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Abstract. Substitutions are powerful tools to study combinatorial prop-

erties of sequences. There exist strong characterizations through sub-

stitutions of the Sturmian sequences that are S-adic, substitutive or a

�xed-point of a substitution. In this paper, we de�ne a bidimensional

version of Sturmian sequences and look for analogous characterizations.

We prove in particular that a bidimensional Sturmian sequence is always

S-adic and give su�cient conditions under whose it is either substitutive

or a �xed-point of a substitution.

Introduction

Substitutions generate in�nite sequences by iteration, replacing a letter by a

word. One of the most interesting property of sequences obtained in this way

is that they are algorithmically easily generated and have a structure strongly

ordered, though not restricted to the single periodic case.

The connection between substitutions and Sturmian sequences has been

widely studied. Roughly speaking, a Sturmian sequence S�;� over the alpha-

bet f1; 2g encodes the way the line y = �x + �, � being irrational, crosses the

unit squares of the lattice Z2 (see Fig. 1 and for more details [9, 11]).
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Fig. 1. The Sturmian sequence � � � 112111211211 � � �

A sequence is S-adic (see [13]) if it can be written as an in�nite composition of

a �nite number of substitutions. So are Sturmian sequences, and more precisely:

S�;� = �

a1�c1

0 Æ �c10 Æ �a2�c21 Æ �c21 Æ �a3�c30 Æ �c30 Æ �a4�c41 Æ �c41 Æ � � �
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where (ai) is the continued fraction expansion of � and (ci) is the Ostrowski

expansion of � (see [4]). However, not only Sturmian sequences are S-adic (see

e.g. [8] for more details). Being more restrictive, one can consider the set of the

substitutives sequences, introduced in [7], that are the sequences image under a

morphism of a �xed-point of a (nontrivial) substitution:

S�;� = �(S 0) and S 0 = �(S 0):

It is proved that such sequences are exactly the Sturmian sequences S�;� with

a quadratic irrational slope � and an intercept � 2 Q(�) (see [4]). If we fur-

thermore require that S�;� itself is a �xed-point of a substitution, the previous

characterization becomes that � is a reduced quadratic irrational, with some

additional conditions on � (see e.g. [6, 14]). Let us recall (theorems of Lagrange

and Galois) that an irrational number is quadratic (resp. reduced quadratic) i�

its continued fraction expansion is eventually periodic (resp. purely periodic).

In this paper, we would like to proceed by analogy in the bidimensional case

in order to obtain similar results. The �rst di�culty arises from the analogy

itself, which is not so obvious and with whom we deal in the �rst three sections.

Section 1 de�nes bidimensional Sturmian sequences, our analogue of Sturmian

sequences. Sections 2 and 3 give the de�nition of, respectively, the bidimen-

sional substitutions and the bidimensional continued fraction expansion we have

chosen, namely the generalized substitutions introduced in [3] and the Brun's

algorithm (see [5]). It is indeed a choice since there is no canonical multidimen-

sional de�nition of a substitution or of a continued fraction expansion.

Our main results are given in Section 4. We here restricted ourselves to the

case of homogenous bidimensional Sturmian sequences, which correspond to the

Sturmian sequences S�;� for which � = 0. Theorem 3 proves that such bidimen-

sional sequences are S-adic, while Theorem 4 gives a partial characterization

very similar to the unidimensional case: a bidimensional Sturmian sequence is

proved to be substitutive (resp. �xed-point of a substitution) if its parameters -

the equivalent of the slope � of a Sturmian sequence - have an eventually periodic

(resp. a purely periodic) bidimensional continued fraction expansion.

In Section 5, we examine the result of Section 4 from a more practical point of

view: can we use the substitutions to e�ectively generate bidimensional Sturmian

sequences? Though it does not completly solve the problem, Theorem 5 give a

non trivial result in the substitutive case. We end the paper giving in Section 6

future extensions of the work presented here.

1 Stepped planes and bidimensional sequences

We here show how to associate to a plane a bidimensional sequence, by analogy

to the one-dimensional case. This analogy also leads to de�ne Sturmian bidi-

mensional sequences. One denotes (e1; e2; e3) the canonical basis of R
3 .
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The face (x; i�), for x 2 Z3 and i 2 f1; 2; 3g is de�ned by (see Fig. 2):

(x; i�) = fx+ rej + tek j 0 � r; t � 1 and i 6= j 6= kg:

e1 e2

e3

e2
e1

e3
x

0 0 0 0

Fig. 2. From left to right: the faces (0; i�), i = 1; 2; 3 and (x; 1�) = x+ (0; 1�).

These faces generate the Z-module of the formal sums of weighted faces

G = f
P

mx;i(x; i
�) j mx;i 2 Zg, on which the lattice Z3 acts by translation:

y +mx;i(x; i
�) = mx;i(y + x; i

�).

One then uses faces to approximate planes of R3 :

De�nition 1. Let P�;� be the homogenous plane of R3 de�ned by:

P�;� = fx 2 R3 j hx; t(1; �; �)i = 0g:

The stepped plane S�;� associated to P�;� is de�ned by:

S�;� =
�
(x; i�) j hx; t(1; �; �)i > 0 and hx � ei;

t(1; �; �)i � 0
	
;

and a patch of S�;� is a �nite subset of the faces of S�;�.

Notice that a patch of S�;� belongs to the Z-module G, but is geometric, that

is, without multiple faces. According to the terminology introduced by Reveillès

in [12], the stepped plane corresponds to the notion of standard arithmetic plane

in discrete geometry.

We now recall from [1] (see also [2]) the way one can bijectively encode a

stepped plane by a bidimensional sequence over three letters. We �rst de�ne a

one-to-one map from the faces of a stepped plane to its set of vertices:

Proposition 1 ([1]). Let v be the map from the faces of R3 to the vertices of

Z3 de�ned by (see Fig. 3, left):

v :

(x; 1�)! x

(x; 2�)! x+ e1

(x; 3�)! x+ e1 + e2:

Then v maps di�erent faces of a same stepped plane to di�erent vertices.

We then de�ne a bijective map from the vertices of a stepped plane to Z2:
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Proposition 2 ([1]). Let S�;� be a stepped plane. The orthogonal projection �

on the plane x+y+z = 0 is a bijection from S�;� to the lattice Z�(e1)+Z�(e2).

Thus the map ~� de�ned by ~�(x) = (m;n) i� �(x) = m�(e1) + n�(e2) is a

bijection from S�;� to Z2. Moreover, one has the explicit formulas:

~�

0
@p

q

r

1
A = (p� r; q � r);

~��1(m;n) =

0
@m

n

0

1
A+

�
1�

�
m+ �n

1 + �+ �

��0
@1

1

1

1
A
:

And �nally we give the encoding U�;� of a stepped plane S�;� (where U�;�(m;n)

is the letter at position (m;n) in the bidimensional sequence U�;�):

Proposition 3 ([1]). Let � be the map which maps a stepped plane S�;� to the

bidimensional sequence U�;� over the alphabet f1; 2; 3g de�ned by:

(x; i�) 2 S�;� , U�;�(~� Æ v(x; i
�)) = i;

or equivalently:

U�;�(m;n) = i , (v(~��1(m;n); i�); i�) 2 S�;�

Then � is one-to-one from the set fS�;� j 0 < �; � < 1g to the set of the bidimen-

sional sequences over f1; 2; 3g (see Fig. 3). Notice that not all the bidimensional

sequences over f1; 2; 3g correspond to a stepped plane.

One then de�nes Sturmian stepped planes and bidimensional Sturmian se-

quences by analogy with the unidimensional case:

De�nition 2. A stepped plane S�;� is a Sturmian stepped plane if 1, � and

� are linearly independent over Q. A bidimensional Sturmian sequence is the

image under � of a Sturmian stepped plane.

Thus, � is a bijection between the Sturmian stepped planes and the bidimen-

sional Sturmian sequences, for which we furthermore have explicit formulas.

2 Generalized substitutions

We here de�ne substitutions that act on stepped planes (or, equivalently, on the

bidimensional sequences corresponding to stepped planes). These substitutions

are the generalized substitutions, introduced in [3] (see also [11], Chap. 8).

Let us recall that the incidence matrix M� of a (classic) substitution � gives

at position (i; j) the number of occurences of the letter i in the word �(j).

Moreover, � is said unimodular if detM� = �1. We are now in a position to

de�ne the generalized substitutions :
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Fig. 3. From left to right: to each face corresponds a proper vertex (at its blacked

corner); type 1; 2 or 3 of a vertex depends on the type of its corresponding face; the

projection ~� on the plane x + y + z = 0 maps the vertices to a 2-dimensional lattice;

we thus obtain a bidimensional sequence over f1; 2; 3g.

De�nition 3. The generalized substitution associated to the unimodular sub-

stitution � is the endomorphism �� of G de�ned by:

8>>>><
>>>>:

8i 2 A; ��(0; i
�) =

P3
j=1

P
s:�(j)=p�i�s

�
M

�1
�

(f(s)); j�
�
;

8x 2 Z3
; 8i 2 A; ��(x; i

�) = M
�1
�

x+��(0; i
�);

8
P

m(x;i)(x; i
�) 2 G; ��

�P
m(x;i)(x; i

�)
�
=
P

m(x;i)��(x; i
�);

where f(w) = (jwj1; jwj2; jwj3) and jwji is the number of occurences of the letter

i in w.

Example 1. Let us consider the Rauzy substitution �:

� :

1! 12

2! 13

3! 1

; M� =

0
@1 1 1

1 0 0

0 1 0

1
A
:

� is unimodular, and one easily computes (see Fig. 4):

�� :

(e1; 1
�) 7! (e1; 1

�) + (e2; 2
�) + (e3; 3

�);

(e2; 2
�) 7! (e1 � e3; 1

�);

(e3; 3
�) 7! (e2 � e3; 2

�):

:

We now de�ne an especially interesting type of substitution:

De�nition 4. A substitution � is of Pisot type if its incidence matrix M� has

eigenvalues �1, �2 and � satisfying 0 < j�1j; j�2j < 1 < �. The generalized

substitution �� is then also said of Pisot type.

If � is of Pisot type and if t(1; �; �) is the left eigenvector of M� for the

dominant eigenvalue � (that is, t
M�

t(1; �; �) = �
t(1; �; �)), the plane P�;� is

called the contracting invariant plane of � and veri�es:
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Fig. 4. The endomorphism �� for the Rauzy substitution: action on (ei; i
�).

Proposition 4. 9�, 0 < � < 1, such that if x 2 P�;�, then M�x 2 P�;� and

one has:

jjM�xjj � �jjxjj:

The action of �� , when of Pisot type, on the stepped plane S�;� has some

nice properties proved in [3]. Indeed, �� maps each patch of S�;� to a patch

of S�;� , the unit cube U = f(ei; i
�); i = 1; 2; 3g is always a patch of S�;�

and the sequence (�n

�
(U)) is strictly increasing for inclusion and thus generates

arbitrarily large patches of S�;� (see Fig. 5).
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Fig. 5. �n

�
(U) (top) and (�Æ�� Æ�

�1)n(U) (bottom) for the Rauzy substitution (which

is of Pisot type), n = 0; 1; 2; 3; 4. Notice that the action of �� is not so obvious.
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3 Bidimensional continued fractions

Contrary to the unidimensional case with the Euclid's algorithm, there is no

canonical continued fraction expansion in the bidimensional case. We thus �x

here the expansion we will use further, that is the one produced by the modi�ed

Jacobi-Perron algorithm, which is a two-point extension of Brun's algorithm. Let

us recall this algorithm (see e.g. [5] for more details):

De�nition 5. Let be X = [0; 1)� [0; 1) and T the map de�ned on Xn(0; 0) by:

T (�; �) =

8>><
>>:

�
�

�
;
1
�
�
�
1
�

��
if � � �,

�
1
�
�
j
1
�

k
;
�

�
;

�
if � < �.

For n � 1 and if possible (that is, while �n�1 6= 0), one denotes:

(�n; �n) = T

n(�; �);

and de�nes:

(an; "n) =

8>><
>>:

�j
1

�n�1

k
; 0
�

if �n�1 � �n�1,

�j
1

�n�1

k
; 1
�

if �n�1 < �n�1.

The sequence (an; "n)n�1 is called the continued fraction expansion of (�; �)

(notice that an 2 N� and "n 2 f0; 1g). This sequence is in�nite i� 1, � and �

are linearly independent over Q

Let us give a matricial point of view on this algorithm. For a 2 N� , one de�nes
the substitutions:

�(a;0) :
1!

a timesz }| {
11 � � � 1 3

2! 1

3! 2

; �(a;1) :
1!

a timesz }| {
11 � � �1 2

2! 3

3! 1

;

whose incident matrices are:

A(a;0) =

0
@a 1 0

0 0 1

1 0 0

1
A
; A(a;1) =

0
@a 0 1

1 0 0

0 1 0

1
A
:

So that, with (�0; �0) = (�; �) and �k = max(�k�1; �k�1), one has for n � 1:

�n
t
A(an;"n)

0
@ 1

�n

�n

1
A =

0
@ 1

�n�1

�n�1

1
A
:

We can give an expanded formulation of the previous equality:
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Proposition 5. Let 1, � and � be linearly independent over Q and let (an; "n) be

the continued fraction expansion of (�; �). Then there exists a sequence (�n; �n)

of couples in [0; 1)2 such that:

8n 2 N;

0
@ 1

�

�

1
A = (�1�2 � � � �n)

t
A(a1;"1)

t
A(a2;"2) � � �

t
A(an;"n)

0
@ 1

�n

�n

1
A
:

4 Substitutions and bidimensional Sturmian sequences

The previous sections have successively de�ned the bidimensional Sturmian se-

quences (or, equivalently, the Sturmian stepped planes), substitutions acting on

these sequences and a bidimensional continued fraction expansion. We thus are

now in a position to try to extend in the bidimensional case the results for (uni-

dimensional) Sturmian sequences given in the introduction. Our results are �rst

given in terms of stepped plane, and are them summed up in terms of bidimen-

sional Sturmian sequences at the end of the section.

Let us �rst de�ne a generalized substitution which plays a speci�c role:

De�nition 6. The generalized substitution associated to the unimodular sub-

stitution of Pisot type �(a;") introduced in Section 3 is denoted �(a;"). Such a

generalized substitution is said of Brun type.

We then have the following fundamental theorem (proved in Appendix):

Theorem 1. �(an;"n) is a bijection from S�n;�n onto S�n�1;�n�1 .

We shall stress that there is no contradiction between Theorem 1 and the

results recalled at the end of Section 2, which would yield here that �(an;"n) is

a one-to-one map from the stepped plane associated to its contracting invariant

plane to itself. Indeed, neither P�n;�n nor P�n�1;�n�1 are invariant planes of

�(an;"n) (except if the expansion (an; "n) is purely periodic of period 1, in which

case all these planes are identical).

As we did in Proposition 5, we can give an expanded formulation of Theorem 1:

Theorem 2. Let S�;� be a Sturmian stepped plane and (an; "n) be the continued

fraction expansion of (�; �). Then there exists a sequence (S�n;�n) of Sturmian

stepped planes such that:

8n 2 N; S�;� = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(an;"n) (S�n;�n) :

We thus obtain for S�;� an equation - called expansion - which looks like the

classic S-adic expansion of a Sturmian sequence (see e.g. [13] for more details on

S-adicity), though the number of di�erent substitutions of our expansion may

be unbounded. We will �x this last point thanks to the following proposition:
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Proposition 6. Let us de�ne the substitutions:

�0 :

1! 1

2! 2

3! 13

; 0 :

1! 3

2! 1

3! 2

; �1 :

1! 1

2! 12

3! 3

; 1 :

1! 2

2! 3

3! 1

:

These substitutions are unimodular and verify:

8(a; ") 2 N � f0; 1g; �(a;") = �

a

"
Æ ":

An induction easily proves Proposition 6. Let �" and �" be the generalized

substitutions associated to �" and ". A computation yields ��Æ�0 = ��0 Æ �� ,

and Proposition 6 allows us to rewrite Theorem 2 in the following way:

Theorem 3. Let S�;� be a Sturmian stepped plane and (an; "n) be the continued

fraction expansion of (�; �). Then there exists a sequence (S�n;�n) of Sturmian

stepped planes such that:

8n 2 N; S�;� = �"1
Æ�a1

"1
Æ �"2 Æ�

a2
"2
Æ � � � Æ �"n Æ�

an
"n

(S�n;�n) ;

where �" and �" are associated to the substitutions de�ned in Proposition 6.

We now consider the case of periodic expansions. Let us recall that a sequence

(un) is eventually periodic with period p and preperiod d if n > d ) un+p = un.

If moreover d = 0, the sequence is said purely periodic. In this case, one has:

Theorem 4. Let S�;� be a Sturmian stepped plane and (an; "n) be the continued

fraction expansion of (�; �). If this expansion is eventually periodic, then there

exist two generalized substitutions �d and �p, and a stepped plane Sp such that:

S�;� = �d(Sp); with Sp = �p(Sp):

And if the expansion is purely periodic, one has simply:

S�;� = �p(S�;�):

Proof. It follows easily from Theorem 2 with:

�d = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(ad;"d);

�p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p);

Sp = S�d;�d ;

where p is the period of the expansion of (�; �) and d its preperiod. ut

According to the terminology used in the introduction, Theorem 3 and 4

state that a bidimensional Sturmian sequence U�;� has always a S-adic expan-

sion, and is substitutive (resp. a �xed-point of a substitution) if the expansion

of (�; �) is eventually periodic (resp. purely periodic). Notice that, contrary to

the unidimensional case, we do not yet obtain a complete characterization of

bidimensional Sturmian sequences that are substitutive or �xed-point of a sub-

stitution. We will discuss this more carefully in the last section.
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5 E�ective generation of stepped planes

It is to notice that successive applications of generalized substitutions on a �nite

initial patch do not necessarily cover, to in�nity, the whole stepped plane but

only an in�nite subset of it (think for example about a non simply-connected

subset or a cone . . . ). Such a problem, that we investigate in this section, can

however be of great practical interest, for example to e�ectively generate stan-

dard arithmetic plane in discrete geometry.

The following lemma, proved in Appendix, deals with the �almost� expansiv-

ity of a generalized substitution of Pisot type:

Lemma 1. Let � be a unimodular substitution � of Pisot type (all the notations

are those of Section 2). Then there exist k 2 [0; 1) and C 2 R+ such that:8<
:

(x; i�) 2 S�;�
(y; j�) 2 ��(x; i

�)

jjyjj � C

) jjxjj � kjjyjj:

It provides us a case in which one we can generate the whole stepped plane:

Theorem 5. Let S�;� be a substitutive stepped plane, that is, a stepped plane

such that there exist two generalized substitutions �d and �p verifying:

S�;� = �d(Sp); with Sp = �p(Sp):

If �p is of Pisot type and bijective on Sp, then there exists a �nite patch P of

Sp such that:

S�;� = �d

�
lim

n!+1
�

n

p
(P )

�
:

Proof. Let C and k be the constants of Lemma 1 for the substitution �p and

let P be the patch formed by the faces (x; i�) of Sp such that jjxjj � C.

Let (y; j�) be a face of Sp. Consider the sequence (ym; j
�

m
)m�1 such that (y1; j

�

1 ) =

(y; j�) and �p(ym+1; j
�

m+1) = (ym; j
�

m
). This sequence is well de�ned since �p is

bijective. While jjymjj � C, Lemma 1 yields jjym+1jj � kjjymjj, with k < 1.

Hence for m large enough, one has jjymjj � C, that is, (ym; j
�

m
) 2 P and

�
m

p
(ym; j

�

m
) = (y; j�). ut

In particular, by Theorem 1 and 4, the previous theorem holds if (�; �) has

an eventually periodic expansion of period p and preperiod d, under the hy-

pothesis that �p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p) is of Pisot type

(what can be false since for example �(1;1) Æ�(1;0) is not of Pisot type). Propo-

sition 6 can be used in practice to iterate on P only four di�erent generalized

substitutions, whatever �p may be.

Example 2. Let (�; �) have the purely periodic expansion [(1; 1); (1; 0); (1; 0)]�

(of period 3). One computes A(1;0)A(1;0)A(1;1) = M
2
�
, where � is the Rauzy

substitution introduced in Section 2. Thus �p = �(1;1) Æ�(1;0) Æ�(1;0) is of Pisot

type and S�;� , �xed-point of �p, can be generated applying �p to a �nite patch.
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Notice that it is easy to see in the previous example that �p and �� have the

same invariant plane, and thus both generate, starting from P , patches of the

same stepped plane. But we shall stress that Theorem 1 yields the bijectivity

of �p as product of substitutions of Brun type (see De�nition 6). The

Rauzy substitution - or any substitution with the same incidence matrix M� -

might do not be bijective (more precisely not onto) on S�;� . We can certainly

claim that such a substitution generates arbitrarily large patches of S�;� , but not
necessarily the whole plane to in�nity. In fact, explicit examples of substitutions

of Pisot type which do not cover the whole plane are known (though the Rauzy

substitution is not one of them).

6 Perspectives

This paper has de�ned the bidimensional Sturmian sequences (or, equivalently,

the Sturmian stepped planes), on which act the generalized substitutions in-

troduced in [3]. We have proved that every bidimensional Sturmian sequence is

S-adic (according to the terminology of [13]), what extends to the bidimensional

case the analogous result already known for unidimensional Sturmian sequences.

Similarly, the su�cient condition (on eventually or purely periodic continued

fraction expansions), for unidimensional Sturmian sequences to be substitutive

or �xed-point of a substitution, has been here extended to an analogous condi-

tion (on Brun's expansions), for bidimensional Sturmian sequences. However, we

did not prove that our condition is also necessary, though it holds in the unidi-

mensional case. A way to �x that, could be to extend the notion of return word

- introduced in [7] and used to prove the unidimensional case - to some suitable

bidimensional analogous notion of �return pattern�. Such a bidimensional exten-

sion of return word have already been done in [10]. We hence have good hopes to

complete our characterization of substitutive bidimensional Sturmian sequences.

As noticed in the introduction, we focused on the homogenous case, that is

the analogous of the unidimensional Sturmian sequences with intercept equals

to zero (that is, S�;� with � = 0, according to the notation of the introduction).

Indeed, instead of the plane P�;� of De�nition 1, we should consider the general

case of a plane P�;�;� = t(0; 0; �) + P�;�. In the unidimensional case, taking

into account an intercept � just leads to additional conditions that are, roughly

speaking, conditions on the Ostrowski expansion of � similarly to the conditions

on the continued fraction expansion of � (see [4]). It remains to give and prove

some similar conditions on the intercept in the bidimensional case.

Last, we could carry out some improvements to the more practical results of

Section 5. Indeed, starting from a �nite initial patch to iterate a substitution is

certainly more convenient than starting from the whole plane. But it is not so

easy to compute this �nite patch. Could not the unit cube U , which is proved

to be a patch of any stepped plane, su�ces to generate the whole plane, as it
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is the case for the Rauzy substitution? Some counter-examples prove that the

answer is in general negative, but it would be interesting to characterize the

�good� cases. Similarly, conditions to have the substitution �p of Theorem 5 of

Pisot type (and thus, suitable to generate the plane) would be interesting.

Acknowledgements.We would like to thank Valérie Berthé and Pierre Arnoux
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Appendix

Proof of Theorem 1 results of the three following lemmas:

Lemma 2. �(an;"n) maps a face of S�n;�n to faces of S�n�1;�n�1.

Proof. Let (x; i�) be a face of S�n;�n . By de�nition:

hx; t(1; �n; �n)i > 0 and hx � ei;
t(1; �n; �n)i � 0:

A face (y; j�) of the image �(an;"n)(x; i
�) can be written:

y = A

�1
(an;"n)

(x+ f(s)); with �(an;"n)(j) = p� i� s:

It su�ces to prove that (y; j�) belongs to S�n�1;�n�1 , that is:

hy; t(1; �n�1; �n�1)i > 0 and hy � ej ;
t(1; �n�1; �n�1)i � 0:

One has:

hy; t(1; �n�1; �n�1)i = hA�1
(an;"n)

(x+ f(s)); t(1; �n�1; �n�1)i

= hx+ f(s); tA�1
(an;"n)

t(1; �n�1; �n�1)i

= hx+ f(s); �n
t(1; �n; �n)i

= �n hx;
t(1; �n; �n)i| {z }

>0

+�n hf(s); t(1; �n; �n)i| {z }
�0 since f(s);�n;�n�0

So hy; t(1; �n�1; �n�1)i > 0. Similarly:

hy � ej ;
t(1; �n�1; �n�1)i = hA�1

(an;"n)
(x+ f(s))� ej ;

t(1; �n�1; �n�1)i

= hx+ f(s)�A(an;"n)ej ;
t
A

�1
(an;"n)

t(1; �n�1; �n�1)i

= �nhx + f(s)�A(an;"n)ej ;
t(1; �n; �n)i

But it holds, by de�nition of the incidence matrix and of f :

A(an;"n)ej = f(�(an;"n)(j)) = f(p) + ei + f(s) � ei + f(s);

from what follows hy � ej ;
t(1; �n�1; �n�1)i � 0. ut

Lemma 3. �(an;"n) is one-to-one from S�n;�n to S�n�1;�n�1.

Proof. Let (x; i�) and (x0; i0�) be two faces of S�n;�n and suppose that there is a

face (y; j�) both in �(an;"n)(x; i
�) and �(an;"n)((x

0
; i
0�). By Lemma 2, we already

know that (y; j�) lies in S�n�1;�n�1 . One can write y in two ways:

y = A

�1
(an;"n)

(x + f(s)) = A

�1
(an;"n)

(x0 + f(s0));

where �(an;"n)(j) = p� i� s = p
0� i0� s0. We thus have x+ f(s) = x

0 + f(s0).

If x = x
0, since s and s

0 are both su�xes of the word �(an;"n)(j), it yields s = s
0,
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then i = i
0 and hence (x; i�) = (x0; i0�).

If x 6= x
0, s and s

0 are su�xes of di�erent lengths of �(an;"n)(j). Suppose for

example that s0 is shorter: one can write s = v� i0� s0: x+ f(s) = x
0+ f(s0) yields

x + f(v) + f(i0) = x
0, that is, x0 � ei0 � x since f(i0) = ei0 and f(v) � 0. Then

hx0 � ei0 ;
t(1; �n; �n)i � hx; t(1; �n; �n)i > 0, what contradicts that (x0; i0�) is a

face of S�n;�n . So (x; i�) = (x0; i0�) and the proof is completed. ut

Lemma 4. �(an;"n) is onto from S�n;�n on S�n�1;�n�1 .

Proof. Let (y; j�) be a face of S�n�1;�n�1 . We search for a face (x; i�) of S�n;�n
such that (y; j�) 2 �(an;"n)(x; i

�), that is, we search for x and a word s such

that: 8>>>><
>>>>:

�(an;"n)(j) = p� i� s;

y = A

�1
(an;"n)

(x+ f(s))

hx; t(1; �n; �n)i > 0 and hx � ei;
t(1; �n; �n)i � 0:

Let us write x = A(an;"n)y � f(s) = A(an;"n)y � (A(an;"n)ej � f(p) � ei). A

computation similar to those e�ectued in the proof of Lemma 2 easily yields:

hx; t(1; �n; �n)i = u+ rjpj and hx� ei;
t(1; �n; �n)i = u+ tjpj;

where:

u =
1

�n

hy; t(1; �n�1; �n�1)i;

rjpj = hf(p) + ei;
t(1; �n; �n)i �

1

�n

hej ;
t(1; �n�1; �n�1)i;

tjpj = rjpj � hei;
t(1; �n; �n)i:

Hence it su�ces to prove that one can choose the pre�x p of �(an;"n)(j) such

that u+ tjpj � 0 < u+ rjpj (that is, such that (x; i�) 2 S�n;�n).

Let us assume that "n = 0 (the case "n = 1 is similar). Then (y; j�) 2
S�n�1;�n�1 implies 0 < u � 1

�n�1
hej ;

t(1; �n�1; �n�1)i, and by De�nition 5:

an =

�
1

�n�1

�
; �n =

�n�1

�n�1

; �n =
1

�n�1

�

�
1

�n�1

�
and �n = �n�1:

If j = 2, �(an;0)(2) = 1 forces i = 1 and p = s = � (the empty word).

One then computes r0 = he1;
t(1; �n; �n)i �

1
�n�1

he2;
t(1; �n�1; �n�1)i = 0 and

t0 = r0 � he1;
t(1; �n; �n)i = �1. Since 0 < u � 1

�n�1
he2;

t(1; �n�1; �n�1)i = 1,

one has u + t0 = 0 < u + r0 and thus (y; 2�) = �(an;0)(x; 1
�), with (x; 1�) =

(A(an;0)y; 1
�) 2 S�n;�n .

The case j = 3 is similar. �(an;0)(3) = 2 forces i = 2 and p = s = �. One

then computes r0 = �n �
�n�1

�n�1
= 0 and t0 = ��n. Since 0 < u �

�n�1

�n�1
= �n,
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one has u + t0 = 0 < u + r0 and thus (y; 3�) = �(an;0)(x; 2
�), with (x; 2�) =

(A(an;0)y; 2
�) 2 S�n;�n .

The case j = 1 is slightly more di�cult since p can be choosen among the

an + 1 words 1k, k = 0 : : : an, that are pre�xes of �(an;0)(1). One has to prove

that there exists k 2 0; 1; : : : ; an such that u + tk � 0 < u + rk . One easily

computes:

rk = tk + 1 = tk+1; for k = 0 : : : an � 1;

ran
= 0 and tan

=

�
1

�n�1

�
�

1

�n�1

2 (�1; 0];

t0 = �
1

�n�1

:

Moreover, one has 0 < u � 1
�n�1

. Hence ~
k = maxfk � an j u + tk � 0g is well

de�ned (indeed ~
k =

j
1

�n�1
� u

k
) and veri�es u + r~k > 0. Since jpj = ~

k implies

s = 1an�
~k3, that is, f(s) = (an� ~

k)e1+ e3, one has (y; 1
�) = �(an;0)(x; l

�), with

x = A(an;0)y � f(s) 2 S�n;�n and l = 1 if ~k < an, l = 3 otherwise. ut

Proof of Lemma 1. One can write:

(y; j�) = (M�1
�

(x+ f(s)); j�); with �(j) = p� i� s:

Roughly speaking, since (y; i�) is in S�;� , y is not far from the contracting

invariant plane P�;� of M�, and since x is almost equal to M�y, jjxjj result
mainly of the contraction of jjyjj by M� .

Let us write it neatly. Let u denote t(1; �; �), the left eigenvector of M� for its

dominant eigenvalue, and let � < 1 be the constant of Proposition 4. One has:

x = M�y � f(s)

= M� (hy; uiu+ (y � hy; uiu))� f(s)

= hy; uiM�u+M�(y � hy; uiu)� f(s):

We then use that y�hy; uiu belongs to P�;� , plane on whichM� is �-contracting,

that 0 < jhy; uij � max(1; �; �) since (y; i�) 2 S�;� , and that jjf(s)jj � f� :=

jjf(�(1)) + f(�(2)) + f(�(3))jj:

jjxjj � jjhy; uiM�ujj+ �jjy � hy; uiujj+ f�

� jjhy; uiM�ujj+ �jjyjj+ �jjhy; uiujj+ f�

� max(1; �; �)(jjM�ujj+ �jjujj) + f�| {z }
B

+�jjyjj:

Since B depends only on �, for any k such that � < k < 1 and for C = B

k��
2 R+ ,

it holds: jjyjj � C ) jjxjj � kjjyjj. ut


