined
by linear combinations of split metrics with positive coefficients.

1.2.4 Topological matrices
Let T be a tree topology with n leaves and m edges, and let e1, e2, . . . , em be
any enumeration of E(T ). Consider the n(n − 1)/2 by m matrix, AT , defined
by

aT
(ij)k =

{
1, if ek ∈ pij ,
0, otherwise.
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Suppose T is a tree of topology T . Let l be the edge length function on E,
let B be the vector with entries l(ei). Then

AT ×B = DT ,

where DT is the vector form with entries dT(ij). This matrix formulation shall
prove to be useful as we consider various least-squares approaches to edge length
estimation.

1.2.5 Unweighted and balanced averages
Given any pair, X, Y , of disjoint subsets of L, and any metric d on L, we use the
notation dX|Y to denote the (unweighted) average distance from X to Y under
d:

dX|Y =
1

|X||Y |
∑

x∈X,y∈Y

dxy, (1.1)

where |X| denotes the number of taxa in the subset X. The average distances
shall prove to be useful in the context of solving for optimal edge lengths in
a least-squares setting. Given a topology T with leaf set L, and a metric d on L,
it is possible to recursively calculate all the average distances for all pairs A, B
of disjoint subtrees of T . If A = {a}, and B = {b}, we observe that dA|B = dab.
Suppose one of A, B has more than one element. Without loss of generality,
B separates into two subtrees B1 and B2, as shown in Fig. 1.2, and we calculate

dA|B =
|B1|
|B| dA|B1 +

|B2|
|B| dA|B2 . (1.2)

It is easy to see that equations (1.1) and (1.2) are equivalent. Moreover, the same
equations and notation apply to define δA|B , that is, the (unweighted) average
of distance estimates between A and B.

Pauplin [38] replaced equation (1.2) by a “balanced” average, using 1/2 in
place of |B1|/|B| and |B2|/|B| for each calculation. Given a topology T , we
recursively define dT

A|B : if A = a, and B = b, we similarly define dT
A|B = dab, but

B

a

b

A

B1 B2

Fig. 1.2. Calculating average distances between subtrees.
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if B = B1 ∪B2 as in Fig. 1.2,

dT
A|B =

1
2
dT
A|B1

+
1
2
dT
A|B2

. (1.3)

For any fully resolved topology T , consideration of these average distances leads
us to a second basis for A(T ), which we consider in the next section.

The balanced average uses weights related to the topology T . Let τab denote
the topological distance (i.e. the number of edges) between taxa a and b, and
τAB the topological distance between the roots of A and B. For any topology T ,
equation (1.3) leads directly to the identity:

dT
A|B =

∑
a∈A,b∈B

2τAB−τabdab, (1.4)

where ∑
a∈A,b∈B

2τAB−τab = 1.

We thus see that the balanced average distance between a pair of subtrees places
less weight on pairs of taxa that are separated by numerous edges; this obser-
vation is consistent with the fact that long evolutionary distances are poorly
estimated (Section 1.2.7).

1.2.6 Alternate balanced basis for tree metrics
The split metrics are not the only useful basis for studying tree metrics. Desper
and Vingron [13] have proposed a basis related to unweighted averages, which is
well adapted to OLS tree fitting. In this section, we describe a basis related to
balanced averages, well suited for balanced length estimation.

Let e be an arbitrary internal edge of any given topology T , and let w, x, y,
and z be the four edges leading to subtrees W, X, Y , and Z, as in Fig. 1.3(a).
Let Be be the tree with a length of 2 on e and length −1/2 on the four edges w,
x, y, and z. Let βe be the dissimilarity associated to Be, which is equal to

βe = 2σe − 1
2
σw − 1

2
σx − 1

2
σy − 1

2
σz. (1.5)

Now consider e as in Fig. 1.3(b), and let Be be defined to have a length of 3
2 on

e, and a length of − 1
2 on y and z. Let βe be the dissimilarity associated with Be,

z

yw

z

(a) (b)

i
y

x

Y

ZZ

Y

ee

X

W

Fig. 1.3. Internal and external edge configurations.
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that is,

βe =
3
2
σe − 1

2
σy − 1

2
σz. (1.6)

Let βe′
Ue|Ve

be the balanced average distance between the sets of the bipartition

Ue | Ve when the dissimilarity is βe′
, where e′ is any edge from T . It is easily

seen that
βe′
Ue|Ve

= 1 when e = e′, else βe′
Ue|Ve

= 0. (1.7)

Let B(T ) = {βe: e ∈ E(T )}. Then β(T ) is a set of vectors that are mutu-
ally independent, as implied by equation (1.7). To prove independence, we
must prove that v =

∑
e ceβ

e = 0 implies ce = 0 for all e. Let e′ be any
edge of T and consider the balanced average distance in the e′ direction:
vUe′ |Ve′ =

∑
e ceβ

e
Ue′ |Ve′ = ce′ = 0. Thus, ce′ = 0 for all e′, and independence

is proven. Since B(T ) is a linearly independent set of the correct cardinality, it
forms a basis for A(T ). In other words, any tree metric can be expressed uniquely
in the form

d =
∑
e

dT
Ue|Ve

βe, (1.8)

which is another useful decomposition of tree metrics. From this decomposition,
we see that the length of T is the weighted sum of lengths of the Bes, that is,

l(T ) =
∑
e

dT
Ue|Ve

l(Be).

Note that l(Be) = 0 for any internal edge e, while l(Be) = 1/2 for any external
edge e. Thus

l(T ) =
1
2

∑
i∈L

dT
{i}|L\{i}. (1.9)

Returning to the expressions of equation (1.5) and equation (1.6), we can
decompose d as

d =
∑

e external
dT
Ue|Ve

(
3
2
σe − 1

2
σy − 1

2
σz

)

+
∑

e internal
dT
Ue|Ve

(
2σe − 1

2
σw − 1

2
σx − 1

2
σy − 1

2
σz

)
,

that is,

d =
∑

e external

(
3
2
dT
Ue|Ve

− 1
2
dT
Uy|Vy

− 1
2
dT
Uz|Vz

)
σe

+
∑

e internal

(
2dT

Ue|Ve
− 1

2
dT
Uw|Vw

− 1
2
dT
Ux|Vx

− 1
2
dT
Uy|Vy

− 1
2
dT
Uz|Vz

)
σe.

(1.10)
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Because the representation given by equation (1.8) is unique, equation (1.10)
gives us formulae for edge lengths: for internal edges,

l(e) = 2dT
Ue|Ve

− 1
2
dT
Uw|Vw

− 1
2
dT
Ux|Vx

− 1
2
dT
Uy|Vy

− 1
2
dT
Uz|Vz

, (1.11)

and for external edges,

l(e) =
3
2
dT
Ue|Ve

− 1
2
dT
Uy|Vy

− 1
2
dT
Uz|Vz

. (1.12)

We shall see that these formulae (1.9, 1.11, 1.12) correspond to the estim-
ates found by Pauplin via a different route. We shall also provide another
combinatorial interpretation of formula (1.9) due to Semple and Steel [44].

1.2.7 Tree metric inference in phylogenetics
Previous sections (1.2.1 to 1.2.6) describe the mathematical properties of tree
metrics. Inferring the tree corresponding to a given tree metric is simple. For
example, we can use the four-point condition and closely related ADDTREE
algorithm [42] to reconstruct the tree topology, and then formulae (1.11)
and (1.12) to obtain the edge lengths. However, in phylogenetics we only
have evolutionary distance estimates between taxa, which do not necessarily
define a tree metric. The rationale of the distance-based approach can thus be
summarized as follows [16].

The true Darwinian tree T is unknown but well defined, and the same holds
for the evolutionary distance that corresponds to the number of evolutionary
events (e.g. substitutions) separating the taxa. This distance defines a tree metric
d corresponding to T with positive weights (numbers of events) on edges. Due to
hidden (parallel or convergent) events, the true number of events is unknown and
greater than or equal to the observed number of events. Thus, the distance-based
approach involves estimating the evolutionary distance from the differences we
observe today between taxa, assuming a stochastic model of evolution. Such
models are described in this volume, in Chapter 2 concerning sequences and
substitution events, and in Chapter 13 concerning various genome rearrangement
events.

Even when the biological objects and the models vary, the basic principle
remains identical: we first compute an estimate ∆ of D, the metric associated
with T , and then reconstruct an estimate T̂ of T using ∆. The estimated dis-
tance matrix ∆ no longer exactly fits a tree, but is usually very close to a tree.
For example, we extracted from TreeBASE (www.treebase.org) [41] 67 Fungi
sequences (accession number M520), used DNADIST with default options to cal-
culate a distance matrix, and used NJ to infer a phylogeny. The tree T̂ obtained
in this (simple) way explains more than 98% of the variance in the distance
matrix (i.e.

∑
i,j(δij − dT̂ij)

2/
∑

i,j(δi,j − δ)2 is about 2%, where δ is the average
value of δij). In other words, this tree and the distance matrix are extremely
close, and the mere principle of the distance approach appears fully justified in
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this case. Numerous similar observations have been made with aligned sequences
and substitution models.

In the following, we shall not discuss evolutionary distance estimation, which
is dealt with in other chapters and elsewhere (e.g. [49]), but this is clearly a cru-
cial step. An important property that holds in all cases is that estimation of short
distances is much more reliable than estimation of long distances. This is simply
due to the fact that with long distances the number of hidden events is high and
is thus very hard to estimate. As we shall see (Section 1.3.7 and Chapter 13, this
volume), this feature has to be taken into account to design accurate inference
algorithms. Even if the estimated distance matrix ∆ is usually close to a tree,
tree reconstruction from such an approximate matrix is much less obvious than
in the ideal case where the matrix perfectly fits a tree. The next sections are
devoted to this problem, using the minimum evolution principle.

1.3 Edge and tree length estimation

In this section, we consider edge and tree length estimation, given an input
topology and a matrix of estimated evolutionary distances. We first consider the
least-squares framework (Sections 1.3.1 to 1.3.3), then the balanced approach
(Sections 1.3.5 and 1.3.6), and finally show that the latter is a special case of
weighted least-squares that is well suited for phylogenetic inference.

For the rest of this section, ∆ will be the input matrix, T the input topology,
and A will refer to the topological matrix AT . We shall also denote as l̂ the
length estimator obtained from ∆, T̂ the tree with topology T and edge lengths
l̂(e), B̂ the vector of edge length estimates, and D̂ = (d̂ij) the distance matrix
corresponding to the tree metric dT̂ . Depending on the context, ∆ and D̂ will
sometimes be in vector form, that is, ∆ = (δ(ij)) and D̂ = (d̂(ij)).

1.3.1 The least-squares (LS) approach
Using this notation, we observe that D̂ = AB̂, and the edge lengths are estim-
ated by minimizing the difference between the observation ∆ and D̂. The OLS
approach involves selecting edge lengths B̂ minimizing the squared Euclidean fit
between ∆ and D̂:

OLS(T̂ ) =
∑
i,j

(d̂ij − δij)2 = (D̂− ∆)t(D̂− ∆).

This yields:

B̂ = (AtA)−1At∆. (1.13)

However, this approach implicitly assumes that each estimate δij has the
same variance, a false supposition since large distances are much more vari-
able than short distances (Section 1.2.7). To address this problem, Fitch and
Margoliash [19], Felsenstein [18], and others have proposed using a WLS
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approach, that is, minimizing

WLS(T̂ ) =
∑
i,j

(d̂ij − δij)2

vij
= (D̂− ∆)tV−1(D̂− ∆),

where V is the diagonal n(n−1)/2×n(n−1)/2 matrix containing the variances
vij of the δij estimates. This approach yields

B̂ = (AtV−1A)−1AtV−1∆. (1.14)

OLS is a special case of WLS, which in turn is a special case of generalized least-
squares (GLS) that incorporates the covariances of the δij estimates [7, 47].
When the full variance–covariance matrix is available, GLS estimation is the
most reliable and WLS is better than OLS. However, GLS is rarely used in
phylogenetics, due to its computational cost and to the difficulty of estimat-
ing the covariance terms. WLS is thus a good compromise. Assuming that the
variances are known and the covariances are zero, equation (1.14) defines the
minimum-variance estimator of edge lengths.

Direct solutions of equations (1.13) and (1.14) using matrix calculations
requires O(n4) time. A method requiring only O(n3) time to solve the OLS
version was described by Vach [50]. Gascuel [22] and Bryant and Waddell [6]
provided algorithms to solve OLS in O(n2) time. Fast algorithms for OLS are
based on the observation of Vach [50]: If T̂ is the tree with edge lengths estimated
using OLS equation (1.13), then for every edge e in E(T̂ ) we have:

d̂Ue|Ve
= δUe|Ve

. (1.15)

In other words, the average distance between the components of every split is
identical in the observation ∆ and the inferred tree metric.

1.3.2 Edge length formulae
Equation (1.15) provides a system of linear equations that completely determines
edge length estimates in the ordinary least squares framework. Suppose we seek
to assign a length to the internal edge e shown in Fig. 1.3(a), which separates
subtrees W and X from subtrees Y and Z. The OLS length estimate is then [39]:

l̂(e) =
1
2
[λ(δW |Y + δX|Z) + (1 − λ)(δW |Z + δX|Y ) − (δW |X + δY |Z)], (1.16)

where

λ =
|W ||Z| + |X||Y |
|W ∪X||Y ∪ Z| . (1.17)

If the same way, for external edges (Fig. 1.3(b)) the OLS length estimate is
given by

l̂(e) =
1
2
(δ{i}|Y + δ{i}|Z − δY |Z). (1.18)
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These edge length formulae allow one to express the total length of all edges,
that is, the tree length estimate, as a linear sum of average distances between
pairs of subtrees.

1.3.3 Tree length formulae
A general matrix expression for tree length estimation is obtained from the
equations in Section 1.3.1. Letting 1 be a vector of 1s, we then have

l̂(T ) = 1t(AtV−1A)−1AtV−1∆. (1.19)

However, using this formula would require heavy computations. Since the
length of each edge in a tree can be expressed as a linear sum of averages between
the four subtrees incident to the edge (presuming a fully resolved tree), a minor
topological change will leave most edge lengths fixed, and will allow for an easy
recalculation of the length of the tree. Suppose T is the tree in Fig. 1.3(a) and
T ′ is obtained from T by swapping subtrees X and Y across the edge e, which
corresponds to a nearest neighbour interchange (NNI, see Section 1.5 for more
details). Desper and Gascuel [11] showed that the difference in total tree lengths
(using OLS estimations) can be expressed as

l̂(T ) − l̂(T ′) =
1
2
[(λ− 1)(δW |Y + δX|Z) − (λ′ − 1)(δW |X + δY |Z)

− (λ− λ′)(δW |Z + δX|Y )], (1.20)

where λ is as in equation (1.17), and

λ′ =
|W ||Z| + |X||Y |
|W ∪ Y ||X ∪ Z| .

We shall see in Section 1.5 that equation (1.20) allows for very fast algorithms,
both to build an initial tree and to improve this tree by topological
rearrangements.

1.3.4 The positivity constraint
The algebraic edge length assignments given in Sections 1.3.1 and 1.3.2 have the
undesirable property that they may assign negative “lengths” to several of the
edges in a tree. Negative edge lengths are frowned upon by evolutionary biolo-
gists, since evolution cannot proceed backwards [49]. Moreover, when using a
pure least-squares approach, that is, when not only the edge lengths are selected
using a least-squares criterion but also the tree topology, allowing for negative
edge lengths gives too many degrees of freedom and might result in suboptimal
trees using negative edge lengths to produce a low apparent error. Imposing
positivity is thus desirable when reconstructing phylogenies, and Kuhner and
Felsenstein [32] and others showed that FITCH (a pure LS method) has better
topological accuracy when edge lengths are constrained to be non-negative.

Adding the positivity constraint, however, removes the possibility of using
matrix algebra (equations 1.13 and 1.14) to find a solution. One might be temp-
ted to simply use matrix algebra to find the optimal solution, and then set
negative lengths to zero, but this jury-rigged approach does not provide an
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optimal solution to the constrained problem. In fact, the problem at hand is non-
negative linear regression (or non-negative least-squares, that is, NNLS), which
involves projecting the observation ∆ on the positive cone defined by A(T ),
instead of on the vector space A(T ) itself as in equations (1.13) and (1.14). In
general, such a task is computationally difficult, even when relatively efficient
algorithms exist [34]. Several dedicated algorithms have been designed for tree
inference, both to estimate the edge lengths for a given tree topology [4] and to
incorporate the positivity constraint all along tree construction [18, 26, 29, 35].
But all of these procedures are computationally expensive, with time complex-
ity in O(n4) or more, mostly due to the supplementary cost imposed by the
positivity constraint.

In contrast, minimum evolution approaches do not require the positivity con-
straint. Some authors have suggested that having negative edges might result in
trees with underestimated length, as tree length is obtained by summing edge
lengths. In fact, having internal edges with negative lengths tends to give longer
trees, as a least-squares fit forces these negative lengths to be compensated for
by larger positive lengths on other edges. Trees with negative edges thus tend
to be discarded when using the minimum evolution principle. Simulations [22]
confirm this and, moreover, we shall see in Section 1.3.5 that the balanced frame-
work naturally produces trees with positive edge lengths without any additional
computational cost.

1.3.5 The balanced scheme of Pauplin
While studying a quick method for estimating the total tree length, Pauplin [38]
proposed to simplify equations (1.16) and (1.18) by using weights 1

2 and the
balanced average we defined in Section 1.2.6. He obtained the estimates for
internal edges:

l̂(e) =
1
4
(δT

W |Y + δT
X|Z + δT

W |Z + δT
W |Y ) − 1

2
(δT

W |X + δT
Y |Z), (1.21)

and for external edges:

l̂(e) =
1
2
(δT

{i}|Y + δT
{i}|Z − δT

X|Y ). (1.22)

Using these formulae, Pauplin showed that the tree length is estimated using the
simple formula

l̂(T ) =
∑

{i,j}⊂L

21−τijδij . (1.23)

In fact, equations (1.21), (1.22), and (1.23) are closely related to the
algebraic framework introduced in Section 1.2.6. Assume that a property dual
of Vach’s [50] theorem (15) for OLS is satisfied in the balanced settings, that is,
for every edge e ∈ E(T ):

d̂ T
Ue|Ve

= δT
Ue|Ve

.
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We then obtain from equation (1.8) the following simple expression:

D̂ =
∑
e

d̂ T
Ue|Ve

βe =
∑
e

δT
Ue|Ve

βe.

As a consequence, equations (1.9), (1.11), and (1.12) can be used as estimators of
tree length, internal edge length, and external edge length, respectively, simply
by turning the balanced averages of D into those of ∆, that is, dT

X|Y becomes
δT
X|Y . These estimators are consistent by construction (if ∆ = D then D̂ = D)

and it is easily checked (using equations (1.3) and (1.4)) that these estimators
are the same as Pauplin’s defined by equations (1.21), (1.22), and (1.23). The
statistical properties (in particular the variance) of these estimators are given in
Section 1.3.7.

Moreover, we have shown [11] that the balanced equivalent of equa-
tion (1.20) is

l̂(T ) − l̂(T ′) =
1
4
(δT

W |X + δT
Y |Z − δT

W |Y − δT
X|Z). (1.24)

Equation (1.24) implies a nice property about balanced edge lengths.
Suppose we use balanced length estimation to assign edge lengths corres-

ponding to the distance matrix ∆ to a number of tree topologies, and consider
a tree T such that l̂(T ′) > l̂(T ) for any tree T ′ that can be reached from T by
one nearest neighbour interchange (NNI). Then l̂(e) > 0 for every internal edge
e ∈ T , and l̂(e) ≥ 0 for every external edge of T .

The proof of this theorem is obtained using equations (1.24) and (1.21).
First, consider an internal edge e ∈ T . Suppose e separates subtrees W
and X from Y and Z as in Fig. 1.3(a). Since T is a local minimum under
NNI treeswapping, the value of equation (1.24) must be negative, that is,
δT
W |X + δT

Y |Z < δT
W |Y + δT

X|Z . A similar argument applied to the other possible
NNI across e leads to the analogous inequality δT

W |X + δT
Y |Z < δT

W |Z + δT
W |Y .

These two inequalities force the value of l̂(e) to be positive according to equa-
tion (1.21). Now, suppose there were an external edge e with l̂(e) < 0. Referring
to equation (1.22), it is easy to see that a violation of the triangle inequality
would result, contradicting the metric nature of ∆ implied by the commonly
used methods of evolutionary distance estimation.

1.3.6 Semple and Steel combinatorial interpretation
Any tree topology defines circular orderings of the taxa. A circular ordering can
be thought of as a (circular) list of the taxa encountered in order by an observer
looking at a planar embedding of the tree. For example (Fig. 1.4), the tree
((1, 2), 3, (4, 5)) induces the four orderings (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (2, 1, 3, 4, 5),
and (2, 1, 3, 5, 4).

As one traverses the tree according to the circular order, one passes along
each edge exactly twice—once in each direction. Thus, adding up the leaf-to-leaf
distances resulting from all pairs of leaves adjacent in the circular order will
yield a sum equal to twice the total length of the tree. For example, using
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Fig. 1.4. Circular orders of a five-leaf tree.

(1, 2, 3, 4, 5) (which results from the tree in the upper left of Fig. 1.4), we get
l(T ) = (d12 + d23 + d34 + d45 + d51)/2.

In general, this equality holds for each circular order: given an order o =
(o(1), o(2), . . . , o(n)),

l(T ) = l(d, o) =
1
2

(
do(1)o(n) +

n−1∑
i=1

do(i)o(i+1)

)
.

As we average over o ∈ C(T ), the set of circular orders associated with the
tree T , we observe

l(T ) =
1

|C(T )|
∑

o∈C(T )

l(d, o). (1.25)

Semple and Steel [44] have shown that this average is exactly equation (1.9),
which becomes Pauplin’s formula (1.23) when substituting the dijs with the δij
estimates. Moreover, they showed that this result can be generalized to unre-
solved trees. Let u be any internal node of T , and deg(u) be the degree of u,
that is, 3 or more. Then the following equality holds:

l(T ) =
∑

{i,j}⊂L

λijdij , (1.26)

where

λij =
∏

u∈pij

(deg(u) − 1)−1
, when i �= j,

= 0 otherwise.

1.3.7 BME: a WLS interpretation
The WLS approach (equation (1.14)) takes advantage of the variances of the
estimates. It is usually hard (or impossible) to have the exact value of these
variances, but it is well known in statistics that approximate values are sufficient
to obtain reliable estimators. The initial suggestion of Fitch and Margoliash [19],
and the default setting in the programs FITCH [18] and PAUP* [48], is to
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assume variances are proportional to the squares of the distances, that is, to
use vij ∝ δ2

ij . Another common approximation (e.g. [21]) is vij ∝ δij . However,
numerous studies [7, 36, 37, 47] suggest that variance grows exponentially as a
function of evolutionary distance and, for example, Weighbor [5] uses this more
suitable approximation.

Desper and Gascuel [12] recently demonstrated that the balanced scheme cor-
responds to vij ∝ 2τij , that is, variance grows exponentially as a function of the
topological distance between taxa i and j. Even when topological and evolution-
ary distances differ, they are strongly correlated, especially when the taxa are
homogeneously sampled, and our topology-based approximation is likely captur-
ing most of above-mentioned exponential approximations. Moreover, assuming
that the matrix V is diagonal with vij ∝ 2τij , Pauplin’s formula (1.23) becomes
identical to matrix equation (1.19) and defines the minimum variance tree length
estimator. Under this assumption, the edge and tree lengths given by BME are
thus as reliable as possible. Since we select the shortest tree, reliability in tree
length estimation is of great importance and tends to minimize the probability
of selecting a wrong tree. This WLS interpretation then might explain the strong
performance of the balanced minimum evolution method.

1.4 The agglomerative approach

In this section, we consider the agglomerative approach to tree building. Agglom-
erative algorithms (Fig. 1.5) work by iteratively finding pairs of neighbours in
the tree, separating them from the rest of the tree, and reducing the size of
the problem by treating the new pair as one unit, then recalculating a distance
matrix with fewer entries, and continuing with the same approach on the smaller
data set.

The basic algorithms in this field are UPGMA (unweighted pair group method
using arithmetic averages) [45] and NJ (Neighbor Joining) [40]. The UPGMA
algorithm assumes that the distance matrix is approximately ultrametric, while
the NJ algorithm does not. The ultrametric assumption allows UPGMA to be
quite simple.

1.4.1 UPGMA and WPGMA
Given an input distance matrix ∆ with entries δij ,

1. Find i, j such that i �= j, δij is minimal.
2. Create new node u, connect i and j to u with edges whose lengths are δij/2.

X

T’

u

k k k

u

T T �

i

j

i

j

(a) (b) (c)

Fig. 1.5. Agglomerative algorithms: (a) find neighbours in star tree; (b) insert
new node to join neighbours; (c) continue with smaller star tree.
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3. If i and j are the only two entries of ∆, stop and return tree.
4. Else, build a new distance matrix by removing i and j, and adding u, with

δuk defined as the average of δik and δjk, for k �= i, j.
5. Return to Step 1 with smaller distance matrix.

Step 4 calculates the new distances as the average of two distances that
have been previously calculated or are original evolutionary distance estimates.
In UPGMA, this average is unweighted and gives equal weight to each of the
original estimates covered by the i and j clusters, that is, δuk = (|i|δik + |j|δjk)/
(|i| + |j|), where |x| is the size of cluster x. In WPGMA the average is
weighted (or balanced) regarding original estimates and gives the same weight
to each cluster, that is, δuk = (δik + δjk)/2. Due to ambiguity (weight of the
clusters/weight of the original distance estimates), these two algorithms are
often confused for one another and some commonly used implementations of
“UPGMA” in fact correspond to WPGMA. In biological studies it makes sense
to use a balanced approach such as WPGMA, since a single isolated taxon often
gives as much information as a cluster containing several remote taxa [45].

However, the ultrametric (molecular clock) assumption is crucial to Step 1.
If ∆ is a tree metric but not an ultrametric, the minimal entry might not repres-
ent a pair of leaves that can be separated from the rest of the tree as a subtree.
To find a pair of neighbours, given only a matrix of pairwise distances, the
Neighbor Joining algorithm of Saitou and Nei [40] uses a minimum evolution
approach, as we shall now explain.

1.4.2 NJ as a balanced minimum evolution algorithm
To select the pair of taxa to be agglomerated, NJ tests each topology created by
connecting a taxon pair to form a subtree (Fig. 1.5(b)) and selects the topology
with minimal length. As this process is repeated at each step, NJ can be seen as
a greedy algorithm minimizing the total tree length, and thus complying with
the minimum evolution principle. However, the way the tree length is estimated
by NJ at each step is not well understood. Saitou and Nei [40] showed that NJ’s
criterion corresponds to the OLS length estimation of the topology shown in
Fig. 1.5(b), assuming that every leaf (cluster) contains a unique taxon. Since
clusters may contain more than one taxon after the first step, this interpretation
is not entirely satisfactory. But we shall see that throughout the process, NJ’s
criterion in fact corresponds to the balanced length of topology as shown in
Fig. 1.5(b), which thus implies that NJ is better seen as the natural greedy
agglomerative approach to minimize the balanced minimum evolution criterion.

We use for this purpose the general formula (1.26) of Semple and Steel to
estimate the difference in length between trees T and T ′ in Fig. 1.5. Each of
the leaves in T and T ′ is associated to a subtree either resulting from a pre-
vious agglomeration, or containing a single, original, taxon that has yet to be
agglomerated. In the following, every leaf is associated to a “subtree.” Each
of these leaf-associated subtrees is binary and identical in T and T ′, and we
can thus define the balanced average distance between any subtree pair, which
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has the same value in T and T ′. Furthermore, the balanced average distances
thus defined correspond to the entries in the current distance matrix, as NJ uses
the balanced approach for matrix reduction, just as in WPGMA Step 4. In the
following, A and B denote the two subtrees to be agglomerated, while X and
Y are two subtrees different from A and B and connected to the central node
(Fig. 1.5). Also, let r be the degree of the central node in T , and a, b, x, and y
be any original taxa in A, B, X, and Y , respectively.

Using equation (1.26), we obtain:

l̂(T ) − l̂(T ′) =
∑

{i,j}⊂L

(λij − λ′
ij)δij ,

where the coefficients λ and λ′ are computed in T and T ′, respectively. The
respective coefficients differ only when the corresponding taxon pair is not within
a single subtree A,B,X, or Y ; using this, the above equation becomes:

l̂(T ) − l̂(T ′) =
∑
{a,b}

(λab − λ′
ab)δab +

∑
{a,x}

(λax − λ′
ax)δax

+
∑
{b,x}

(λbx − λ′
bx)δbx +

∑
{x,y}

(λxy − λ′
xy)δxy.

Using now the definition of the λ’s and previous remarks, we have:

l̂(T ) − l̂(T ′) =((r − 1)−1 − 2−1)δTAB + ((r − 1)−1 − (2(r − 2))−1)

×
∑
X

(δTAX + δTBX) + ((r − 1)−1 − (r − 2)−1)
∑

{X,Y }
δTXY .

Letting I and J be any of the leaf-associated subtrees, we finally obtain:

l̂(T ) − l̂(T ′) = − 2−1δTAB + 2−1(r − 2)−1


∑

I 
=A

δTAI +
∑
I 
=B

δTBI




+ ((r − 1)−1 − (r − 2)−1)
∑

{I,J}
δTIJ .

The last term in this expression is independent of A and B, while the first two
terms correspond to Studier and Keppler’s [46] way of writing NJ’s criterion [20].
We thus see that, all through the process, minimizing at each step the balanced
length of T ′ is the same as selecting the pair A,B using NJ’s criterion. This proves
that NJ greedily optimizes a global (balanced minimum evolution) criterion,
contrary to what has been written by several authors.

1.4.3 Other agglomerative algorithms
The agglomerative approach to tree metrics was first proposed by Sattath
and Tversky [42] in ADDTREE. This algorithm uses the four-point condition
(Section 1.2.2) to select at each step the pair of taxa to be agglomerated, and
is therefore relatively slow, with time complexity in O(n4). NJ’s O(n3) was thus
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important progress and the speed of NJ, combined with its good topological
accuracy, explains its popularity. To improve NJ, two lines of approach were
pursued.

The first approach was to explicitly incorporate the variances and covari-
ances of δij estimates in the agglomeration scheme. This was first proposed in
BIONJ [21], which is based on the approximation vij ∝ δij (Section 1.3.7) and
on an analogous model for the covariances; BIONJ uses these (co)variances when
computing new distances (Step 4 in algorithm of Section 1.4.1) to have more reli-
able estimates all along the reconstruction process. The same scheme was used
to build the proper OLS version of NJ, which we called UNJ (Unweighted Neigh-
bor Joining) [22], and was later generalized to any variance–covariance matrix of
the δijs [23]. Weighbor [5] followed the same line but using a better exponential
model of the variances [36] and, most importantly, a new maximum-likelihood
based pair selection criterion. BIONJ as well as Weighbor then improved NJ
thanks to better statistical models of the data, but kept the same agglomerative
algorithmic scheme.

The second approach that we describe in the next section involves using the
same minimum evolution approach as NJ, but performing a more intensive search
of the tree space via topological rearrangement.

1.5 Iterative topology searching and tree building

In this section, we consider rules for moving from one tree topology to another,
either by adding a taxon to an existing tree, or by swapping subtrees. We shall
consider topological transformations before considering taxon insertion, as select-
ing the best insertion point is achieved by iterative topological rearrangements.
Moreover, we first describe the OLS versions of the algorithms, before their BME
counterparts, as the OLS versions are simpler.

1.5.1 Topology transformations
The number of unrooted binary tree topologies with n labelled leaves is (2n−5)!!,
where k!! = k ∗ (k−2)∗ · · · ∗1 for k odd. This number grows large far too quickly
(close to nn) to allow for exhaustive topology search except for small values of n.
Thus, heuristics are typically relied upon to search the space of topologies when
seeking a topology optimal according to any numerical criterion. The following
three heuristics are available to users of PAUP* [48]. Tree bisection reconnection
(TBR) splits a tree by removing an edge, and then seeks to reconnect the res-
ulting subtrees by adding a new edge to connect some edge in the first tree with
some edge in the second tree. Given a tree T , there are O(n3) possible new
topologies that can be reached with one TBR. Subtree pruning regrafting (SPR)
removes a subtree and seeks to attach it (by its root) to any other edge in the
other subtree. (Note that an SPR is a TBR where one of the new insertion points
is identical to the original insertion point.) There are O(n2) SPR transforma-
tions from a given topology. We can further shrink the search space by requiring
the new insertion point to be along an edge adjacent to the original insertion
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point. Such a transformation is known as an NNI, and there are O(n) NNI trans-
formations from a given topology. Although there are comparatively few NNIs,
this type of transformation is sufficient to allow one to move from any binary
topology to any other binary topology on the same leaf set simply by a sequence
of NNIs.

1.5.2 A fast algorithm for NNIs with OLS
Since there are only O(n) NNI transformations from a given topology, NNIs
are a popular topology search method. Consider the problem of seeking the
minimum evolution tree among trees within one NNI of a given tree. The naive
approach would be to generate a set of topologies, and separately solve OLS for
each topology. This approach would require O(n3) computations, because we
would run the O(n2) OLS edge length algorithm O(n) times.

Desper and Gascuel [11] have presented a faster algorithm for simulaneously
testing, in O(n2) time, all of the topologies within one NNI of an initial topology.
This algorithm, FASTNNI, is implemented in the program FASTME. Given
a distance matrix ∆ and a tree topology T :

1. Pre-compute average distances ∆avg between non-intersecting subtrees
of T . Initialize hmin = 0. Initialize emin ∈ E(T ).

2. Starting with emin, loop over edges e ∈ E(T ). For each edge e, use equa-
tion (1.20) and the matrix ∆avg to calculate h1(e) and h2(e), the relative
differences in total tree length resulting from each of the two possible NNIs.
Let h(e) be the greater of the two. If hi(e) = h(e) > hmin, set emin = e,
hmin = h(e), and the indicator variable s = i.

3. If hmin = 0, stop and exit. Otherwise, perform NNI at emin in direction
pointed to by the variable s.

4. Recalculate entries of ∆avg. Return to Step 2.

Step 1 of FASTNNI can be achieved in O(n2) time using equation (1.2).
Each calculation of equation (1.20) in Step 2 can be done in constant time,
and, because there is only one new split in the tree after each NNI, each re-
calculation of ∆avg in Step 4 can be done in O(n) time. Thus, algorithm requires
O(n2) time to reach Step 2, and an additional O(n) time for each NNI. If s swaps
are performed, the total time required is O(n2 + sn).

1.5.3 A fast algorithm for NNIs with BME
The algorithm presented in Section 1.5.2 can be modified to also be used to
search for a minimum evolution tree when edges have balanced lengths. The
modified algorithm, FASTBNNI, is the same as FASTNNI, with the following
exceptions:

1. Instead of calculating the vector of unweighted averages, we calculate the
vector ∆T

avg of balanced averages.
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Fig. 1.6. Average calculation after NNI.

2. While comparing the current topology with possible new tree topologies,
we use equation (1.24) instead of equation (1.20) to calculate the possible
improvement in tree length.

3. Step 3 remains unchanged.
4. Instead of recalculating only averages relating to the new split WY | XZ,

(e.g. ∆T
WY |U for some set U ⊂ X ∪ Z), we also need to recalculate the

averages relating to ∆T
U |V for all splits where U or V is contained in one

of the four subtrees W , X, Y , or Z.

As with FASTNNI, Step 1 only requires O(n2) computations, and Step 2
requires O(n) computations for each pass through the loop. To understand the
need for a modification to Step 4, consider Fig. 1.6.

Let us suppose U is a subtree contained in W , and V is a subtree containing
X, Y , and Z. Let a, b, u, and v be as in the figure. When making the trans-
ition from T to T ′, by swapping subtrees X and Y , the relative contribution of
∆T

U |X to ∆T ′
U |V is halved, and the contribution of ∆T

U |Y is doubled, because Y is
one edge closer to U , while X is one edge further away. To maintain an accurate
matrix of averages, we must calculate

∆T ′
U |V = ∆T

U |V + 2−2−τav (∆T
U |Y − ∆T

U |X). (1.27)

Such a recalculation must be done for each pair U , V , where U is contained
in one of the four subtrees and V contains the other three subtrees. To count
the number of such pairs, consider tree roots u, v: if we allow u to be any node,
then v must be a node along the path from u to e, that is, there are at most
diam(T ) choices for v and n diam(T ) choices for the pair (u, v). Thus, each pass
through Step 4 will require O(n diam(T )) computations.

The value of diam(T ) can range from logn when T is a balanced binary
tree to n when T is a “caterpillar” tree dominated by one central path. If we
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Fig. 1.7. Inserting a leaf into a tree; T ′ is obtained from T by NNI of k and A.

select a topology from the uniform distribution on the space of binary topo-
logies, we would expect diam(T ) = O(

√
n), while the more biologically motivated

Yule-Harding distribution [28, 51] on the space of topologies would lead to an
expected diameter in O(log n). Thus, s iterations of FASTBNNI would require
O(n2 + sn log n) computations, presuming a tree with a biologically realistic
diameter.

1.5.4 Iterative tree building with OLS
In contrast to the agglomerative scheme, many programs (e.g. FITCH, PAUP*,
FASTME) use an approach iteratively adding leaves to a partial tree. Consider
Fig. 1.7. The general approach is:

1. Start by constructing T3, the (unique) tree with three leaves.
2. For k = 4 to n,

(a) Test each edge of Tk−1 as a possible insertion point for the taxon k.
(b) Based on optimization criterion (e.g. sum of squares, minimum

evolution), select the optimal edge e = (u, v).
(c) Form tree Tk by removing e, adding a new node w, and edges (u,w),

(v, w), and (w, k).
3. (Optional) Search space of topologies closely related to Tn using operations

such NNIs or global tree swapping.

Insertion approaches can vary in speed from very fast to very slow, depending
on the amount of computational time required to test each possible insertion
point, and on how much post-processing topology searching is done. The naive
approach would use any O(n2) algorithm to recalculate the OLS edge lengths for
each edge in each test topology. This approach would take O(k2) computations
for each edge, and thus O(k3) computations for each pass through Step 2(a).
Summing over k, we see that the naive approach would result in a slow O(n4)
algorithm.

The FASTME program of Desper and Gascuel [11] requires only O(k) com-
putations on Step 2(a) to build a greedy minimum evolution tree using OLS edge
lengths. Let ∆ be the input matrix, and ∆k

avg be the matrix of average distances
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between subtrees in Tk.

1. Start by constructing T3, the (unique) tree with three leaves; initialize
∆3

avg, the matrix of average distances between all pairs of subtrees in T3.
2. For k = 4 to n,

(a) We first calculate δ{k}|A, for each subtree A of Tk−1.
(b) Test each edge e ∈ Tk−1 as a possible insertion point for k.

i. For all e ∈ E, we will let f(e) to be the cost of inserting k along
the edge e.

ii. Root Tk−1 at r, an arbitrary leaf, let er be the edge incident to r.
iii. Let cr = f(er), a constant we will leave uncalculated.
iv. We calculate g(e) = f(e) − cr for each edge e. Observe g(er) = 0.

Use a top–down search procedure to loop over the edges of Tk−1.
Consider e = ej , whose parent edge is ei (see Fig. 1.7). Use equa-
tion (1.20) to calculate g(ej) − g(ei). (This is accomplished by
substituting A,B,C, and {k} for W , X, Y, and Z, respectively.)
Since g(ei) has been recorded, this calculation gives us g(ej).

v. Select emin such that g(emin) is minimal.
(c) Form Tk by breaking emin, adding a new node wk and edges connecting

wk to the vertices of emin and to k. Update the matrix ∆k
avg to include

average distances in Tk between all pairs of subtrees separated by at
most three edges.

3. FASTNNI post-processing (Section 1.5.2).

Let us consider the time complexity of this algorithm. Step 1 requires constant
time. Step 2 requires O(k) time in 2(a), thanks to equation (1.2), constant time
for each edge considered in 2(b)iv for a total of O(k) time, and O(k) time for
2(c). Indeed, updating ∆k

avg from ∆k−1
avg only requires O(k) time because we do

not update the entire matrix. Thus Tk can be created from Tk−1 in O(k) time,
which leads to O(n2) computations for the entire construction process. Adding
Step 3 leads to a total cost of O(n2 + sn), where s is the number of swaps
performed by FASTNNI from the starting point Tn.

1.5.5 From OLS to BME
Just as FASTBNNI is a slight variant of the FASTNNI algorithm for test-
ing NNIs, we can easily adapt the greedy OLS taxon-insertion algorithm of
Section 1.5.4 to greedily build a tree, using balanced edge lengths instead of
OLS edge lengths. The only differences involve calculating balanced averages
instead of unweighted averages.

1. In Step 2(a), we calculate δTk−1

{k}|A instead of δ{k}|A, using equation (1.3).
2. In Step 2(b)iv, we use equation (1.24) instead of equation (1.20) to calculate

g(ej).
3. In Step 2(c), we need to calculate δTk

X|Y for each subtree X containing k,
and each subtree Y disjoint from X.
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4. Instead of FASTNNI post-processing, we use FASTBNNI post-processing.

The greedy balanced insertion algorithm is a touch slower than its OLS coun-
terpart. The changes to Step 2(a) and 2(b) do not increase the running time,
but the change to Step 2(c) forces the calculation of O(k diam(Tk)) new aver-
age distances. With the change to FASTBNNI, the total cost of this approach
is O(n2 diam(T ) + sndiam(T )) computations, given s iterations of FASTBNNI.
Simulations [11] suggest that s � n for a typical data set; thus, one could expect
a total of O(n2 log n) computations on average.

1.6 Statistical consistency

Statistical consistency is an important and desired property for any method
of phylogeny reconstruction. Statistical consistency in this context means that
the phylogenetic tree output by the algorithm in question converges to the
true tree with correct edge lengths, when the number of sites increases and
when the model used to estimate the evolutionary distances is the correct one.
Whereas the popular character-based parsimony method has been shown to be
statistically inconsistent in some cases [15], many popular distance methods have
been shown to be statistically consistent. We first discuss positive results with
the OLS and balanced versions of the minimum evolution principle, then provide
negative results, and finally present the results of Atteson [2] that provide a
measure of the convergence rate of NJ and related algorithms.

1.6.1 Positive results
A seminal paper in the field of minimum evolution is the work of Rzhetsky and
Nei [39], demonstrating the consistency of the minimum evolution approach to
phylogeny estimation, when using OLS edge lengths. Their proof was based on
this idea: if T is a weighted tree of topology T , and if the observation ∆ is
equal to dT (i.e. the tree metric induced by T ), then for any wrong topology
W, l̂(W) > l̂(T ) = l(T ). In other words, T is the shortest tree and is thus
the tree inferred using the ME principle. Desper and Gascuel [12] have used
the same approach to show that the balanced minimum evolution method is
consistent.

The circular orders of Section 1.3.6 lead to an easy proof of the consistency of
BME (first discussed with David Bryant and Mike Steel). Assume ∆ = dT and
consider any wrong topology W. Per Section 1.3.6, we use C(W) to denote the set
of circular orderings of W, and let l̂(∆, o,W) be the length estimate of W from
∆ under the ordering o for o ∈ C(W). The modified version of equation (1.25)
yields the balanced length estimate of W:

l̂(W) =
1

|C(W)|
∑

o∈C(W)

l̂(∆, o,W).

If o ∈ C(W) ∩ C(T ), then l̂(∆, o,W) = l̂(∆, o, T ) = l(T ). If o ∈ C(W) \ C(T ),
then some edges of T will be double counted in the sum producing l̂(∆, o,W).
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Fig. 1.8. Wrong topology choice leads to double counting edge lengths.

For example, if T and W are as shown in Fig. 1.8, and o = (1, 2, 4, 3, 5) ∈ C(W)\
C(T ), then l̂(∆, o,W) (represented in Fig. 1.8 by dashed lines) counts the edge
e twice. It follows that l̂(W) > l̂(T ).

1.6.2 Negative results
Given the aforementioned proofs demonstrating the statistical consistency of
the minimum evolution approach in selected settings, it is tempting to hope that
minimum evolution would be a consistent approach for any least-squares estim-
ation of tree length. Having more reliable tree length estimators, for example,
incorporating the covariances of the evolutionary distance estimates, would then
yield better tree inference methods based on the ME principle. Sadly, we have
shown [25] that this is not always the case. Using a counter-example we showed
that the ME principle can be inconsistent even when using WLS length estim-
ation, and this result extends to various definitions of tree length, for example,
only summing the positive edge length estimates while discarding the negative
ones. However, our counter-example for WLS length estimation was artificial in
an evolutionary biology context, and we concluded, “It is still conceivable that
minimum evolution combined with WLS good practical results for realistic vari-
ance matrices.” Our more recent results with BME confirm this, as BME uses
a special form of WLS estimation (Section 1.3.7) and performs remarkably well
in simulations [12].

On the other hand, in reference [25] we also provided a very simple 4-taxon
counter-example for GLS length estimation, incorporating the covariances of
distance estimates (in contrast to WLS). Variances and covariances in this
counter-example were obtained using a biological model [36], and were thus
fully representative of real data. Using GLS length estimation, all variants of
the ME principle were shown to be inconsistent with this counter-example, thus
indicating that any combination of GLS and ME is likely a dead end.

1.6.3 Atteson’s safety radius analysis
In this section, we consider the question of algorithm consistency, and the cir-
cumstances under which we can guarantee that a given algorithm will return
the correct topology T , given noisy sampling of the metric dT generated by
some tree T with topology T . As we shall see, NJ, a simple agglomerative heur-
istic approach based on the BME, is optimal in a certain sense, while more
sophisticated algorithms do not possess this particular property.
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Given two matrices A = (aij) and B = (bij) of identical dimensions, some
standard measures of the distance between them include the Lp norms. For any
real value of p ≥ 1, the Lp distance between A and B is defined to be

‖A−B‖p =


∑

i,j

(aij − bij)p




1/p

.

For p = 2, this is the standard Euclidean distance, and for p = 1, this is
also known as the “taxi-cab” metric. Another related metric is the L∞ norm,
defined as

‖A−B‖∞ = max
i,j

|aij − bij |.

A natural question to consider when approaching the phylogeny reconstruc-
tion problem is: given a distance matrix ∆, is it possible to find the tree T
such that ‖dT −∆‖p is minimized? Day [10] showed that this problem is NP-hard
for the L1 and L2 norms. Interestingly, Farach et al. [14] provided an algorithm
for solving this problem in polynomial time for the L∞ norm, but for the restric-
ted problem of ultrametric approximation (i.e. ‖dT − ∆‖∞ is minimized over
the space of ultrametrics). Agarwala et al. [1] used the ultrametric approxim-
ation algorithm to achieve an approximation algorithm for the L∞ norm: if
ε = minT ‖dT − ∆‖∞, where dT ranges over all tree metrics, then the single
pivot algorithm of Agarwala et al. produces a tree T ′ whose metric dT

′
satisfies

‖dT ′ − ∆‖∞ ≤ 3ε.
The simplicity of the L∞ norm also allows for relatively simple analysis of

how much noise can be in a matrix ∆ that is a sample of the metric dT while
still allowing accurate reconstruction of the tree T . We define the safety radius
of an algorithm to be the maximum value ρ such that, if e is the shortest edge
in a tree T , and ‖∆ − dT ‖∞ < ρ l(e), then the algorithm in question will return
a tree with the same topology as T .

It is immediately clear that no algorithm can have a safety radius greater
than 1

2 : consider the following example from [2]. Suppose e ∈ T is an internal
edge with minimum length l(e). Let W , X, Y , and Z be four subtrees incident
to e, such that W and X are separated from Y and Z, as in Fig. 1.9. Let d be
a metric:

dij = dTij − l(e)
2

, if i ∈ W, j ∈ Y or i ∈ X, j ∈ Z,

dij = dTij +
l(e)
2

, if i ∈ W, j ∈ X or i ∈ Y, j ∈ Z,

dij = dTij , otherwise.

d is graphically realized by the network N in Fig. 1.9, where the edge e has been
replaced by two pairs of parallel edges, each with a length of l(e)/2.

Moreover, consider the tree T ′ which we reach from T by a NNI swapping
X and Y , and keeping the edge e with length l(e). Then it is easily seen that
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Fig. 1.9. Network metric equidistant from two tree metrics.

‖dT − d‖∞ = l(e)/2 = ‖dT ′ − d‖∞. Since d is equidistant to dT and dT
′
, no

algorithm could guarantee finding the correct topology, if d is the input metric.
Atteson [2] proved that NJ achieves the best possible safety radius, ρ = 1

2 .
If dT is a tree metric induced by T , ∆ is a noisy sampling of dT , and
ε = maxi,j |dTij − δij |, then NJ will return a tree with the same topology as T ,
providing all edges of T are longer than 2ε. In fact, this result was proven for a
variety of NJ related algorithms, including UNJ, BIONJ, and ADDTREE, and is
a property of the agglomerative approach, when this approach is combined with
NJ’s (or ADDTREE’s) pair selection criterion. An analogous optimality property
was recently shown concerning UPGMA and related agglomerative algorithms
for ultrametric tree fitting [27]. In contrast, the 3-approximation algorithm only
has been proven to have a safety radius of 1

8 .

1.7 Discussion

We have provided an overview of the field of distance algorithms for phylogeny
reconstruction, with an eye towards the balanced minimum evolution approach.
The BME algorithms are very fast—faster than Neighbor Joining and sufficiently
fast to quickly build trees on data sets with thousands of taxa. Simulations [12]
have demonstrated superiority of the BME approach, not only in speed, but also
in the quality of output trees. Topologies output by FASTME using the balanced
minimum evolution scheme have been shown to be superior to those produced by
BIONJ, WEIGHBOR, and standard WLS (e.g. FITCH or PAUP∗), even though
FASTME requires considerably less time to build them.
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The balanced minimum evolution scheme assigns edge lengths according to
a particular WLS scheme that appears to be biologically realistic. In this scheme,
variances of distance estimates are proportional to the exponent of topological
distances. Since variances have been shown to be proportional to the exponent
of evolutionary distances in the Jukes and Cantor [30] and related models of
evolution [7], this model seems reasonable as one expects topological distances
to be linearly related to evolutionary distances in most data sets.

The study of cyclic permutations by Semple and Steel [44] provides a new
proof of the validity of Pauplin’s tree length formula [38], and also leads to a con-
nection between the balanced edge length scheme and Neighbor Joining. This
connection, and the WLS interpretation of the balanced scheme, may explain
why NJ’s performance has traditionally been viewed as quite good, in spite of
the fact that NJ had been thought to not optimize any global criterion. The fact
that FASTME itself more exhaustively optimizes the same WLS criterion may
explain the superiority of the balanced approach over other distance algorithms.

There are several mathematical problems remaining to explore in studying
balanced minimum evolution. The “safety radius” of an algorithm has been
defined [2] to be the number ρ such that, if the ratio of the maximum measure-
ment error over minimum edge length is less than ρ, then the algorithm will be
guaranteed to return the proper tree. Although we have no reason to believe BME
has a small safety radius, the exact value of its radius has yet to be determined.
Also, though the BME approach has been proven to be consistent, the consist-
ency and safety radius of the BME heuristic algorithms (e.g. FASTBNNI and
the greedy construction of Section 1.5.5) have to be determined. Finally, there
remains the question of generalizing the balanced approach—in what settings
would this be meaningful and useful?
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