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Abstract

The cardpath constraint enforces a constraint C to be satisfied a given

number of times over a sequence of variables. In this note, we give a

polynomial propagation algorithm for a special case of this constraint,

which in fact is the only case which was not known to be intractable.

The cardinality path constraint [BC01], cardpath(N, [X1, . . . , Xm], C), where
C is a constraint of arity k < m and N is an integer variable, ensures that
N =

∑m−k+1
i=1 C(Xi, . . . , Xi+k−1). (C() returns 1 when satisfied, 0 otherwise.)

In other words, we slide C down the sequence X1, . . . , Xm and ensure it holds
N times.

In [BHHW04a] and [BHHW04b], we proved that enforcing arc consistency
on the constraint cardpath(N, [X1, . . . , Xm], C) is NP-hard if C has unbounded
arity (even if arc consistency is polynomial on it) or if we allow repetition of
variables in the sequence X1, . . . , Xm. The only remaining open question was
therefore about the complexity of cardpath when C has bounded arity and we
don’t allow repetitions in X1, . . . , Xm. We show that it is in fact polynomial
to achieve arc consistency on such a constraint. We present an algorithm for C

being binary, which is simpler to present. But the technique can be extended
to any arity as long as it remains bounded.

The idea of the algorithm is the following. It first makes a double traversal
of the sequence [X1, . . . , Xm], one from X1 to Xm (lines 1 to 7) and the other
from Xm downto X1 (lines 8 to 14). This step computes two sets of integers,
w(Xi, v) and dw(Xi, v) for each value (Xi, v). The set w(Xi, v) contains all
possible number of times C is satisfied by a tuple on [X1, . . . , Xi] belonging to
D(X1) × · · · × D(Xi), while dw(Xi, v) contains all possible number of times C

is satisfied by a tuple on [Xi, . . . , Xm] in D(Xi) × · · · × D(Xm).
The second step (lines 15 to 18) makes the join of those two sets of integers,

putting in the set T (Xi, v) all possible number of times C is satisfied by a
complete tuple in D(X1)× · · ·×D(Xm). All values such that T (Xi, v) does not
intersect D(N) are removed since there does not exist any tuple in D(X1) ×
· · · × D(Xm), using v for Xi that satisfies C a number of times allowed by N .
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Algorithm Propag-cardpath(N,[X1..Xm],C)

1. for each v in D(X1) do w(X1,v):={0}

2. for i:=2 to m do

3. for v in D(Xi) do

4. w(Xi,v):={}

5. for u in D(Xi-1) do

6. if C(u,v) then w(Xi,v):=w(Xi,v) U inc(w(Xi-1,u))

7. else w(Xi,v):=w(Xi,v) U w(Xi-1,u)

8. for each v in D(Xm) do dw(Xm,v):={0}

9. for i:=m-1 downto 1 do

10. for v in D(Xi) do

11. dw(Xi,v):={}

12. for u in D(Xi+1) do

13. if C(v,u) then dw(Xi,v):=dw(Xi,v) U inc(dw(Xi+1,u))

14. else dw(Xi,v):=dw(Xi,v) U dw(Xi+1,u)

15. for i:=1 to m do

16. for v in D(Xi) do

17. T(Xi,v):= {p+q | p in w(Xi,v), q in dw(Xi,v)}

18. if T(Xi,v) inter D(N) == {} then remove v from D(Xi)

19. T:= union(T(X1,v)), v in D(X1)

20. D(N):=D(N) inter T

Finally, D(N) is pruned from its impossible values by intersecting its domain
with

⋃
v∈D(Xi)

T (Xi, v) for any Xi (since after line 18 we have
⋃

v∈D(Xi)
T (Xi, v) =

⋃
w∈D(Xj)

T (Xj, v), ∀i, j.)

In the algorithm Propag-cardpath(N, [X1, . . . , Xm], C), we use the function
inc(S), which for any set S of integers returns the set {p + 1 | p ∈ S}.

Theorem 1 The algorithm Propag-cardpath is a correct algorithm for achieving

arc consistency on cardpath, and it runs in O(m3d + m2d2) time.

Proof. (Very sketch.) If v is pruned from D(Xi), this is because T (Xi, v)
doesn’t intersect D(N). T (Xi, v) contains the values that are the sum of a value
from w(Xi, v) and one from dw(Xi, v), which themselves contain all possible
number of times C is satisfied by a tuple from X1 to Xi or from Xi to Xm

using (Xi, v). This means that any tuple containing v for Xi cannot satisfy the
constraint cardpath. Same reasoning for values pruned from D(N). Therefore,
soundness.

Suppose now that (Xi, v) is not arc consistent. We cannot build a tuple
containing it and satisfying cardpath. So, after the first step, w and dw don’t
contain values p and q such that p + q ∈ D(N). So, v is pruned from D(Xi) in
line 18. Same reasoning for N . So, completeness.

Complexity. The algorithm Propag-cardpath is composed of a main step
(lines 1–14) that traverses the variables and their values. For each pair (vari-
able,value), the sub-loops in lines 5–7 and lines 12–14 are executed. Such sub-
loops perform md operations since they traverse the domain of another variable
(d possible values) and make the union of two sets of integers of size at most
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m (C cannot be satisfied more than m times on a sequence of length m). So,
the total complexity of lines 1–14 is md · md. In lines 15–18, md sets T (Xi, v)
are computed. A set T (Xi, v) contains all possible sums of two elements from
two sets of size m, so a cost in O(m2) for each T (Xi, v). The cost of lines 15–18
is thus in O(m3d). Lines 19–20 are in O(md). The total time complexity of
Propag-cardpath is in O(m3d + m2d2). 2

Finally, let us point out that if C is of bounded arity k > 2, we need to
proceed the same as presented here, but we build the sets w and dw for all
instantiations of size k−1, thus introducing mdk such sets, which is polynomial
since k is bounded.
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