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Abstract. We consider the problem of tiling a segment {0, . . . , n} of the discrete line. More pre-
cisely, we ought to characterize the structure of the patterns that tile a segment and their number.
A pattern is a subset of N. A tiling pattern or tile for {0, . . . , n} is a subset A ∈ P(N) such that
it exists B ∈ P(N) and such that the direct sum of A and B equals {0, . . . , n}. This problem is
related to the difficult question of the decomposition in direct sums of the torus Z/nZ (proposed
by Minkowski). Using combinatorial and algebraic techniques, we obtain for any n ∈ N an explicit
characterization of all tiles of {0, . . . , n}. We prove that the tiles are direct sums of some arithmetic
sequences of specific lengths. Besides, we show there are as many tiles whose smallest tilable seg-
ment is {0, . . . , n} as tiles whose smallest tilable segment is {0, . . . , d} for all strict divisors d of n.
This enables us to exhibit a polynomial time algorithm to compute for a given pattern the smallest
segment that it tiles if any, as well as a recurrence formula for counting the tiles of a segment.

1 Introduction

Tilings are intriguing in many regards. Their structure, i.e., the way in which the tiles are assembled,
may be remarkably complex. As a matter of fact, a theorem from Berger [3] states that, given a set of
patterns, determining whether this set tiles the plane is undecidable. This result let us think there exist
sets of tiles that tile the plane only in complex ways. Indeed, Penrose and others [11, 4] demonstrated
there exist aperiodic sets of tiles (aperiodic means that it tiles the plane, but that none of its tilings
admits an invariant by translation). However, some related questions remain open. The smallest known
aperiodic set of tiles contains 13 tiles and it is unknown whether there is one with only one non necessarily
connected tile. Over and above that, it is undetermined whether the tiling of the plane with one non
connected pattern is decidable. Nevertheless, an interesting result from Beauquier-Nivat [1] states that if
the pattern is connected the problem is decidable, and if it exists a tiling, there is also a (doubly)-periodic
tiling (i.e., one that is invariant by two non-collinear vectors).

Even when restricted to bounded regions of the plane, tiling problems remain difficult combinatoric
questions on which little is known. Numerous articles report on specific cases. Among others, the problem
of tiling a connected region (respectively, a simply connected region) by dominos is polynomial [13] (resp.,
linear [14]). But, if generalized to a region that is non necessarily simply connected, the problem of tiling
by rectangles of size 1 × 3 and 3 × 1 becomes NP-complete [2].

Regarding these difficulties, it is natural to focus on tiling problems for the discrete line Z. These
problems are related to additive number theory, which studies the decompositions of sets of numbers
in sums of sets of numbers. A major theorem in this field is the decomposition of integers in sums of 4
squares (Lagrange’s theorem), which is written 4C = N where C :=

{

n2 : n ∈ N
}

. Let us also mention
Golbach’s conjecture (in a letter to L. Euler, 1742), which asks whether any even integer is the sum of
two primes.

Indeed in additive number theory, tiling the discrete line with a tile is equivalent, given a set A
(representing the tile), to finding a set B (representing the positions of the tile’s copies) such that the
function f(a, b) := a+b is one-to-one from A×B into Z. In this case, we denote it A⊕B = Z. A classical
result [9] states that in this case, it always exists a positions set B that is periodic (i.e., for which there is
an integer k such that B + k = B). As an immediate corollary, one obtains the decidability of the tiling
of the discrete line by a single pattern. Despite that, its algorithmic complexity remains open although
a lot of efforts have been dedicated to study bases for the integers [5, 15]. Moreover, the periodicity of
the positions set B raises the question of the characterization of sets A and B such that A⊕B = Z/nZ.
This problem formulated by Minkowski more than hundred years ago is still mainly unsolved despite the
last progress made by Hajòs [7, 8].



In this work, we focus on the characterization of sets A and B satisfying A ⊕ B =
[[

n
]]

, where
[[

n
]]

denotes the interval {0, ..., n−1}. To our knowledge, this question has not been addressed in the literature.
In a first part (Sections 2 and 3), we demonstrate using techniques from word theory that if A⊕B =

[[

n
]]

then either A or B tiles
[[

d
]]

, for d a proper divisor of n. For any n ∈ N, let us say a tile is n-specific

if its smallest tilable segment is
[[

n
]]

. More precisely, we exhibit a bijection between n-specific tiles and

d specific tiles for all strict divisors d of n. This result allows to count the tilings of
[[

n
]]

. The obtained
sequence is described in the Encyclopedia of Integer Sequences [12] by Zumkeller without relationship
to the theory of tilings.

Besides, we prove a theorem on the size of the smallest tilable segment in function of the tile’s
diameter. This solves in a specific case a conjecture of Nivat stating that the smallest torus Z/nZ that
can be tiled by a pattern of diameter d satisfies n ≤ 2d. Moreover, this enables us to exhibit a polynomial
time algorithm to decide whether a pattern tiles at least one interval of Z (Section 4).

In a second part (Section 4), using more algebraic techniques, we demonstrate that any tile of
[[

n
]]

can
be decomposed in irreducible tiles (i.e., tiles that are not sums of smaller tiles), which we characterize
explicitly. Furthermore, we know for any n how many irreducible tiles there are.

1.1 Definitions and notation.

Subsets of N and polynomials. Let N, resp. Z, be the set of non-negative integers, resp. of integers,
and P(N) the set of finite subsets of N. We denote the set of polynomials with coefficients in {0, 1} by
{0, 1} [X ]. We define the mapping ρ that to a finite subset of N associates a polynomial of {0, 1} [X ] by:

ρ : P(N) → {0, 1} [X ]
A −→ PA(X) :=

∑

a∈AX
a

Clearly, ρ is one-to-one. For all A ∈ P(N), we denote by c (A) its minimal element, by d (A) its maximal
element, and by # (A) its cardinality. d (A) is also the degree of PA.

Let A,B ∈ P(N) and k ∈ N. The following operations on sets have correspondents for polynomials:

union : PA∪B = PA + PB if and only if A ∩B = ∅,
difference : PA\B = PA − PB if and only if B ⊂ A,

translation : if one denotes A+ k := {a+ k : a ∈ A}, then PA+k(X) = PAX
k.

We introduce a notation for the direct sum. Let us denote by A ⊎ B the union with repetition for
all b ∈ B of the translates A + b. In general, this union is a multi-set on N, i.e., PA⊎B := P⊎b∈BA+b =
∑

b∈B PA+b is a polynomial with integral coefficients that are eventually strictly greater than 1. If it exists
C ∈ P(N) such that C = A ⊎B, then we denote it by C = A⊕B. In this case, PA⊎B := PA⊕B = PAPB

and it belongs to {0, 1} [X ]. In other words, we investigate the case where the sum is stable in P(N),
or where the product of polynomials is stable in {0, 1} [X ]. One says that a polynomial is irreducible in
{0, 1} [X ] if it does not admit a non trivial factorization in {0, 1} [X ]. When transposed to subsets of
N, A is irreducible means it is impossible to decompose A in a non trivial direct sum (i.e., other than
{0} ⊕A).

Besides, we say A is a prefix of B if and only if A ⊂ B and ∀i ∈ B such that i ≤ d (A), i ∈ A. By
convention, one admits that ∅ is prefix of any other subset of N. We denote by

[[

k
]]

the finite interval of
N of length k whose minimal element is 0, i.e., the interval [0, k − 1]. We use the word segment as an
alternate for interval.

In the sequel, for any finite subset A of N, we assume that c (A) = 0 (this is always true up to a
translation). We call A a pattern or motif. For a pattern A, d (A) is also termed diameter.

2 Properties of the direct sum

In this section, we investigate the properties of the direct sum that are useful to study the tilings of an
interval. Note that the propositions hereunder are true for subsets of N, but not necessarily for multi-sets
on N.

Proposition 1 (Sums of prefixes). Let A,B,B′, C, C′ be subsets of N such that A 6= ∅ and C is prefix

of C′. Then, together A⊕B = C and A⊕B′ = C′ imply that B is prefix of B′.

2



Proof. [Prop. 1] We proceed by induction on # (C). If C = ∅ then B = ∅, and B is prefix of B′. Now,
assume # (C) > 0. By hypothesis, there exists (a, b) ∈ A×B and (a′, b′) ∈ A×B′ such that a+b = minC
and a′ + b′ = minC. By definition of ⊕, (a + b = minC) implies that a = minA and b = minB, while
(a′ + b′ = minC) implies that a′ = minA = a and b′ = minB′. We get b = minB = b′ = minB′. Hence,
one has:

A⊕ (B \ {b}) = C \ ({b} ⊕A) , A⊕ (B′ \ {b}) = C′ \ ({b} ⊕A) ,

and C \ ({b} ⊕ A) is prefix of C′ \ ({b} ⊕A). By induction, we obtain that B \ {b} is prefix of B′ \ {b},
and thus, that B is prefix of B′. ⊓⊔

Proposition 2 (Sum of a partition). Let A,B,D be subsets of N such that D ⊆ A and A ⊕ B be a

subset of N. Let us denote by ∁AD the complement of D in A. Then (D ⊕B) and
(

∁AD ⊕B
)

partition

A⊕B.

Proof. [Prop. 2] Clearly, one has PA⊕B = PAPB = PDPB + (PA − PD)PB . ⊓⊔

This proposition is not verified when A⊕B is multi-set on N that is not a subset of N. For multi-sets,
we have the following property: Let C,D be such that A = C

⊎

D, then (C ⊕B)
⊎

(D⊕B) = A⊕B. In
general it is not true that (C ⊕B) ∩ (D ⊕B) = ∅, even if C ∩D = ∅.

We state two propositions of simplification.

Proposition 3 (Difference of intervals). Let A,B,C be subsets of N and m,n ∈ N. If A⊕B =
[[

m
]]

and A⊕ C =
[[

n
]]

with n ≥ m, then it exists D ⊂ N such that A⊕D =
[[

n−m
]]

and D := ∁CB −m.

Proof. [Prop. 3] As
[[

m
]]

is a prefix of
[[

n
]]

, we know by Proposition 1 that B is a prefix of C. Hence,

A⊕ ∁CB =
[[

n−m
]]

⊕ {m} =
[[

n−m
]]

+m, which yields

A⊕
(

∁CB −m
)

=
[[

n−m
]]

,

since the addition is associative. ⊓⊔

Example 1 Set A := {0, 2}, B := {0, 1, 4, 5} and B′ := {0, 1, 4, 5, 8, 9}. One has A ⊕ B =
[[

8
]]

and

A ⊕ B′ =
[[

12
]]

, i.e., m := 8 and n := 12. Let D := ∁CB − m = {8, 9} − 8 = {0, 1}, one obtains

A⊕D =
[[

4
]]

=
[[

n−m
]]

.

Proposition 4 (gcd of intervals). Let A,B be subsets of N and m,n ∈ N. If M ⊕ A =
[[

n
]]

and

M ⊕B =
[[

m
]]

, then it exists C ∈ N such that M ⊕ C =
[[

gcd(n,m)
]]

.

Proof. [Prop. 4] It follows from Proposition 3 by application of Euclid’s algorithm. ⊓⊔

Proposition 5 (Multiple of an interval). Let A,B be subsets of N and n ∈ N such that A⊕B =
[[

n
]]

.

Then, for all l ∈ N,

A⊕
(

⊕l−1

i=0(B + in)
)

=
[[

ln
]]

.

Proof. [Prop. 5] We have that A⊕B =
[[

n
]]

. Then for all i ∈ [0, l− 1], one has

A ⊕
(

in+B
)

= B ⊕
(

in+A
)

= (in+
[[

n
]]

)

and hence,

A⊕ ∪l−1

i=0

(

in+B
)

= ∪l−1

i=0

(

in+
(

A⊕B
)

)

= ∪l−1

i=0(in+
[[

n
]]

) =
[[

ln
]]

.

⊓⊔

Note that if # (A) is prime, then A can be decomposed only in the direct sum of the neutral element
and itself. We close with an elementary property.

Proposition 6. For any A ∈ P(N), one has #(A) ≤ d (A) + 1 and both members are equal if and only

if A =
[[

d (A)
]]

.
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3 Tiling an interval of the discrete line

In this section, let n ∈ N be an integer and f be a finite subset of N such that d (f) < n. We use the
following notation:

– for any x < y, we denote f ∩ [x, y] by f [x, y], and f ∩ [x, y[) by f [x, y[;
– for any 0 ≤ x ≤ d (f), let us denote by f [x] the subset {i ∈ f : i < x}.

Definition 1 (Tiling, dual). Let n ≥ 0 and f be a pattern such that d (f) < n. We say that f tiles
[[

n
]]

if and only if there exists f̂n, a subset of N, such that f ⊕ f̂n =
[[

n
]]

. We call f̂n the dual of f for n.

For a given n, the dual is unique. The notion of dual is idempotent: the dual of the dual of f is f itself,
and f̂n also tiles

[[

n
]]

. We say that a pattern f that tiles
[[

n
]]

is trivial if f := [0, n− 1] =
[[

n
]]

or f := {0}.
We define a notion of self-period for a pattern.

Definition 2 (Self-period a pattern). Let n ∈ N, f be a pattern such that d (f) < n and p be an

integer such that 0 ≤ p < d (f). We say that p is self-period of f for length n if and only if for any

i ∈ [0, n− p[ one has

i ∈ f ⇔ (i+ p) ∈ f .

For length n, we denote by Πn(f) the set of self-periods of f , and by πn(f) its smallest non null self-

period.

Definition 3 (Completely self-periodic). We say that a pattern is completely self-periodic for length

n if and only if it is an arithmetic sequence. I.e., if and only if one has j ∈ f ⇔ (∃i ∈
[

0, ⌊n/c⌋
]

: j = ic),
where c denotes the common difference.

Note that if a pattern f is completely self-periodic then its common difference is its smallest non-null
period, πn(f). We choose the word ”self-period” to avoid confusion with the notion of a tiling’s period
mentioned in the introduction. However, for the sake of simplicity, we use the word period instead of self-
period in the sequel, since the context prevents ambiguity. Furthermore, let us point out the connection
between the notions of a pattern self-periodicity and of word periodicity.

Example 2 Consider n := 12. The pattern f := {0, 1, 4, 5, 8, 9} has periods 0, 4 and 8. So, π12(f) = 4
and Π12(f) = {0, 4, 8}. It can be decomposed in {0, 1, 4, 5, 8, 9} = {0, 1} ⊕ {0, 4, 8}. These patterns,

{0, 1} and {0, 4, 8} are completely periodic for lengths 2 and 12 resp., with smallest period 1 and 4 resp.

Pattern f tiles
[[

12
]]

; its dual for n := 12 is f̂12 := {0, 2}, it tiles
[[

4
]]

,
[[

8
]]

and
[[

12
]]

. It is true that

#(f) × #
(

f̂12

)

= 6 × 2 = 12.

3.1 Properties of patterns that tile an interval.

Let f be a pattern. In the sequel, we assume that f tiles
[[

n
]]

. First, we list some elementary properties
of f .

Proposition 7. Let f be a pattern that tiles
[[

n
]]

. One has

1. #(f) × #
(

f̂n

)

= n,

2. d (f) + d
(

f̂n

)

= n− 1,

3. Either d (f) ≥ n/2 and d
(

f̂n

)

< n/2, or the opposite is true. Thus, we have either d (f) > d
(

f̂n

)

,

or d (f) < d
(

f̂n

)

.

Proof. [Prop. 7] The first two points are immediate consequences of the tiling’s definition in terms of

direct sum. For the second one, note that the sum of the largest elements of f and f̂n must equal n− 1.
For the third point, remark that a pattern and its dual cannot share more than the element 0. Thus, the

direct sum between f and f̂n implies that d (f) 6= d
(

f̂n

)

, hence the proposition. ⊓⊔

Now, let us state a simple and useful property. It follows from the positivity of the pattern’s elements
and from the properties of the direct sum.
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Proposition 8. For any x ∈
[[

n
]]

, one has [0, x] ⊆ f [0, x] ⊕ f̂n.

Proof. [Prop. 8.] That f tiles
[[

n
]]

implies [0, x] ⊆ f ⊕ f̂n. On the other hand, we know by Property 2
that

(f [0, x] ⊕ f̂n) ∩ (f [x+ 1, n[⊕f̂n) = ∅,

but any element of f [x+ 1, n[⊕f̂n is strictly greater than x. Hence, [0, x] ⊆ f [0, x] ⊕ f̂n. ⊓⊔

Let us show first that a non trivial pattern that tiles
[[

n
]]

admits a smallest non null period smaller

than
⌊

n/2
⌋

. Next Property demonstrates that this period divides n.

Proposition 9. Let f be a pattern that tiles
[[

n
]]

and such that d (f) > d
(

f̂n

)

. Then: πn(f) ≤
⌊

n/2
⌋

.

Proof. [Prop. 9.] If f is trivial, i.e., f :=
[[

n
]]

then πn(f) = 1 and the property is satisfied. Now, we
consider the case of a non trivial pattern f .

By contradiction, assume that πn(f) >
⌊

n/2
⌋

. Thus, we have n − πn(f) < πn(f). Let us first show

that
[[

n− πn(f)
]]

= f [n− πn(f)] ⊕ f̂n. By Property 8, the inclusion
[[

n− πn(f)
]]

⊆ f [n− πn(f)] ⊕ f̂n is

true. By contradiction, suppose there is i an element of f [n− πn(f)] ⊕ f̂n such that i ≥ n− πn(f). In

other words, there exist j ∈ f [n− πn(f)] and k ∈ f̂n such that i = j + k and i ≥ n− πn(f). Since πn(f)

is a period of f , one gets f [πn(f), n[ = f [n− πn(f)] + πn(f) and so, (j + k + πn(f)) ∈ f [πn(f), n[⊕ f̂n.
But

j + k + πn(f) ≥ n− πn(f) + πn(f) = n,

which contradicts f ⊕ f̂n =
[[

n
]]

. We have shown that
[[

n− πn(f)
]]

= f [n− πn(f)] ⊕ f̂n.

Thus, we have that f̂n tiles both
[[

n− πn(f)
]]

and
[[

n
]]

, and so, one obtains by Property 4 that

f̂n tiles
[[

gcd(n, πn(f))
]]

. Since by hypothesis πn(f) >
⌊

n/2
⌋

, one has gcd(n, πn(f)) <
⌊

n/2
⌋

and

f [gcd(n, πn(f))] ⊕ f̂n =
[[

gcd(n, πn(f))
]]

. By Proposition 5, it implies that gcd(n, πn(f)) is a period
of f for length n, which contradicts the minimality of πn(f). ⊓⊔

Lemma 1 Let f be a pattern that tiles
[[

n
]]

and satisfies d (f) > d
(

f̂n

)

. Thus, πn(f) divides n and

f [πn(f)] ⊕ f̂n =
[[

πn(f)
]]

.

Proof. First, consider the case where f is trivial. One has f =
[[

n
]]

, f̂n = {0}, and so, πn(f) = 1 and

divides n. Thus, f [πn(f)] =
[[

πn(f)
]]

and f [πn(f)] ⊕ f̂n =
[[

πn(f)
]]

. Now assume that f is not trivial.

One knows by Property 9 that πn(f) ≤
⌊

n/2
⌋

. Set d := n/πn(f) and set r := n mod πn(f); we know

that d ≥ 2. Let us first show that f [πn(f)] ⊕ f̂n =
[[

πn(f)
]]

.

By Property 8, one gets the inclusions
[[

πn(f)
]]

⊆ f [πn(f)]⊕ f̂n and
[[

r
]]

⊆ f [r] ⊕ f̂n. It implies that:

(

∪d
i=1

[[

πn(f)
]]

+ iπn(f)
)

⋃

([[

r
]]

+ dπn(f)
)

⊆ f ⊕ f̂n =
[[

n
]]

.

But, each translate of
[[

πn(f)
]]

has cardinality πn(f) and
[[

r
]]

has cardinality r. So the left hand side has
cardinality dπn(f) + r which equals n the cardinality of the right hand side. It follows that both sides

are equal, and that
[[

πn(f)
]]

= f [πn(f)] ⊕ f̂n, what we wanted, as well as f [r] ⊕ f̂n =
[[

r
]]

.
Now, let us prove by contradiction that πn(f) | n, and assume that r 6= 0. By Proposition 5,

f [r] ⊕ f̂n =
[[

r
]]

implies that r is a period of f for length n, which contradicts the minimality of πn(f).
⊓⊔

Next corollary follows from the patterns’ properties and from Lemma 1.

Corollary 1. If f tiles
[[

n
]]

and d (f) > d
(

f̂n

)

then d
(

f̂n

)

< πn(f).

By Property 5, we have that any tile of
[[

n
]]

also tiles
[[

ln
]]

for any integer l > 0. We deduce next
corollary from Lemma 1 and Property 5.

Corollary 2. Let f be a pattern and d be the smallest integer such that f tiles
[[

d
]]

. If d > 0, then the
[[

ld
]]

, for l ∈ N, are all the intervals f can tile.
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Theorem 3. Let n be an integer. Among the patterns f that tile
[[

n
]]

, it exists a one-to-one mapping

that, to any pattern f such that d (f) ≤ n/2, associates a pattern that tiles
[[

d
]]

for d a divisor of n. This

bijection associates to such a pattern f its dual f̂n.

Proof. [Theorem 3.] Theorem follows from Lemma 1 and Property 5. ⊓⊔

One obtains a canonical decomposition of patterns tiling
[[

n
]]

in irreducible patterns. Indeed, Theo-

rem 3 allows us to write any tile f of
[[

n
]]

as the direct sum of i/ a completely periodic pattern for length

n (with period a divisor strict of n) and ii/ one or more patterns that tiles
[[

d
]]

, with d a strict divisor of
n, and are completely periodic for length d. This decomposition result also is a corollary of Theorem 6
(section 4).

3.2 Numbers of tiles of an interval

Let n ∈ N such that n > 0. We denote by Ξn the set of tiles of
[[

n
]]

. Let ∆n be the subset of patterns

in Ξn whose diameter is smaller than or equal to
⌊

n/2
⌋

(i.e., those who tile
[[

d
]]

for d a strict divisor of
n), and let Ψn be the complement of ∆n in Ξn (i.e., those patterns with diameter strictly greater than
⌊

n/2
⌋

). By definition, one has Ξn = ∆n ∪ Ψn. We denote the cardinalities of these sets by ξn, δn, and
ψn, respectively.

Theorem 4. Let n ∈ N be an integer such that n > 1. One has ξ1 = 1 and

ξn = 1 +
∑

d∈N : d|n, d 6=n

ξd . (1)

Proof. [Theorem 4.] Direct investigation of the case n := 1 establishes that Ξ1 = {{0}} and ξ1 = 1,
since ∆1 = ∅, Ψ1 = {{0}}, δ1 = 0, and ψ1 = 1. By definition, for any n > 0, one has Ξn = ∆n ∪ Ψn, and
by Lemma 1 we obtain that

∆n =
⋃

d∈N:d|n,d 6=n

Ψd , δn =
∑

d∈N:d|n,d 6=n

ψd . (2)

As by definition for any n > 1, Ψn = {f̂n : f ∈ ∆n}, we obtain that δn = ψn, and therefore that ξn = 2δn.
Rewritting the latter using 2 yields

ξn = 2
∑

d∈N:d|n,d 6=n

ψd . (3)

Finally, we show that 1 is equivalent to 3. For any n > 1, one has

ξn = 2
∑

d∈N:d|n,d 6=nψd = 1 + ψ1 + 2
∑

d∈N:d|n,d>1,d 6=nψd

= 1 + ξ1 +
∑

d∈N:d|n,d>1,d 6=n ξd = 1 +
∑

d∈N:d|n,d 6=n ξd .

⊓⊔

The values of ξn for n > 0 are those of Sequence entry A067824 in [12], and (1) corresponds to the
recurrence relation given for this sequence par Zumkeller.

Corollary 5. If n > 1 is prime then ∆n = Ψ1, Ψn = {
[[

n
]]

}, Ξn = {{0},
[[

n
]]

}, δn = ψn = 1 and ξn = 2.

4 Algebraic approach

4.1 Polynomials decomposition

Let us denote by C the set of super-composite integers, i.e., all integers whose prime factorization contains
at least two different primes. It is known that Xn − 1 admits a unique decomposition (up to the order of
its factors) in irreducible elements of Z[X ]. Indeed, Z[X ] is an Euclidean ring, and as such, is factorial.
This decomposition is

Xn − 1 =
∏

d|n

Φd. (4)

where Φd is the d-th cyclotomic polynomial [10]. We use the following properties of cyclotomic polyno-
mials.
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Proposition 10.
• The degree of Φd is ϕ(d), where ϕ is Euler’s function.

• Φd(1) = p if d is a power of a prime p and Φd(1) = 1 otherwise.

• The polynomial Φd belongs to {0, 1} [X ] if and only if d /∈ C.

Proof. • First statement is a classical result [10].

• First, using (4), we obtain by induction that Φpn (X) =
∑p−1

i=0
X ip(n−1)

, and thus, that Φd(1) = p if
d = pn. Moreover, we have

1 + · · · +Xn−1 =
∏

d|n, d 6=1

Φd (X) =
∏

d|n, d 6=1, d∈C

Φd (X)
∏

d|n, d 6=1, d/∈C

Φd (X). (5)

Evaluating (5) in 1 yields

n =
∏

d|n, d 6=1

Φd (1) =
∏

d|n, d 6=1, d∈C

Φd (1)
∏

d|n, d 6=1, d/∈C

Φd (1).

However, it is clear that n =
∏

d|n,d 6=1,d/∈C Φd (1) (since for each pi|n, we have Φpi(1) = p) and so,

1 =
∏

d|n,d 6=1,d∈C Φd (1). It means that if d /∈ C then Φd(1) = 1.

• Third statement is a consequence of the second statement. We have already shown that if d /∈ C then

Φd = Φpn (X) =
∑p−1

i=0
X ip(n−1)

belongs to {0, 1} [X ]. Now, we know from first statement that if n ∈ C
then Φn(1) = 1. In {0, 1} [X ], for any polynomial P , its number of monomials equals P (1). As Φn(X)
has more than one monomial, it cannot be in {0, 1} [X ]. ⊓⊔

As ρ is a bijection, it induces a one-to-one correspondence between the pairs (A,B) ∈ P(N) ×
P(N) such that A ⊕ B =

[[

n
]]

, and the pairs (P,Q) ∈ ({0, 1} [X ] × {0, 1} [X ]) such that P (X)Q(X) =
1 + · · · +Xn−1. Moreover, as 1 + · · · +Xn−1 is factorizable in

∏

d|n,d 6=1
Φd(X), there exists a partition

of {d|n, d 6= 1} in D1 and D2 such that P (X) =
∏

d∈D1

Φd(X) and Q(X) =
∏

d∈D2

Φd(X).

4.2 Results

Lemma 2 Let P1, . . . , Pk be polynomials of {0, 1} [X ] such that
∏k

i=1
Pi belongs to {0, 1} [X ]. For each

extracted sequence Ps1 , . . . , Pst
, with 1 ≤ s1, . . . , st ≤ k, one has

∏t
i=1

Psi
∈ {0, 1} [X ].

Proof. Classically, we define the infinite norm ‖.‖∞ by ‖a0 + · · · + anX
n‖∞ := max (|ai|). The infinite

norm satisfies the following property: for each P,Q ∈ N [X ], ‖P‖∞ ‖Q‖∞ ≤ ‖PQ‖∞. Moreover, if
∏t

i=1
Psi

/∈ {0, 1} [X ], we have ‖
∏t

i=1
Psi

‖∞ > 1, which contradicts our hypothesis. ⊓⊔

For all n ∈ N, we call total valuation of n, denoted by νn, the sum of the powers in the prime
factorization of n. We call factorial sequence of n, a sequence u0, u1, . . . , us such that u0 := 1, us := n,
and ui+1/ui is a prime number. Observe that all factorial sequences of n have νn+1 terms. From a factorial
sequence of n, we can build a sequence of decomposition (Dui−1,ui

)1≤i≤s withDui−1,ui
:= {d|ui : d ∤ ui−1}.

For conciseness, for all D ∈ P(N) we write ΦD :=
∏

d∈D

Φd.

Lemma 3 Let n, p ∈ N with p prime. ΦDn,pn
belongs to {0, 1} [X ] and is irreducible in {0, 1} [X ].

Proof. As ΦDn,np
Φ{d|n:d 6=1} = 1 + · · · +Xnp−1 and Φ{d|n:d 6=1} = 1 + · · · +Xn−1, by division, we obtain

that ΦDn,np
∈ {0, 1} [X ]. As ΦDn,np

(1) = np/n is prime, it follows that ΦDn,np
is necessarily irreducible

in {0, 1} [X ]. ⊓⊔

Theorem 6. Each factorization of 1 + · · · +Xn−1 in irreducible elements in {0, 1} [X ] has the follow-

ing form
∏

1≤i≤s ΦDui−1,ui
where (Dui−1,ui

)1≤i≤s is a sequence of decomposition of n, and reciprocally.

Moreover, for all 1 ≤ i ≤ s, ΦDui−1,ui
(1) is a prime factor of n.

Note that the factorization may not be unique. Indeed, {0, 1} [X ] is not a factorial ring.
Proof. We proceed by induction on the value of νn. If νn = 1 then n is prime and 1 + · · · +Xn−1 = Φn.
Now suppose the theorem holds for all n such as νn < k. Let n ∈ N such that νn = k and let P1 . . . Pt

be a factorization of 1 + · · · +Xn−1 in irreducible polynomials of {0, 1} [X ]. By Lemma 2, we have that
t−1
∏

i=1

Pi ∈ {0, 1} [X ]. Two cases arise:
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1. There is j such that deg(Pj) > n/2.
Up to a renumbering of the polynomials, one can always suppose that j = t. By Theorem 3, we
get that there exist a polynomial Q ∈ {0, 1} [X ] and a divisor d of n such that Q

∏t−1

i=1
Pi =

1 + · · · +Xd−1. Thus, there is T ∈ {0, 1} [X ] such that TQ
∏t−1

i=1
Pi = 1 + · · · +Xn−1, which im-

plies Pt = TQ. But, Pt is supposed to be irreducible, which gives that Q = 1. As νd < k, we can
apply the induction hypothesis to the factorization

∏t−1

i=1
Pi of 1 + · · · +Xd−1 and deduce that it

arises from a sequence of decomposition of d.

Now, let us show by contradiction that n/d is prime. We suppose that there exists d1 such that d|d1

and d1|n. We can find two polynomials Q1, Q2 ∈ {0, 1} [X ] such that Q1, Q2 6= 1, Q1

∏t−1

i=1
Pi =

1 + · · · +Xd1−1, and Q2Q1

∏t−1

i=1
Pi = 1 + · · · +Xn−1. We obtain that Pt = Q1Q2, which contradicts

the irreducibility of Pt. We have shown that n/d is prime. Finally, it can be seen that Pt =
∏

m|n
m∤d

Φm.

2. For all j, deg(Pj) ≤ n/2.
In this case, for all j, there exist Qj ∈ {0, 1} [X ] and dj a strict divisor of n such that PjQj =
1 + · · · +Xdj−1. By induction hypothesis, Pj is an irreducible factor of ΦDj

where Dj belongs to a
sequence of decomposition of dj . However,

⋃

1≤j≤t Di partitions the divisors of n. So, there is i such
that n ∈ Di, which contradicts that Di belongs to a sequence of decomposition of a strict divisor of
n. This case never occurs.

⊓⊔

Example 3 For n := 12, the factorial sequences are: (1, 2, 4, 12), (1, 2, 6, 12), and (1, 3, 6, 12). The asso-

ciated sequences of decomposition are ({2}, {4}, {3, 6, 12}), ({2}, {3, 6}, {4, 12}), ({3}, {2, 6}, {4, 12}). We

obtain that the irreducible factors of 1 + · · · +Xn−1 in {0, 1} [X ] are Φ2, Φ3, Φ4, Φ3Φ6, Φ2Φ6, Φ3Φ6Φ12,

Φ4Φ12.

Theorem 7. The number vn of irreducible factors of 1 + · · · +Xn−1 in {0, 1} [X ] equals

∑

d|n

#{prime factors of d} .

Proof. It is enough to count theDd,dp that belong to a sequence of decomposition of n. I.e., to enumerate
the pairs (d, p) such that d is a divisor of n and p a prime divisor of d. This gives exactly the desired
sum. ⊓⊔

The pattern associated with the polynomial ΦDd,dp
is the arithmetic sequence starting in 0, of common

difference n, and having p terms. This gives the precise structure of all tiles of a segment.

A reciprocal polynomial is a polynomial such that P (X) := XnP (1/X), where n is the degree of P .

Corollary 8. Let f be a pattern which tiles an interval. The associated polynomial, Pf , is reciprocal.

Proof. An arithmetic sequence is associated to a reciprocal polynomial and the product of reciprocal
polynomial is reciprocal. ⊓⊔

Theorem 9. Let f be a pattern which tiles a interval. Then, the smallest nonempty interval it tiles is

smaller than 2d (f).

Proof. Let
[[

n
]]

be the smallest segment that f tiles. One has f ⊕ f̂n =
[[

n
]]

. Assume that d (f) ≤ n/2;

then, by Proposition 7 one gets d
(

f̂n

)

> d (f). Consequently, Lemma 1 implies that f tiles
[[

πn(f ′)
]]

,

which contradicts the minimality of
[[

n
]]

. ⊓⊔

Theorem 10. Let f be a pattern. Algorithm 1 decides in O(d (f)
2
) time whether there is n ∈ N such

that f tiles
[[

n
]]

.
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Algorithm 1: recognizes if a given pattern tiles at least an interval.

Data: a pattern f

Result: the minimal n ∈ N such that f tiles
ˆ̂

n
˜̃

if it exists, and −1 otherwise

g := {0}; i := 0;
while (d (f) + d (g) + 1 > #(f) # (g)) and (i ≤ d (f)) do

i := min (N \ f ⊕ g);
g := g

S

{i};
if f and g are not in direct sum then return −1;

if (d (f) + d (g) + 1 = # (f) # (g)) then return d (f) + d (g) + 1;
else return −1

Proof. Since successive values taken by i increase, Algorithm 1 stops. By application of Proposition 6
to f ⊕ g, we are sure that if d (f) + d (g) + 1 = #(f)# (g), then f tiles

[[

d (f) + d (g) + 1
]]

. Otherwise, if
the condition i ≤ d (f) is violated, Theorem 9 implies that f does not tile any segment. When the sets
f , g, and f ⊕ g are implemented as sorted lists, computing f ⊎ g and checking whether it is a direct sum
requires O(d (f)) time; this yields an overall time complexity of O(d (f)2). ⊓⊔

1

2 3

6
4

12

0 3

0 6

0 84

Fig. 1. The lattice of the sequences of decomposition for n := 12, and the associated irreducible tiles of
ˆ̂

n
˜̃

. A
path from 1 to 12 represents a sequence of decomposition of n. The direct sum of the subsets on the edges of the
path tile

ˆ̂

12
˜̃

.

5 Conclusion

This work characterizes the tilings of an interval as direct sums of arithmetic sequences. Counting results
obtained also show that, surprisingly, the number of patterns that tile a segment of length n depends,
not on the prime factors of n, but only on the list of their powers. E.g., segments of respective lengths
n1 := 5 × 72 × 24 and n2 := 13 × 32 × 114 (n1 and n2 have both (1, 2, 4) as list of powers), have the
same number of tiles. The regular structure of the tiles of a segment contrasts sharply with the singular
structure of those tiling the torus Z/nZ. Indeed for this problem, it exists irregular sets A and B such
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6 6

4 8 6

20

Fig. 2. The lattice of the tiles of
ˆ̂

n
˜̃

for n := 12. The pairs of edges having a common extremity represent the
direct sum to apply to two patterns to obtain the third one.

that A ⊕ B = Z/nZ [6]. However, our results exhibit a relation between tilings, words and polynomials
that opens promising directions for the tiling by a single pattern of the discrete plane or of special cases of
the torus. The proofs also shed light on the complementarity of combinatorial and algebraic approaches
for this types of problems.

Acknowledgments: we are grateful to O. Gandouet for reading the manuscript and to F. Philippe
for constructive comments.
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