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ABSTRACT

Hilbert words correspond to finite approximations of the Hilbert space filling curve. The
Hilbert infinite word H is obtained as the limit of these words. It gives a description of
the Hilbert (infinite) curve. We give a uniform tag-system to generate automatically
H and, by showing that it is almost cube-free, we prove that it cannot be obtained by
simply iterating a morphism.
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1. Introduction

Words without repetitions were studied since the very first work specifically dedicated
to combinatorics on words by Thue (cf Thue, 1906 [16]). Also, the generation of
infinite words by morphisms was the subject of many works (see, e.g., Lothaire, 2002
[9], Allouche and Shallit, 2003 [2]).

Generating a word with a HD0L-system consists of applying a morphism to an
infinite word generated by another morphism. Berstel [3] gave an example showing
that the power of generation of HD0L-systems is greater than the power of generation
of D0L-systems (only one morphism is applied): he proved that the Arshon word (a
square-free word over a 3-letter alphabet, see Arshon, 1937 [1], Séébold, 2002 [15]) is
generated by a tag-system (a particular case of an HD0L-system, see Cobham, 1972
[6]) whereas it cannot be obtained with a D0L-system. Here we give a new example of
this phenomenon. Studying the Hilbert word (an infinite word over a 4-letter alphabet
describing the drawing of the square-filling Hilbert curve, see, e.g., Sagan, 1994 [14])
we prove that it is 4-power-free but not cube-free (as it is the case with the well known
Fibonacci word, see, e.g., Berstel, 1986 [4], Allouche and Shallit, 2003 [2]) and it is

1Part of this work is to appear in Kitaev et al., 2004 [7]
2Département Mathématiques Informatique et Applications, Université Paul Valéry, Route de
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generated by a uniform tag-system but not by a D0L-system (as it is the case with
the Arshon word).

After some preliminaries (Section 2), we introduce in Section 3 the notion of Hilbert
words and we give some simple first results. Then we show in Section 4 that they
are almost cube-free, and that they are obtained by using a tag-system but not by
iterating a single morphism. We conclude with some open questions.

2. Preliminaries

The terminology and notation are mainly those of Lothaire, 2002 [9].
Let A be a finite set called an alphabet and A∗ the free monoid generated by A.
The elements of A are called letters and those of A∗ are called words. The empty

word ε is the identity element of A∗ for the concatenation of words (the concatenation
of two words u and v is the word uv), and we denote by A+ the semigroup A∗ \ {ε}.

The length of a word u, denoted by |u|, is the number of occurrences of letters in u.
In particular |ε| = 0. The number of occurrences of a letter a in a word u is denoted
by |u|a.

If n is a nonnegative integer, un is the word obtained by concatenating n occur-
rences of the word u. Of course, |un| = n|u|. The cases n = 2, n = 3, and n = 4
deserve particular attention in what follows. A word u2 (resp. u3, u4), with u 6= ε, is
called a square (resp. a cube, a 4-power).

A word w is called a factor (resp. a prefix, resp. a suffix) of u if there exist words x, y
such that u = xwy (resp. u = wy, resp. u = xw). The factor (resp. the prefix, resp.
the suffix) is proper if xy 6= ε (resp. y 6= ε, resp. x 6= ε). A word u is a subsequence
of the word v if there exist words u1, . . . , un, v1, . . . , vn, vn+1 such that u = u1 · · ·un

and v = v1u1v2u2 · · · vnunvn+1.

An infinite word (or sequence) over A is an application a : IN → A. It is written
a = a0a1 · · · ai · · · , i ∈ IN, ai ∈ A.

The notion of factor is extended to infinite words as follows: a (finite, possibly
empty) word u is a factor (resp. prefix) of an infinite word a over A if there exist
n ∈ IN (resp. n = 0) and m ∈ IN (m = |u|) such that u = an · · · an+m−1 (by
convention an · · · an−1 = ε).

In what follows, we will consider morphisms on A. Let B be an alphabet (often,
B = A).

A morphism on A (in short a morphism) is an application f : A∗ → B∗ such that
f(uv) = f(u)f(v) for all u, v ∈ A∗. It is uniquely determined by its value on the
alphabet A. A morphism f on A is uniform if there exists an integer k such that
|f(a)| = k for all a ∈ A; when k = 1, f is said to be a literal morphism.

Now suppose A = B. A morphism is nonerasing if f(a) 6= ε for all a ∈ A. A
nonerasing morphism is prolongable on x0, x0 ∈ A+, if there exists u ∈ A+ such that
f(x0) = x0u. In this case, for all n ∈ IN the word fn(x0) is a proper prefix of the
word fn+1(x0) and this defines a unique infinite word

x = x0uf(u)f2(u) · · · fn(u) · · ·
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which is the limit of the sequence (fn(x0))n≥0. We write x = fω(x0) and say that x
is generated by f.

A (finite or infinite) word u over A is square-free (resp. cube-free, 4-power-free) if
none of its factors is a square (resp. a cube, a 4-power). A morphism f on A is square-
free if the word f(u) is square-free whenever u is a square-free word. The morphism
f is weakly square-free if f generates a square-free infinite word.

A D0L-system is a triple G = (A, f, u) where A is an alphabet, f a morphism on
A and u ∈ A∗. An infinite word x is generated by G if x = (fk)ω(u) for some k ∈ IN.

A HD0L-system is a quintuple T = (A, u, f, g, B) where A and B are alphabets,
u ∈ A+, f is a nonerasing morphism on A, prolongable on u, and g is a morphism
from A onto B. An infinite word y is generated by T if y = g(fω(u)). When g is a
literal morphism T is called a tag-system. The tag-system is uniform if f is a uniform
morphism. The terminology of tag-system comes from the fundamental study of
Cobham [6]. Chapter 5 of [13] is dedicated to a deep study of D0L-systems (see also
Pansiot, 1983 [11] who used the terminology extended tag-systems for HD0L-systems).

3. The Hilbert curve and the Hilbert words

Peano [12] was the first in 1890 to realize the construction of a fractal curve that
fills a square without any holes. This construction is obtained by drawing, without
removing the pen from the surface of the paper, an infinite succession of unit lines
left, right, up, or down. Thus this succession can be represented by an infinite word
over the alphabet Σ = {u, ū, r, r̄} where u stands for up, ū stands for down, r stands
for right, and r̄ stands for left (for a description of pictures by words, see the basic
study of Maurer, Rozenberg and Welzl, 1982 [10]). In 1891 Hilbert [8] defined another
space filling curve. The word so obtained, called the Hilbert infinite word, is denoted
by H (the Hilbert curve is some particular example of a space filling curve, and space
filling curves are often described under the generic name of Peano curves. For this
reason, in a previous paper [7] we improperly gave the name of Peano curve to the
Hilbert curve).

Let us describe the algorithm of Hilbert. The general idea is to divide, at step n,
the unit square in 4n equal subsquares each of them containing an equal length part
of the curve (except the first and the last ones which contain a part of length 1/2).
The curve so obtained is then depicted by a word of length 4n − 1 which we will call
the n-th Hilbert word Hn. When n tends to infinity the curve fills the unit square
without any holes and the sequence of words Hn tends to the Hilbert infinite word H
(see Section 4).

Step by step, the algorithm is the following (let us recall that the drawing of the
curves is realized without removing the pen from the surface of the paper; in the
following figures ◦ and respectively represent the starting and the ending points of
the drawing).

• At step 1 the unit square is divided in 4 equal subsquares and it contains the
staple-like curve depicted by the word H1 = urū.
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d

• From step n to step n+1 the curve and grid sizes are decreased by a factor two
and four copies are put together to form a new square.

– The first copy is the left lower one, and it is obtained as follows: first
perform a vertical flip, then rotate a quarter turn left.

d
-

d
-

d
– The second and the third copies are the upper two ones: they are placed

as they are.

– The fourth copy is the right lower one: first perform a vertical flip, then
rotate a quarter turn right.

d
-

d
-

d

This gives the following.
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d
d d

d

Then, the curve is made continuous by connecting the ending point of the first
(resp. the second, the third) copy to the starting point of the second (resp. the
third, the fourth) one with three unit segments respectively corresponding to a
move up (u), a move right (r), and a move down (ū) – the dashes lines in the
following diagram.

d
d d

d

To end, all the starting and ending points are removed, except the starting point
of the first copy and the ending point of the fourth copy.

d
For more about the construction of space filling curves, see, for example, Sagan, 1994
[14].

Now, let us define on Σ three literal morphisms f , rg, and rd by
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f(u) = ū, f(ū) = u, f(r) = r, f(r̄) = r̄,

rg(u) = r̄, rg(ū) = r, rg(r) = u, rg(r̄) = ū,

rd(u) = r, rd(ū) = r̄, rd(r) = ū, rd(r̄) = u.

These three morphisms respectively represent a vertical flip, a quarter turn left
rotation, and a quarter turn right rotation.

From the construction we have that the Hilbert word Hn+1 (which represents the
drawing without removing the pen from the surface of the paper of the Hilbert curve
at step n + 1) is obtained from Hn by

Hn+1 = ρ(Hn) u Hn r Hn ū λ(Hn), (1)

where ρ = rg ◦ f and λ = rd ◦ f (ρ : u 7→ r 7→ u, ū 7→ r̄ 7→ ū; λ : u 7→ r̄ 7→ u, ū 7→ r 7→
ū).

One has H2 = rur̄ u urū r urū ū r̄ūr

and H3 = urūrrur̄urur̄r̄ūr̄u

u

rur̄uurūrurūūr̄ūr

r

rur̄uurūrurūūr̄ūr

ū

ūr̄ur̄r̄ūrūr̄ūrrurū

Now let w be a word over Σ. The word w̄ is obtained from w by replacing each
occurrence of u, r, ū, r̄ respectively by ū, r̄, u, r (ε̄ = ε). It is clear that ρ and λ are
the literal morphisms defined on Σ by

ρ(u) = r and, for any x ∈ Σ, ρ2(x) = x and ρ(x̄) = ρ(x) (2)

λ(u) = r̄ and, for any x ∈ Σ, λ2(x) = x and λ(x̄) = λ(x) (3)

Let g be the literal morphism defined on Σ by g(u) = g(ū) = u, g(r) = g(r̄) = r, and
let us recall that if w is a word over Σ with w = w1 · · ·wn, wi ∈ Σ, then w̃ = wn · · ·w1

(ε̃ = ε).
Together with the literal morphisms ρ, λ, f , and g, the Hilbert words Hn have the

following straightforward properties.

Property 1

1. ρ ◦ λ = λ ◦ ρ.

2. For any w ∈ Σ∗, λ(w) = ρ(w).

3. g ◦ ρ = g ◦ λ.
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4. For any n ≥ 1,

• f(Hn) = H̃n,

• g(Hn) = g(H̃n) = g̃(Hn),

• ρ(Hn) = f(λ̃(Hn)).

5. For any n ≥ 1, the Hilbert word Hn is irreducible, that is, it does not contain
any factor uū, ūu, rr̄, or r̄r.

From the construction it is easy to see that, for any positive integer n, |Hn| = 4n−1.

Moreover, we have the following more precise counting of each letter in Hn.

Lemma 2 For any n ∈ IN \ {0}, one has
|Hn|u = |Hn|ū = 4n−1,
|Hn|r = 4n−1 + 2n−1 − 1,
|Hn|r̄ = 4n−1 − 2n−1.

Proof. The result is obvious for n = 1.

From (1) we get, for x ∈ Σ,

|Hn+1|x = 2|Hn|x + |ρ(Hn)|x + |λ(Hn)|x +

{
1, if x = u, r, ū

0, if x = r̄.

Then, by the definition of ρ and λ, we obtain

|Hn+1|u = 2|Hn|u + |Hn|r + |Hn|r̄ + 1
|Hn+1|ū = 2|Hn|ū + |Hn|r̄ + |Hn|r + 1
|Hn+1|r = 2|Hn|r + |Hn|u + |Hn|ū + 1
|Hn+1|r̄ = 2|Hn|r̄ + |Hn|ū + |Hn|u
and the result follows by induction.
As an immediate corollary one has the following.

Corollary 3 For any n ≥ 1,

• |g(Hn)|u = |g(Hn)|r + 1;
• |g(ρ(Hn))|u = |g(λ(Hn))|u = |g(ρ(Hn))|r − 1 = |g(λ(Hn))|r − 1.

4. Generating the Hilbert infinite word

Preliminary remark. The sequence (Hn)n≥1 has two limits according to whether n
is even or odd. An equivalent construction (equivalent in the sense that it provides
a curve drawn without removing the pen from the surface of the paper and filling
the unit square without any holes) can be obtained with no distinction between the
even case and the odd one: it is enough at each even step, before computing the
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corresponding Hilbert word, to apply to the whole picture a vertical flip followed by
a quarter turn left rotation and then each Hn is a prefix of Hn+1. But the limit for
the odd indices is the same in the two cases so, because the properties of the Hilbert
words Hn are more interesting with our first construction, we keep the definition of
the Hilbert words Hn given in Section 3 and define the Hilbert infinite word H as the
limit of odd rank Hilbert words, that is, H = limn→∞H2n+1.

In this section, we prove that the Hilbert infinite word H is generated by a HD0L-
system, it contains no cube except those of only one letter, and it cannot be generated
by a single morphism (it is not even generated by a D0L-system). Then, applying
a deep result of Pansiot [11] (see also Allouche and Shallit, 2003 [2, Chapter 7]), we
obtain an equivalent uniform tag-system generating H.

Let Ω be the eight-letter alphabet Ω = {A,B,C, D, a, b, c, d}, and let γ and h be
the following morphisms.

γ : Ω∗ → Ω∗ h : Ω∗ → Σ∗

A 7→ BaAbAcD A 7→ urū

B 7→ AbBaBdC B 7→ rur̄

C 7→ DcCdCaB C 7→ ūr̄u

D 7→ CdDcDbA D 7→ r̄ūr

a 7→ a a 7→ u

b 7→ b b 7→ r

c 7→ c c 7→ ū

d 7→ d d 7→ r̄

Theorem 4 H is the infinite word generated by the HD0L-system (Ω, A, γ2, h,Σ),
i.e., H = h((γ2)ω(A)).

The proof of this result will use the following lemma which expresses the geometrical
meaning of the morphisms γ and h.

Lemma 5 For every n ∈ IN,

• h(γn(A)) = ρ(h(γn(B))) = λ(h(γn(D))),

• h(γn(B)) = ρ(h(γn(A))) = λ(h(γn(C))),

• h(γn(C)) = ρ(h(γn(D))) = λ(h(γn(B))),

• h(γn(D)) = ρ(h(γn(C))) = λ(h(γn(A))).

Proof. The eight equalities are obviously true if n = 0.

Now, let us prove for any integer n ≥ 0 that if the eight equalities are true for n
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then they are also true for n + 1. One has

h(γn+1(A)) = h(γn(BaAbAcD))
= h(γn(B))h(a)h(γn(A))h(b)h(γn(A))h(c)h(γn(D))
= ρ(h(γn(A)))uh(γn(A))rh(γn(A))ūλ(h(γn(A))) (by induction)
= ρ(h(γn(A)))ρ(r)h(γn(A))ρ(u)h(γn(A))ρ(r̄)λ(h(γn(A)))
= ρ(h(γn(A)))ρ(h(b))ρ(h(γn(B)))ρ(h(a))ρ(h(γn(B)))ρ(h(d))ρ(h(γn(C)))
= ρ(h(γn(AbBaBdC)))
= ρ(h(γn+1(B))).

This proves the first equality. The seven others are verified in the same way.

Proof of Theorem 4. We will prove by induction that, for any n ∈ IN, Hn+1 =
h(γn(A)). The result follows because H = limn→∞H2n+1 = limn→∞ h(γ2n(A)).

The equality is of course true if n = 0 since H1 = urū = h(A). Now,

Hn+2 = ρ(Hn+1)uHn+1rHn+1ūλ(Hn+1)
= ρ(h(γn(A)))h(a)h(γn(A))h(b)h(γn(A))h(c)λ(h(γn(A))) (by induction)
= h(γn(B))h(γn(a))h(γn(A))h(γn(b))h(γn(A))h(γn(c))h(γn(D)) (Lemma 5)
= h(γn(BaAbAcD))
= h(γn+1(A)).

Now, to prove that the Hilbert infinite word H contains no cube except x3, x ∈ Σ,
we need an intermediate lemma. First remark that the morphism γ is clearly not
a square-free morphism (for example, γ(CA) contains BB as a factor). It is even
not weakly square-free (it does not generate a square-free word because, for example,
γ4(A) contains bAbAb as a factor). But we have the following.

Lemma 6 For any n ∈ IN, γn(A) does not contain any factor Y wY wY with Y ∈
{A,B,C, D} and w ∈ Ω∗.

Proof. The property is straightforward if n = 0 or n = 1.

In order to get a contradiction, let us suppose that, for some integer n ≥ 2, γn(A)
contains a factor Y wY wY , Y ∈ {A,B,C, D}, w ∈ Ω∗, when γn−1(A) does not
contain any such factor. Moreover, let us suppose that Y = A (the three other cases
are symmetrical by definition of γ).

Let u, v ∈ Ω∗ be such that γn(A) = uAwAwAv.
By definition of γ, four cases are possible for u: u = γ(w1), u = γ(w1)Ba, u =

γ(w1)BaAb, or u = γ(w1)CdDcDb, for some prefix w1 of γn−1(A).
Before continuing, we remark that the symbols of γn(A) alternate between lower-

and upper-case letters.

1. u = γ(w1)
In this case, the first occurrence of A following u is necessarily the first letter of
γ(B). This implies that Aw starts with γ(B) = AbBaBdC and, since this last
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factor can only appear, in γn(A), as an occurrence of γ(B), it follows that the
second occurrence of Aw also starts with γ(B), that is, there exists W ′ ∈ Ω∗

such that AwAw = γ(BW ′BW ′) and γn−1(A) starts with w1BW ′BW ′. But
since AwAw is followed, in γn(A), by the letter A, the next letter in γn−1(A) is a
B, which implies that γn−1(A) contains BW ′BW ′B as a factor, a contradiction.

2. u = γ(w1)Ba

In this case, the first occurrence of A after u is followed by bAcD. This implies
that Aw starts with AbAcD and, since this last factor can only appear, in
γn(A), in an occurrence of γ(A), it follows that Aw = AbAcDγ(W ′)Ba for
some W ′ ∈ Ω∗ where AbAcD and Ba are respectively the suffix and the prefix
of γ(A). This means γn−1(A) starts with w1AW ′AW ′A, a contradiction.

3. u = γ(w1)BaAb

In this case, the first occurrence of A after u is followed by cD. This implies
that Aw starts with AcD. Here two cases are possible.
Either w ends with BaAb and, as in the previous case, γn−1(A) contains a factor
AW ′AW ′A, a contradiction.
Or this factor AcD is the central part of some γ(DcC). But in this case AcD
is followed, in Aw, by cCdCaB and, since γn(A) starts with uAw, this factor
cCdCaB should be the beginning of some γ(W ′) in γn(A). This is impossible.

4. u = γ(w1)CdDcDb

In this case, the first occurrence of A after u is the last letter of γ(D) and w
starts in the same manner as some γ(W ′).
Let us consider the letter A at the beginning of the second occurrence of Aw.

• It is impossible that this A is the first letter of γ(B) because γ(W ′) (and
thus w) cannot start with bBaBdC.

• It is impossible that this A is the first A in γ(A) because γ(W ′) (and thus
w) cannot start with bAcD.

• It is impossible that this A is the second A in γ(A). Indeed otherwise w
starts with cD and since w starts in the same manner as some γ(W ′), w
starts with cDcCdCaB. But this would imply that CdCaB is the beginning
of some γ(Z) which is impossible.

• Thus this A is again the last letter of γ(D). This is also the case for the
last A of AwAwA, which implies that γn−1(A) starts with w1DW ′DW ′D,
a contradiction.

Now, we are ready to prove a second noteworthy result.

Theorem 7 The infinite word H does not contain any factor xyWxyWxy with x, y
letters and W a word. In particular, the only cubes in H are x3 with x a single letter.
Moreover, H is 4-power-free.

Proof. We first suppose that H does not contain any factor xyWxyWxy with x, y
letters and W a word. If H contains a cube X then necessarily X = x3 where x
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is a letter. That H effectively contains all the cubes x3 for x ∈ Σ, and also that it
contains no factor x4, comes from the following. A factor u3 (resp. r3, ū3, r̄3) can
only be found in h(CaA) (resp. h(DbB), h(AcC), h(BdD)); a factor CaA (resp. DbB,
AcC, BdD) can only be found as the central part of γ(BaB) (resp. γ(AbA), γ(DcD),
γ(CdC)); finally BaB (resp. AbA, DcD, CdC) is the central factor of γ(B) (resp.
γ(A), γ(D), γ(C)).

Since γ2(A) contains A, B, C, and D, γ3(A) contains BaB, AbA, DcD, and CdC,
thus γ4(A) contains CaA, DbB, AcC, and BdD, that is, H5 contains u3, r3, ū3, and
r̄3.

It is interesting to remark here that, starting from the index 0, we find in the
infinite word H the first occurrence of r3 (resp. u3, r̄3, ū3) at the index 30 (resp. 94,
222, 478).

Now we prove the first part of the theorem.
Suppose that H contains a factor xyWxyWxy with x, y letters and W a word, and

let T be such that TxyWxyWxy is a prefix of H, i.e., TxyWxyWxy is a prefix of
h(γ2n(A)) for some n ∈ IN.

There are four possible cases depending on the value of |T | mod 4.

• If |T | mod 4 = 0 then x is the first letter of h(X) for some X ∈ {A,B,C, D}.
We suppose X = A (the other cases are symmetrical).
Then x = u, y = r and W starts with ū: W = ūW ′. By definition of h and γ,
the factor urū can only appear, in H, as h(A). This implies that there exists a
word w′ ∈ Ω∗ such that TxyWxyWxy = Th(Aw′Aw′)ur. But, by construction,
w′ ends with a lower-case letter thus, in γ2n(A), Aw′Aw′ is followed by an
upper-case letter. Since the image of this letter by h starts with ur, this letter
is necessarily A. Thus γ2n(A) contains Aw′Aw′A, a contradiction with Lemma
6.

• If |T | mod 4 = 1 then x is the second letter of h(X), X ∈ {A,B, C, D}, y is
the third letter of h(X), and W ends with the first letter of h(X). As in the
previous case, we obtain a contradiction with Lemma 6.

• If |T | mod 4 = 2 then x is the third letter of h(X), X ∈ {A,B, C, D}. We
suppose X = A which implies x = ū. Since, in γ2n(A), A is necessarily followed
by b or c, we have y = r or y = ū.

First suppose |Wx| mod 4 6= 3. Then if y = r the only possibility is |W | mod 4 =
1 (that is, after T the second occurrence of xy = ūr is at the end of h(D)) and
if y = ū the only possibility is |W | mod 4 = 3 (that is, after T the second
occurrence of xy = ūū is such that x is the image by h of a lower-case letter
and y is the beginning of the image of an upper-case letter.) In the two cases
|TxyWxyW | mod 4 = 0 which implies that the third occurrence of xy is the
beginning of some h(Y ) with Y ∈ {A,B, C, D} : this is impossible because
xy = ūr or xy = ūū.

Thus |Wx| mod 4 = 3 which implies that Wx ends with the image by h of an
upper-case letter. Since x = ū this letter is A and, as previously, we obtain that
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γ2n(A) contains Aw′Aw′A for some word w′ ∈ Ω∗, a contradiction with Lemma
6.

• If |T | mod 4 = 3 then x is the image by h of a lower-case letter. Then y is the
first letter of h(X) for some X ∈ {A,B,C, D}. This implies that TxyWxyWxy
is a prefix of Txh(X)W ′xh(X)W ′xh(X) where W ′ is the word such that yW =
h(X)W ′. Again, this means that γ2n(A) contains Xw′Xw′X, a contradiction
with Lemma 6.

A direct corollary is the following.

Corollary 8 The infinite word H cannot be generated by a D0L-system.

Proof. If H were generated by a D0L-system (f,Σ, v) then H = fn(H) for some
n ∈ IN \ {0}. Consequently f(u3), f(r3), f(ū3), and f(r̄3) are factors of H. Since
H does not contain any cube except u3, r3, ū3, and r̄3, this implies that |f(x)| ≤ 1
for any x ∈ Σ: a contradiction because, to generate an infinite word, f must be
prolongable on at least one letter.

To end this part let us remark that, following a deep result of Cobham [5] (see also
Pansiot, 1983 [11]), we know that there exists a tag-system generating the infinite
word H. However a direct application of Pansiot’s algorithm gives a non-uniform tag-
system with a 16-letter alphabet and a morphism whose image length is 21 for almost
all the letters. Here, we obtain below a better result by proving that H is generated
by a uniform tag-system; indeed it is known that there exist words generated by
tag-system but not by a uniform one, see, e.g., Pansiot, 1983 [11]. Moreover the
tag-system below has a 8-letter alphabet and a morphism whose image length is 16.

Let Ω′ = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8} be a new alphabet, and let γ′ and h′ be the
following morphisms.

γ′ : Ω′∗ → Ω′∗ h′ : Ω′∗ → Σ∗

ω1 7→ ω3ω1ω2ω7 ω1 7→ u

ω2 7→ ω3ω1ω2ω8 ω2 7→ r̄

ω3 7→ ω1ω3ω4ω5 ω3 7→ r

ω4 7→ ω1ω3ω4ω6 ω4 7→ ū

ω5 7→ ω8ω6ω5ω3 ω5 7→ r

ω6 7→ ω8ω6ω5ω4 ω6 7→ ū

ω7 7→ ω6ω8ω7ω1 ω7 7→ u

ω8 7→ ω6ω8ω7ω2 ω8 7→ r̄
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Lemma 9 For every integer n ≥ 1,

h′(γ′2n(ω1)) = h(γ2n−1(Ba)) , h′(γ′2n(ω2)) = h(γ2n−1(Bd)),
h′(γ′2n(ω3)) = h(γ2n−1(Ab)) , h′(γ′2n(ω4)) = h(γ2n−1(Ac)),
h′(γ′2n(ω5)) = h(γ2n−1(Db)) , h′(γ′2n(ω6)) = h(γ2n−1(Dc)),
h′(γ′2n(ω7)) = h(γ2n−1(Ca)) , h′(γ′2n(ω8)) = h(γ2n−1(Cd)).

Proof. It is a little tedious but not difficult task to verify the result for n = 1.
Now, let us prove for any integer n ≥ 1 that if the eight equalities are true for 2n

then they are also true for 2n + 2. One has

h′(γ′2n+2(ω3))
= h′(γ′2n(γ′2(ω3)))
= h′(γ′2n(γ′(ω1ω3ω4ω5)))
= h′(γ′2n(ω3ω1ω2ω7ω1ω3ω4ω5ω1ω3ω4ω6ω8ω6ω5ω3))
= h(γ2n−1(Ab)γ2n−1(Ba)γ2n−1(Bd)γ2n−1(Ca)γ2n−1(Ba)γ2n−1(Ab)γ2n−1(Ac)

γ2n−1(Db)γ2n−1(Ba)γ2n−1(Ab)γ2n−1(Ac)γ2n−1(Dc)γ2n−1(Cd)γ2n−1(Dc)
γ2n−1(Db)γ2n−1(Ab)) (by induction)

= h(γ2n−1(AbBaBdCaBaAbAcDbBaAbAcDcCdDcDbAb))
= h(γ2n−1(γ2(Ab)))
= h(γ2n+1(Ab)).

This proves the third equality. The seven others are verified in the same way.

Theorem 10 H is the infinite word generated by the tag-system (Ω′, ω1, γ
′2, h′,Σ),

i.e., H = h′((γ′2)ω(ω1)).

Proof. Since γ(A) begins with Ba and γ(B) begins with A we have that, for every
integer n ≥ 1, γ2n−2(A) is a prefix of γ2n−1(Ba) which is itself a prefix of γ2n(A).

Thus, from Lemma 9, we deduce that for every integer n ≥ 1, h(γ2n−2(A)) is a
prefix of h′(γ′2n(ω1)) which is itself a prefix of h(γ2n(A)).

The result then follows from H = limn→∞ h(γ2n(A)).

5. Further questions

In this paper we have started the study of the Hilbert infinite word H. Many other
questions could be looked for. Here are some of them.

The subword complexity of an infinite word w is the function counting the number
of distinct length-n subwords of w. It is reasonable to hope that, using either the
HD0L-system or the tag-system generating H, the complexity function of this word
could be obtained.

The critical exponent of an infinite word w is a number e such that w contains
α-powers for some α < e, but has no α-powers for α > e (it may or may not have e-
powers). Here α is a rational number and e may be rational or real. Since H contains
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cubes and the only cubes it contains are one-letter cubes, the critical exponent of H
is 3. However there is another interesting notion connected to the notion of critical
exponent. Let us call super-critical exponent of an infinite word w the number es such
that w contains α-powers for every rational number α < es, but has no α-powers for
α > es (again, it may or may not have es-powers). Of course es ≤ e. In the case
of some classical infinite words, as the Thue-Morse word or the Fibonacci word, the
critical exponent and the super-critical exponent have the same value. But, in the
present case the super-critical exponent is undoubtedly less than 3 because, from
Theorem 7, H cannot contain all rational powers less than 3.

One of the referees proposed to replace absolute directions (left, right, up, down)
by relative directions (left, right, straight). The infinite word so obtained on a 3-letter
alphabet, which is of course different from H, is generated by a tag-system with a
7-letter alphabet and a uniform morphism whose image length is only 4. Comparing
the properties of this word with those of H could be interesting.
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