N
N

N

HAL

open science

Complexity and Approximation for the Precedence
Constrained Scheduling Problem with Large
Communications Delays

Rodolphe Giroudeau, Jean-Claude Konig, Feryal Windal, Jérome Palaysi

» To cite this version:

Rodolphe Giroudeau, Jean-Claude Koénig, Feryal Windal, Jéréme Palaysi. Complexity and Approx-
imation for the Precedence Constrained Scheduling Problem with Large Communications Delays.

[Research Report] 05025, LIRMM. 2005. lirmm-00106681

HAL Id: lirmm-00106681
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106681
Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106681
https://hal.archives-ouvertes.fr

...... S LABORATOIRE D’INFORMATIQUE, DE
...... o ROBOTIQUE ET DE MICROELECTRONIQUE DE
3 MONTPELLIER
=

L | R M Unité Mixte CNRS - Université Montpellier IT 5506

RAPPORT DE RECHERCHE

Complexity and approximation for
the precedence constrained
scheduling problem with large
communications delays

Rodolphe Giroudeau Jean-Claude Konig
Feryal-Kamila Moulai Jérome Palaysi
mars 2005 R.R.LIRMM 05025

161, Rue Ada - 34392 Montpellier Cedex 5 - France
Tél: +33 (0)4 67 41 85 85 - Fax: +33 (0)4 67 41 85 00

Complexity and approximation for the precedence constrained
scheduling problem with large communications delays

R. Giroudeau, J.C. Konig, F.K. Moulai and J. Palaysi

LIRMM, 161 rue Ada,34392 Montpellier Cedex 5, France, UMR 5056

Abstract

We investigate the problem of minimizing the makespan (resp. the sum of the completion time) for the
multiprocessor scheduling problem. We show that there is no hope of finding a p-approximation with p <

1 1
1+ P (resp. 1+ 2c—+5) (unless P = N'P) for the case where all the tasks of the precedence graph have

unit execution times, where the multiprocessor is composed of an unrestricted number of machines, and
where ¢ denotes the communication delay between two tasks 7 and j submitted to a precedence constraint
and to be processed by two different machines. The problem becomes polynomial whenever the makespan is
at the most (¢ + 1). The case where it is (¢ + 2) is still partially opened.

Résumé

Nous étudions le probléme qui consiste & minimiser la durée totale d’'un ordonnancement (resp. la somme
des dates de fin d’exécution). Dans le cas ou les taches ont une durée d’exécution unitaire et ou le nombre
de processeurs est non borné, nous montrons qu’il n’existe pas (& moins que P = N'P) de p-approximation

1
I Gy 5) ol c est le délais de communication entre 2 taches i et j soumises
c
4 une contrainte de précédence et devant étre exécutées sur 2 processeurs différents. Le probléme devient

polynomial lorsque la durée d’ordonnancement est au plus ¢+ 1 mais reste en partie ouvert lorsqu’il est égal
ac+2.

1
telle que p < 14+ —— (resp. 1 +
c

1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to activities over time. The
theory of the design of algorithms for scheduling is younger, but still has a significiant history.

In this article we adopt the classical scheduling delay model or homogeneous model in which an instance
of a scheduling problem is specified by a set J = {j1,...,jn} of n nonpreemptive tasks, a set of U of ¢
precedence constraints (j;, jx) such that G = (J,U) is an directed acyclic graph(dag), the processing times
pi, Vj; € J, and the communication times ¢, V(j;,jx) € U.

If the task j; starts its execution at time ¢ on processor 7w and task ji is a successor of j; in the dag; then
either jj, starts its execution after the time ¢ + p;, on processor 7 or after time ¢ + p;, + c;,, on some other
processor. In what follows we consider the case of Vj, € J, p;, =1 and V(j;, ji) € E, ¢j,j, =c¢>2.

This model was first introduced, by Rayward-Smith [15]. In this model we have a set of identical processors
that are able to communicate in a uniform way. We want to use these processors in order to process a set of
tasks that are subject to precedence constraints. The problem is to find a trade-off between the two extreme
solutions, namely, execute all the tasks sequentially without communications, or try to use all the potential
parallelism but at the cost of an increased communication overhead. This model has been extensively studied
these last years both from the complexity and the (non)-approximability points of view [2].

Using the three fields notation scheme proposed by Graham et al. [6], the problem is denoted as

Plprec, cij = ¢ > 2;p; = 1|Cran-

i.e. we have an unbounded number of identical processors in order to schedule a dag such that each
task has the same execution time and each pair of tasks have the same communication time. The aim is to
minimize the length of the schedule.

1.1 Complexity results

The problems with unitary communication delay In the case where we consider the problem is to
schedule on an unbounded number of processors a precedence graph with unitary communications delays
and unit execution time (UET-UCT), Hoogeveen et al. [8] proved that the decision problem associated to
15|prec; ¢ij = 1;p; = 1|Cmax becomes NP-complete even for Cp,. = 6, and that it is polynomial for Cpax = 5.
Their proof is based on a reduction from the N'P-complete problem 3SAT [4]. The N'P-completeness result
for Cihax = 6 implies that there is no polynomial time approximation algorithm with ratio guarantee better
than 7/6, unless P = N'P.

Moreover, in presence of a bounded number of processors, Hoogeveen et al. [8] establish that whether
an instance of Plprec;c;; = 1;p; = 1|Cpae has a schedule of length of at the most 4 is N'P-complete (they
use a reduction from the N'P-complete problem Clique), whereas Picouleau [13] develops a polynomial time
algorithm for the Cp. = 3. In the same way, the N'P-completeness result for Cp,. = 4 implies that there
is no polynomial time approximation algorithm with ratio guarantee better than 5/4, unless P = N'P.

The problems with large communication delay In the case where we consider the problem to schedule
on bounded number of processors a precedence graph with large communications delays and unit execution
time (UET-LCT), Bampis et al. in [1] proved that the decision problem denoted by P|prec;c;; = ¢ > 2;p; =
1|Caz for Chax = ¢ + 3 is N'P-complete problem, and for Cpax = ¢ + 2 (for the special case ¢ = 2),
they develop a polynomial time algorithm. Their proof is based on a reduction from the N “P-complete
problem Balanced Bipartite Complete Graph, BBCG [4,16]. Thus, Bampis et al. [1] proved that the
Plprec; cij = ¢ > 2;p; = 1|Cpraz problem does not possess a polynomial time approximation algorithm with
ratio guarantee better than (1 + ;13), unless P = N'P.

Remark: Notice that in the case where the number of processors is unbounded (P|prec;c;; = ¢ > 2;p; =
1|Chnaz), the complexity to an associated decision problem is unknown.

Type of machines| c¢;; |Cmaz| Complexity Lower bound |References
P c=1| 5 Polynomial [17]
P c=1| 6 |NP-complete 7/6 <p [17]
P =1 3 Polynomial 13
P 1| 4 |NP-complete > 5/4<p 17
P c>of >c] ? | ? I
P c¢>2|c+1| Polynomial 1
P ¢ > 2|c+ 3[NP-complete |1 +1/(c+3) < p 1
Table 1. Complexity results for scheduling problems

The complexity results are given by the summary table 1.

' 3SAT see [4]
2 Clique see [4]
3 BBCG see |4,16]

1.2 Approximation results

The problems with unitary communcation delay The best known approximation algorithm for
Plprec;cij = 1;p; = 1|Chnas is due to Munier and Kénig [12]. They presented a (4/3)-approximation al-
gorithm for this problem, which is based on an integer linear programming formulation. They relax the
integrity constraints and they produce a feasible schedule by rounding.

Munier and Hanen [11] proposed a (% — %)—approximation algorithm for the problem P|prec;c;; =
1;p; = 1|Cnaz- They define and study a new list scheduling approximation algorithm based on the solution
given on an unrestricted number of processors. They introduce the notion of favorite successor in order to
define priorities between conflicting successors of a task. Notice that, in the case where we consider the large
communications delays, there is no polynomial time, as known, approximation algorithm except the trivial
bound (¢ + 1) whose first step consists in executing the tasks and second step in intiating communications
phasis and so on ...

Concerning the case of the number where processors is restricted, an only (as known) constant 2-
approximation algorithm is given by Munier [9], for the special case where the precedence graph is tree

in presence of large communications delays.

The problems with large communcation delay Contrary to the complexity results, as we know, an
unique appproximation algorithm is given by Rapine [14]. The autor gives the lower bound O(c) for the list
scheduling in presence of large communications delays. Approximation results are given by the table 2.

Type of machines| c¢;; |Approximation results||References
P c=1 p<4/3 11
P c=1 p<7/3 10
P c>2 2 for tree [9]
P c>2 ? ?
P c>2 O(c) [14]

Table 2. Approximation results for scheduling problems

1.3 Presentation of an article

The challenge is to determinate a threshold for approximation algorithm for the problem P|prec; cij =c¢2>
2;p; = 1|Chaz, to develop a non trivial approximation algorithm, and to improve, in the presence of a
restricted number of processors, the bound given by Rapine [14].

This article is organized as follows: in the second section, we give a preliminary result. In the third
section, we give the two non-approximabilities results for the scheduling problem with the objective function
of minimizing the length of the schedule (resp. minimization of the completion time). In the fourth section,
we propose a polynomial time algorithm for Cye = ¢ + 2 with ¢ € {2,3}. In the last section, we develop

2(ct+1)

a =5 —-approximation algorithm based on the notion of expansion, of the makespan, of a good feasible

schedule.

2 Preliminary result

In this part, we will define a variant of SAT problem [4], denoted in what follows by I7;. The A"P-completeness
of the scheduling problem P|prec;c;; = ¢ > 2;p; = 1|{Cpae (see section 3), is based on a reduction from this
problem.

The problem II; is a variant of the well known SAT problem [4]. We will call this variant the One-in-
(2,3)SAT(2,1) problem.We denote by V, the set of variables. Let n be a multiple of 3 and let C be a set of
clauses of cardinality 2 or 3. There are n clauses of cardinality 2 and n/3 clauses of cardinality 3 so that:

— each clause of cardinality 2 is equal to (z V g) for some z, y € V with © # y.
— each of the n literals = (resp. of the literals &) for 2 € V belongs to one of the n clauses of cardinality 2,

thus to only one of them.
— each of the n literals belongs to one of the n/3 clauses of cardinality 3, thus to only one of them.
— whenever (x V §) is a clause of cardinality 2 for some x, y € V, then x and y belong to different clauses

of cardinality 3.

Question:
Is there a truth assignment I : V — {0, 1} such that every clause in C has exactly a true literal?

In order to illustrate I1;, we consider the following example.

Example The following logic formula is a valid instance of I1;:

(330 VaV 332) N (333 VgV $5) N (530 \ 333) A (563 \ 330) A (564 \Y 332) A (531 \Y $4) A (535 \/331) A (562 \ 335).

The answer to II; is yes. It suffices to choose g = 1, z3 =1 and z; = 0 for i = {1,2,4,5}. This yields a
truth assignment satisfying the formula, and there is exactly one true literal in every clause. For the proof
of the N'P-completeness see [5].

3 Non-approximability results

In this section, we show in the first part, that the problem denoted by P|prec; cij = ¢ > 3;p; = 1|Cpnqq does
not possess a polynomial time approximation algorithm with ratio guarantee better than 1 + cﬁ for the
minimization of the length of the schedule (resp. 1+ T1+5> for the minimization of the sum of the completion
time). We also give the A'"P-completeness for the special case ¢ = 2 and C,,,, = 6 in the section 3.2.

3.1 The minimization of length of the schedule

¢i G Ciyr Cetn

Acta

. Lo
Dy D

Fig. 1. A partial precedence graph for the N"P-completess of the scheduling problem P|prec;ci; = ¢ > 3;p;i = 1|Ciaa.

Remark: [’ is in the clause of lenght two associated to D'} — D'y — ... D't o — D'¢y3

Theorem 1. The problem of deciding whether an instance of Plprec;cij = ¢;p; = 1|Cinas has a schedule of
length at most (c + 4) is N'P-complete with ¢ > 3.

Proof. Tt is easy to see that Plprec;c;j = ¢;p; = 1|Cpaz = c+4 € N'P.

Our proof is based on a reduction from I1;.

Given an instance 7* of I, we construct an instance 7 of the problem P|prec; ¢ij = ¢;pi = 1|Crnaz = c+4,
in the following way:

L. For all x € V, we introduce (c + 6) variables-tasks: a5/, ', 7', @', 87 with j € {1,2,...,¢+ 2}.
We add the precedence constraints: agz — o', apz — ', ff — 2, ff — 7', B} — (7, with
je{l,2,...,c+1}.

2. For all clauses of length three denoted by C; = (y V z V t), we introduce 2 x (2 + ¢) clauses-tasks C} and
Al je{l,2,...c+2}, with precedence constraints: C) — C}H and A} — Aéﬂ’ jef{l,2,....,c+1}.
We add the constraints C} — [with [€ {y/,2',t'} and | — Al , with [€ {¢/,2','}.

3. For all clauses of length two denoted by C; = (z V 7), we introduce (c + 3) clauses-tasks D%, j €
{1,2,...,c+ 3} with precedence constraints: D} — D%, with j € {1,2,...,¢+ 2} and | — D5 with
lef{d,y}.

The above construction is illustrated in Figure 1. This transformation can be clearly computed in poly-
nomial time.

e Let us first assume that there is a schedule of length at most (¢ +4). In the following, we will prove that
there is a truth assignment I : V — {0, 1} such that each clause in C has exactly one true literal.
First we can remark that if ¢ > 3 then 2c +2 > ¢ + 4 and so, each path A?, g7, C} or D!, with
j€{1,2,...,c+2}and j' € {1,2,...,c+ 3} must be executed on the same processor. What’s more, two
of these paths cannot be executed on the same processor.
Notation: In the following we denote by P4 (resp. Pc) the set of the % processors which execute a
path A; (resp. a path C}) Notice that we know by the definition of the problem II7, that in an instance
admits % clauses of length three where n denotes the number of variables. In the same way, we denote

by Pg (resp. Pp) the set of the n processors which execute a path (3] (resp. a path D;)

Lemma 1. If C,,q: = c+4 then assigning the value true to the variable x if and only if the variable-task
z' is executed on a processor of the path Pc we obtain a correct solution.

Proof. In order to respect the feasible schedule of length (¢ + 4), in the first time, we can stem from the
polynomial time transformation, that the starting time of the variables-tasks I/, I’ and I/, and that the
processors on which these tasks must be executed, are given by the following remarks:
VieV:
e Each variable-task I’ is executed on a processor of P¢ at slot 3 or on a processor of Pp at slot (c+2)
or (¢+3),
e Each variable-task [is executed on a processor of P3 at slot 3 or on a processor of Pp at slot (c+ 2)
or (c+3),
e Each variable-task [’ is executed on a processor of Pg at slot 3 or on a processor of Py at slot (c+2)
or (¢+3),
e The variables-tasks I’ and [’ cannot be executed together on a processor of Ps (they have a common
predecessor).
Notation and property: For each | € V, we can associate the three tasks I/, I/, I’. We denote by
X ={llleV}, X ={I'll e V} and X = {I'|l € V} three sets of tasks. For each subset A of X (resp. X),
we can associate a subset B of X in the following way: I’ € B if and only if I € A (resp. I’ € A).
Let be the following sets:
o X; = {I'\n(l') = n(Pc)} where n(l') (resp. m(Pc)) designs the processor on which the task I’ is
scheduled.
o Xo={I'\r(l') =n(Pp)}-

o Xy ={lI"\n(I') = 7(Pp)}-
o Xy ={I"\n(l') ==(Pp)}
o X5 ={lI'\n(l') = 7(Pp)}
o Xo={I"\n(I') =7(Pa)}

Let be z; = | X;| for i € {1,..., 6}.
We can stem from the construction of an instance of the scheduling problem the following table,

[Pc|Ps|PalPpl
.23/ X1 XQ
z X3 X4
F X5 Xe

From the previous table, using the variable z;, we obtain the following inequations system:

r1+x9=mn (1)
r3+Tge=mn (2)
T5+Tg =" (3)
n
2n
r3+x5<n (6)
To+x4 <M (7)

We will give some details about the previous system:

e For the equations(1), (2) and (3): We must execute all the tasks of the sets X, X and X.

e For the equation (4), on the processor which executes the path C’} of the clause C; = (y V z V 1),
we can execute at most one of the three variables-tasks vy’, 2/, t’. Indeed, all variables-tasks I’ as a
successor which is executed on a processor of Pp. If it is executed on the processor which scheduled
the tasks from the path P it cannot be executed before the slot 3 and so, the variable-task «;p
must be executed on the same processor which becomes saturated. So, we have | X3| < |Pq|.

e For the equation (5), each processor of the paths P4 has two free slots and |Pa| = %.

e For the equation (6), all the variables-tasks I’ or I’ which are executed on a processor of the path Ps
must be finished before slot 3 (it has a successor executed on another processor). So the variable-task
oy must be executed on the same processor which becomes saturated. Therefore, at the most one
task between the variables-tasks I’ and [’ can be executed on a processor of the path Pz and so,
| Xs| + | X5] < |Pgl.

e For the equation (7), it is clear that, | Pp| = n and there is at the most one free slot on each processor
of PD.

In the one hand, we have x3 + x5 = n and in the second hand, VI’ only one variable-task between the
variables-tasks I’ and [’ can be executed on a processor of Pg, thus we obtain X3N X5 = (). Consequently,
we have X3 U X5 = X. As the set X4 (resp. X¢) is the complementary of the set X3 (resp. X5) we have
X4 U Xg = X. In more if the variable-task I’ is executed on a processor of Po then the variable-task
app is executed on the same processor. The variable-task Z’' cannot be executed before the slot (¢ + 2)
therefore on a processor of Pp. We can deduce that X; = X, (the two sets are the same cardinality).
Finally, we have X UXo = X, X5U X, =X, XsUXg =X, XuUXs =X, X3UX5 =X, X; = X; and
therefore X1 = X4 = X5 and XQ = Xg = X5.

We can deduce from the previous equations that 1 = x4 = x5 = 2 and z92 = 23 = x¢ =

2n
3 .
This concludes the proof of Lemma, 1.

3

So, if we affect the value “true” to the variable [if and only the variable-task I’ is executed on a processor
of P¢ it is trivial to see that in the clause of length 3 we have one and only one literal equal to “true”.
Let be ¢ = (z V §), a clause of length 2.
o If ' € X1 = ¢y € Xy = ¢’ € X;. The first implication (resp. the second) is due to the fact that
each processor of the path Pp must be saturated (v + x4 = n) (resp. X; = X4). Only the literal z
is “true” between the variables x and .
e Ifr' € Xo = ' € X3 = ¢y’ € Xo. The first (resp. the second) implication is due to the fact that
there is only one free slot on each processor executing the path Pp (resp. X3 = X5). Only the literal
1y is “true” between the variables x and y.
In conclusion, there is only one true literal per clause.
e Conversely, we suppose that there is a truth assignment I : V — {0,1}, such that each clause in C has
exactly one true literal.
Suppose that the true litteral in the clause C; = (y V z V t) is t. Therefore, the variable-task ¢’ (resp. y’
and z’) is processed at the slot 3 (resp. at the slot (c+ 2)) on the same processor as the path Po, (resp.
as the path Pp and Pp/, where D and D’ indicates a clause of length two where the variables y and z
occurred). The QT" other variables-tasks 3’ not yet scheduled are executed at slot 3 on processor P3 as
the variable-task oy ;. The variable-task ¢’ (resp. ¥’ and 2’) is executed at the slot 2 (resp. ¢ + 2 and
¢+ 3) on a processor of the path Ps (resp. Pa).
This concludes the proof of Theorem 1.

3.2 The special case ¢ = 2

In this part, we will consider the special case; V(i,7) € E, if 7* = 7/ then t; > t; +p; else t; > t; +p; +2. We
study the complexity of this problem, and we will prove the N'P-completeness of the P|prec; Cij = 2;p; =
1|Crmas for Crnap. Recall that (see [13],[17]), for the classical UET-UCT problem (Plprec;c;; = 1;p; =
1|Cynas) that the problem becomes NP-complete (resp. polynomial) for Cyar = 6 (resp. Crax = 5).

The idea of the construction of an instance of the scheduling problem P|prec; cij = 2;p;i = 1{Cppaa 18
similar as previously, and it is based on the problem I7;.

Theorem 2. The problem of deciding whether an instance of Plprec;c;j = 2;p; = 1|Cyas has a schedule of
length at most siz is N'P-complete.

Proof. Tt is easy to see that Plprec;c;; = 2;p; = 1|/Cyaz = 6 € N'P.

Our proof is based on a reduction from II;.

Given an instance 7* of II;, we construct an instance 7 of the problem P|prec; ¢ij = 2;p; = 1|Craz = 6,
in the following way:

1. For all x € V, we introduce 5 variables-tasks: a,, x', ', &/, B.. We add the precedence constraints:

Qg — $/, Qg — f/, Bz — (ﬁl, Bz — z'.

2. For all clauses of length three denoted by C; = (yV 2V t), we introduce two clauses-tasks C* and A’. We
add the following precedence constraints: C* — [with [€ {y/,2/,#'} and | — A* with [€ {/,%,#'}.

3. For all clauses of length two denoted by C; = (zV y), we introduce five clauses-tasks D;, je{1,2,...,5}
with precedence constraints: D} — D’ with j € {1,2,3,4} and | — D§ with | € {2/, 7'}.

e Let us first assume that there is a schedule of length at most 6. In the following, we will prove that there
is a truth assignment I : ¥V — {0,1} such that each clause in C has exactly one true literal.
First we can remark that if a task is executed at slot 3 (resp. at slot 4) or before (resp. after) all these
predecessors (resp successors) are executed on the same processor. Since the communication is allowed
on a path of length 5 so that Vi, all the clauses-tasks D; are executed on the same processor.

Lemma 2. If C),q, = 6 then if we assign the value true to the variable x if and only if the variable-task
x' is executed at slot 3 we obtain a correct solution.

Proof. VI € V, by construction, it is clear that:

o The variable-task I’ is executed at slot 3 on the processor which executed o, and C* where x € C;
or after slot 4 on the processor which executed DY such that = € C;.

e The variable-task [’ is executed at slot 3 on the processor which executed o,/ and (3, or after slot 4
on the processor which executed Di such that z € C;.

e The variable-task [’ is executed at slot 2 or 3 on the processor which executed [,/ or after slot 4 on
the processor which executed A’ such that x € C;.

Using the same notation as previously, we consider
X1 = {U'\tr = 3} where t; designs the starting of the task j.
Xo = {I'\ty > 4}.
X5 = {l'\ty =3}.
Xy ={U\ty > 4}.
X5 = {ll\t[, =2 or ti/ = 3}
Xe = {U'\t;, > 4}.
Let be z; = | X;| for i € {1,..., 6}.
We can stem from the construction of an instance of the scheduling problem,
e 11 < % (there are only % clauses-tasks C;), ,
e 13 + x4 < n (there are only n processors which executed a clause-task D}),
e x3+x5 <n (Va', & and T’ can not be executed together at slot 3 in the same processor (they have
a common predecessor)),
o 15 < 2?” (there are at most 7 processors which executed a clause-task A® and each processor have

only the slot 4 and 5 to execute variables-tasks 7).
6 6

So we can deduce from Za,y < 3n. As Za,y = 3n (all the variables-tasks must be executed), the
i=1

inequalities are all equalitziels.
And finally, we have z1 = 4 = x5 = % and r9 = 13 = Tg = %”
If the variable-task «/ (resp. the variable-task Z’) is executed at slot 3, the variable-task ' (resp. z’)
must be executed at or after slot 4. Therefore, X; C X, and X35 C X, and finally as the cardinalities
are equal X; = X4 and X3 = Xs.
So if we affect the value “true” to the variable [if and only if the variable-task I’ is executed at slot 3, it
is trivial to see that in the clause of length 3 we have one and only one literal equal to “true”.
Let be ¢ = (z V §), a clause of length 2. As in the proof of the theorem 1, we obtain:
e If 2/ € X1 = ¢ € X4 = ¢ € X;. Only the literal x is “true” between z and 7,
o If ' € Xy = ¢’ € X3 = ¢ € X,. Only the literal § is “true” between z and j

In conclusion, there is only one true literal per clause.

e Conversely, we suppose that there is a truth assignment I : V — {0,1}, such that each clause in C has
exactly one true literal.
Suppose that the true litteral in the clause C; = (yV zVt) is t. Therefore, the variable-task ¢’ is processed
at the slot 3 on the same processor which executed the clause-task C* and the task «. The task ¢’ (resp.
y’, 2') are executed on the processor which executed the clause-task D} corresponding to the clauses of
length 2 where ¢ appears (resp. y, z). The clause-task D;, j=1,2,3,4,is executed at slot j on the same
processor. The %” other variables-tasks ¢’ not yet scheduled are executed at slot 3 in the processor which
executed o, and (3,. The variables-tasks #' (resp. ¢ and #') are executed at slot 2 (resp. 4 and 5) on
the processor executing 3, (resp. A’). We can observe that this scheduling is valid.
This concludes the proof of theorem 2.

We can deduice from the two previous theorems, the classical following Corollary:

Corollary 1. There is no polynomial-time algorithm for the problem P|prec; cij = ¢ > 2;p; = 1|Cran with

performance bound smaller than 1 + c}r4 unless P # NP.

Proof. The proof of Corollary 1 is an immediate consequence of the Impossibility Theorem, (see [3], [4]).

3.3 The minimization of the sum of the completion time

In this section, we will show that there is no polynomial-time algorithm for the problem P|prec;c;; = ¢ >
2;p; = 1| 3_; C; with performance bound smaller than 1+ T1+5 unless P # N'P. This result is obtained by
the polynomial transformation used for the proof of the Theorem 1 and the gap technic (see [7]).

Theorem 3. There is no polynomial-time algorithm for the problem P|prec;c;; = c > 2;p; = 1 Zj C; with
performance bound smaller than 1 + T1+5 unless P # NP.

Proof. We suppose that there is a polynomial time approximation algorithm denoted by A with performance
guarantee bound smaller than 1+ 51—,
Let be I the instance of the problem Plprec;c;; = ¢ > 2;p; = 1|Cpqas Obtained by a reduction (see

Theorem 1). Let be I’ the instance of the problem P|prec;c;j = ¢ > 2;p; = 1| Zj C; by adding x new tasks

(2¢46)c+(c+4)pn
2¢+6)—(2¢+5)p
successor of the old tasks (old tasks are from the polynomial transformation used for the proof of Theorem

1). We obtain a complete directed graph from old tasks to new tasks.

If there exists such an algorithm A, then it can be used to decide the existence of an independent set of
size n.

Let A(I') (resp. A*(I")) the result given by A (resp. an optimal result) on an instance I'.

from an initial instance I. In the precedence constraints, each z (with = >) new tasks is a

1. If A(I') < (2¢+5)pr+ (c+4)pn then A*(I') < (2¢+5)px + (c+4)pn. So we can decide that there exists
a scheduling of an instance I with C,,,, < c+ 4. Indeed, if there no exists a such schedule. So, for every
schedule a task of an instance I is executed after the time ¢ + 5. But, perhaps c tasks are executed after
2¢+ 6 and so A*(I') > (2¢+6)(x — ¢). It is impossible, indeed if (2¢+6)(z —¢) > (2¢+5)px + (c+4)pn
then ¢ < Zet@etltaon 149 5 contradiction with the hypothesis.

2¢+6)—(2¢+5)p
A contradiction with z > %

Thus, it exists a schedule of length ¢+ 4 on an old task.

2. We suppose that A(I') > (2¢+5)px+ (c+4)pn. So, A*(I') > (2¢+5)x+ (¢c+4)n because an algorithm A
is a polynomial time approximation algorithm with performance guarantee bound smaller than p < gi—jr'g.
There is no algorithm to decide whether the tasks from an instance I admit a schedule of length of at
the most ¢ + 4.

Indeed, if there exists such an algorithm, by executing the x tasks at time t = 4+ 2c¢, we obtain a schedule
with a completion time stricly less than (5 + 2¢)x + (4 + ¢)n (there is at least one task which is executed

before the time ¢t = ¢+ 4). It is a contradiction since A*(I') > (2¢+ 5)z + (¢ + 4)n.

4 A polynomial time for C,,,, = ¢ + 2 with ¢ € {2, 3}

Theorem 4. The problem of deciding whether an instance of P|prec; ¢ij = ¢;pi = 1|Crap with ¢ € {2,3}
has a schedule of length at most (c + 2) is solvable in polynomial time.

Proof. For ¢ = 2. Tt easy to see that the source (resp. the sink) is executed at the slot 0 (resp. the slot ¢+ 2).
If a source 4 (resp. a sink) is scheduled before or at the slot 2 (resp. before or at the slot ¢ + 1) then the
task 7 admits only one successor (resp. only one predecessor). The other tasks must be executed as soon as
possible.

5 Approximation by expansion

5.1 Introduction and notation

In this section, we develop a new method based on a notion of expansion of a schedule. Let us first give some
notation before an explanation of the method.

Notation: We denote by 0°°, the UET-UCT schedule, and by 02° the UET-LCT schedule. Moreover,
we denote by ¢; (resp. t¢) the starting time of the task ¢ in the schedule ¢°° (resp. in the schedule ¢2°).

Principle:

An idea consisting in keeping an assignment for the tasks given by a “good” feasible schedule on an
unbounded number of processors ¢°°, and proceed to an expansion of the makespan, in order to preserve
temporal distance between two tasks, ¢ and j with (¢, j) € E, processing on two different processors respect
the communications delays i.e. t; >ti+1+c

5.2 Description of the method

Let be a precedence graph G = (V, E), we determinate a feasible schedule o>, for the model UET-UCT,
using an (4/3)—approximation algorithm proposed by Munier and Konig [12]. This algorithm gives a couple
Vi € V, (t;,m) on the schedule 0°° corresponding to:

— t; the starting time of the task i for the schedule 0> and
— 7 the processor on which the task ¢ is processed at ¢;.

Now, we determinate a couple Vi € V, (¢¢,7') on the schedule 02° in the following ways:

— The starting time ¢ = d x ¢ —i = ¢, and,
/
— T =7T.

The justification of the expansion coefficient is given below. An illustration of the expansion is given by
Figure 2.

ko k41 k+2 k+3 (DR (ctDE 4 g (cfD0) (etDEED 4 g
PR

T € Yy T T Yy

1
T2 ~ z 2 %‘ z
~— (DGH2) 4

(c+1D)(k+2) 2
Model UET-UCT 2

Model UET-LCT

oo communication delay
communication delay

Fig. 2. Illustration of notion of an expansion

5.3 Analysis of the method

. . . _ (e41)
Lemma 3. The coefficient of an expansion is d = 5.

Proof. Let be two tasks ¢ and j such that (¢, j) € E, which are processed on two differents processors in the
feasible schedule o°>°. We are interested in having a coefficient d such that ¢f = d x t; and t; = d x t;. After
an expansion, in order to respect the precedence constraints and the communication delays we must have
t;ztf—kl—&—c, and so

dxti—dxthC—kl
4> c+1
Tt —ty

10

(c+1)

It is sufficient to choose d = 5.

Lemma 4. An ezpansion algorithm gives a feasible schedule for the problem denoted by Plprec;c;j = ¢ >
2;p; = 1|Crax-

Proof. Tt sufficient to check that the solution given by an expansion algorithm produces a feasible schedule
for the model UET-LCT. Let be two tasks ¢ and j such that (i,j) € E. We denote by 7; (resp. 7;) the
processor on which the task ¢ (resp. the task j) is executed in the schedule o°°. Moreover, we denote by
(resp.) the processor on which the task i (resp. the task j) is executed in the schedule o2°. Thus

— If m; = m; then 7 = 7. Since the solution given by Munier and Konig [12] gives a feasible schedule on
the model UET-UCT, then we have

ti—l—lgtj
it¢+1<it¢
c+1" “c+17
+1

(6] (6] c C
— If m; # 7; then 7] # 7. We have
ti+1+1§tj
2 2
— 2 < ——t¢

c+1" c+17
ti+(c+1) <t

Theorem 5. An expansion algorithm gives a =<~ —approzimation algorithm for the problem P|prec;c;; =
c> 2;]91‘ = 1|Cmax-

2(c+1)
3

Proof. We denote by C” (resp. C°P!) the makespan of the schedule computed by the Munier and Kénig
(resp. the optimal value of a schedule °°).

In the same way we denote by C” (resp. C%"%¢) the makespan of the schedule computed by our
algorithm (resp. the optimal value of a schedule o2°).

We know that C,, < 2C2! . Thus, we obtain

mazx mazx*
h* (c+D) h (c+1) ~h (c+1) 4 Hopt
Omaz o 2 Cmaw 2 Cmaw 2 §waaw 2(C + 1)
opt,c opt,c — opt — opt —
Cn;znar Orr%)az Cn;znar Orr%)az 3

Remark: The method of an expansion can be used for another problems.

6 Analysis of our results

With the result proposed in this article, we complete the table 2. We proved that in the first case, as we
know, the lower bound of approximation is the same for the problems with a bounded and an unbounbed
number of processors in presence of large communications delays.

The new complexity results are given by Table 3.

1 3SAT see[4]

2 Clique see[4]

3 IT: see Therorem 1
* BBCG see |4,16]

11

Type of machines Cij Chras| Complexity Lower bound |References
P c=1 5 Polynomial [17]
P c=1 6 |NP-complete 7/6 <p [17]
P = 3 Polynomial 13
P =1 4 | N'P-complete? 5/4<p 17
P c€{2,3}{c+2| Polynomial Theorem 4
P ¢>2 |c+ 4| NP-complete® |1 +1/(c +4) < p|Theorem 1
P ¢>2 |c+1| Polynomial 1
P c>2 |c+ 3| NP-complete® |1+ 1/(c+3) <p 1

Table 3. Complexity results

Type of machines| ¢;; |Approximation results||References
P =1 p<4/3 11
P =1 p<17/3 10
p c>2 2 for tree [9]
P c> 2(ch Theorem 5
P e > 2] O(c) I 114]

Table 4. New approximation results

7 Conclusion

In this paper, we first proved that the problem of deciding whether an instance of P|prec;c;; = ¢ > 2;p; =
1|Cpnaz has a schedule of length at most (c + 4) is N'P-complete.

This result is to be compared with the result of [8] and [1], which states that P|prec;c;; = 1;p; =
1|Cpaz = 6 (vesp. Plprec;cij = ¢ > 3;p; = 1|Craz = ¢+ 3) is N'P-complete. Our result implies that there
is no p—approximation algorithm with p < 1+ cﬁ, unless P = N'P. In addition, we show that there is no
hope of finding a p-approximation algorithm with p strictly less than p < 1+ ﬁ for the problem of the
minimization of the sum of the completion time.

Secondly, we established that the problem of deciding whether an instance of P|prec; ¢ij = ¢;p; = 1|Craz
with ¢ € {2,3} has a schedule of length at most (¢ + 2) is solvable in polynomial time.

We also propose a @—approximation algorithm based on the notion of dilatation. Remark: We
conjecture that the problem of deciding whether an instance of P|prec; ¢ij = ¢;p; = 1|Cpqp with ¢ > 2 has

a schedule of length at most (c + 3) is solvable in polynomial time.

References

1. E. Bampis, A. Giannakos, and J.C. Konig. On the complexity of scheduling with large communication delays.
European Journal of Operation Research, 94:252-260, 1996.

2. B. Chen, C.N. Potts, and G.J. Woeginger. A review of machine scheduling: complexity, algorithms and approx-
imability. Technical Report Woe-29, TU Graz, 1998.

3. P. Chrétienne and C. Picouleau. Scheduling Theory and its Applications. John Wiley & Sons, 1995. Scheduling
with Communication Delays: A Survey.

4. M.R. Garey and D.S. Johnson. Computers and Intractability, a Guide to the Theory of N'P-Completeness.
Freeman, 1979.

5. R. Giroudeau. L’“mpact des délais de communications hiérarchiques sur la complexité et l’approrimation des
problémes d’ordonnancement. PhD thesis, Université d’Evry Val d’Essonne, 2000.

12

10.

11.

12.

13.

14.

15.

16
17

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approximation in deter-
ministics sequencing and scheduling theory: a survey. Ann. Discrete Math., 5:287-326, 1979.

H. Hoogeveen, P. Schuurman, and G.J. Woeginger. Non-approximability results for scheduling problems with
minsum criteria. In R.E. Bixby, E.A. Boyd, and R.Z. Rios-Mercado, editors, IPCO VI, Lecture Notes in Computer
Science, No. 1412, pages 353-366. Springer-Verlag, 1998.

J.A. Hoogeveen, J.K. Lenstra, and B. Veltman. Three, four, five, six, or the complexity of scheduling with
communication delays. O. R. Lett., 16(3):129-137, 1994.

A. Munier. Approximation algorithms for scheduling trees with general communication delays. Parallel Comput-
ing, 25(1):41-48, January 1999.

A. Munier and C. Hanen. An approximation algorithm for scheduling dependent tasks on m processors with
small communication delays. In IEEE Symposium on Emerging Technologies and Factory Automation, Paris,
1995.

A. Munier and C. Hanen. An approximation algorithm for scheduling unitary tasks on m processors with
communication delays. Non publié, 1996.

A. Munier and J.C. Konig. A heuristic for a scheduling problem with communication delays. Operations Research,
45(1):145-148, 1997.

C. Picouleau. New complexity results on scheduling with small communication delays. Discrete Applied Mathe-
matics, 60:331-342, 1995.

C. Rapine. Algorithmes d’approzimation garantie pour l’ordonnancement de tdches, Application auw domaine du
calcul paralléle. PhD thesis, Institut National Polytechnique de Grenoble, 1999.

V.J. Rayward-Smith. UET scheduling with unit interprocessor communication delays. Discr. App. Math., 18:55—
71, 1987.

. R. Saad. Scheduling with communication delays. JCMCC, 18:214-224, 1995.

. B. Veltman. Multiprocessor scheduling with communications delays. PhD thesis, CWI-Amsterdam, Holland, 1993.

13

