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Abstract - The paper presents a methodology for the development of robot software controllers, based on 
actual software component approaches and robot control architectures. This methodology defines a process 
that guides developers from the analysis of a robot controller to its execution. A proposed generic software 
controller architecture, useful for analysis and integration, and a dedicated component-based language, 
focusing on modularity, reusability, scalability and upgradeability of controller architectures parts during 
design and implementation steps, are briefly presented. 
  
Keywords - Software Components, Control Architecture, Integration, Reuse, Petri Nets with Objects. 
 

I.  INTRODUCTION 
 

 Robots are complex systems whose complexity is continuously increasing as more and more 
intelligence (decisional and operational autonomies, human-machine interaction, robots 
cooperation, etc.) is embedded into their controllers. This complexity also depends, of course, on 
the mechanical portion of the robot that the controller has to deal with, ranging from simple 
vehicles to complex humanoid robots [15]. These two portions of a robot, its mechanical part 
(including its sensors and actuators) and its control logic, are intrinsically interdependent. 
Nevertheless, for reasons of modularity, reusability and upgradeability, the controller design 
should separate, as far as possible, these two aspects: the functionalities that are expected from 
the robot on the one hand, and, on the other, the representation of the mechanical and 
technological parts that implements them. This is necessary to attain platform independence, as 
well as to favor upgradeability according to the technological development [14]. Indeed, the 
software architecture (controller) should not be closely dependent on the technology (e.g. sensors 
suite), neither on a specific hardware implementation (computing technology); that would reduce 
the opportunity to take advantage of future technical advancements (Ultrasounds, laser, visual 
systems could be used for obstacle detection for example).   
 One current limitation in the development of robot software controllers is the difficulty of 
integrating different functionalities, potentially originating from different teams (laboratories), 
into a same controller, as they are often closely designed and developed for a given robot (i.e., for 
a given mechanical part in particular). Hence, reusability, as well as scalability and 
upgradeability, are aims that are currently almost impossible to achieve since both aspects of the 
robot (control and mechanical descriptions) are tightly merged. 
 Our goal is to provide a methodology [11] that rationalizes the development process of a 
robot software controller in order to overcome these limitations. We thus present the CoSARC 
(Component-based Software Architecture of Robot Controllers) development methodology based 
on actual component [12] and architecture descriptions [9], approaches in software engineering 
and control architectures in robotics. CoSARC defines a process that guides developers during 
analysis, design, implementation, deployment and operation of a robot controller. Its structure is 
based on two concepts: a generic software controller architecture, useful for analysis and 
integration, presented here in section II, and a component-based language, useful for design and 
implementation, presented in section III. This paper concludes by citing actual work on, and 
perspectives of, the CoSARC methodology. 
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II. GENERIC SOFTWARE CONTROL ARCHITECTURE 
 

 Robot control architecture is a widely studied domain. Three categories of architectures have 
so far emerged: hierarchical (deliberative) architectures [8], subsumption architectures [5] and 
mixed architectures. The proposed CoSARC generic architecture belongs to the mixed 
architectures category, like ORCCAD [4], CLARATy [13] and LAAS architectures [1]. 
 The CoSARC approach aims to improve modularity, reusability and upgradeability within 
robot control architectures. The generic architecture of CoSARC improves these aspects in order 
to provide developers  with abstractions that are useful for analyzing the control architecture 
structure, taking into account both the robot’s physical part (operative part) and the robot-control 
part (the robot’s intelligence, i.e. the part that exhibits its behavior). The central abstraction in the 
CoSARC generic architecture is the Resource. A Resource is a part of the robot’s intelligence 
that is responsible for the control of a given set of independently controllable physical elements. 
For instance, consider a mobile manipulator robot consisting of a mechanical arm (manipulator) 
and a vehicle. It is possible to abstract at least two resources: the ManipulatorResource which 
controls the mechanical arm and the MobileResource which controls the vehicle. Depending on 
developer’s choices or needs, a third resource can also be considered, coupling all the different 
physical elements of the robot, the MobileManipulatorResource. This resource is thus in 
charge of the control of all the degrees of freedom of the vehicle and the mechanical arm (the 
robot is thus considered as a whole). The breaking down of the robot’s intelligence into resources 
mainly depends on three factors: the robot’s physical elements, the functionalities that the robot 
must provide and the means developers have to implement those functionalities with this 
operative part. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The CoSARC Generic Architecture 
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 A resource (cf. Fig. 1) corresponds to a sub-architecture decomposed into a set of 
hierarchically organized interacting entities. Presented from bottom to top, they are: 
- A set of Commands. A command is in charge of the periodical generation of command data to 

actuators, according to given higher-level instructions (often setup points) and sensor data; 
commands encapsulate control laws. The actuators concerned belong to the set of physical 
elements controlled by this resource. An example of a command of the 
ManipulatorResource is the JointSpacePositionCommand (based on a joint space-
position control law that is not sensible to singularities, i.e., singular positions linked to the 
lining up of some axis of the arm). 

- A set of Perceptions. A perception is responsible for the periodical transformation of sensor 
data into, potentially, more abstract data. An example of a perception of the 
ManipulatorResource is the ArmConfigurationPerception that generates the data 
representing the configuration of the mechanical arm in the task space from joint space data 
(by means of the direct geometrical model of the arm). 

- A set of Event Generators. An event generator ensures the detection of predefined events 
(exteroceptive or proprioceptive phenomena) and their notification to higher-level entities. 
An example of an event generator of the ManipulatorResource is the 
SingularityGenerator; it is able to detect, for instance, the singularity vicinity (by means of 
a ‘singularity model’, i.e., a set of equations describing the singular configurations). 

- A set of Actions. An action represents an (atomic) activity that the resource can carry out. An 
action is in charge of commutations and reconfigurations of commands. An example of an 
action of the ManipulatorResource is the ManipulatorContactSearch-Action, which uses 
a set of commands to which belongs the ManipulatorImpedance-Command. This 
command is based on an impedance control law (allowing a spring-damper like behavior). 

- A set of Modes. Each Mode describes one resource behavior and defines the set of orders the 
resource is able to perform. For example, the MobileResource has two modes: the 
MobileTeleoperationMode using which the human operator can directly control the vehicle 
(low-level teleoperation, for which obstacle avoidance is ensured), and the 
MobileAutonomousMode in which the resource is able to accomplish high-level orders (e.g., 
‘go to position’). A mode is responsible for the breaking down of orders into a sequence of 
actions, as well as the  scheduling  and synchronization of these actions. 

- A Resource Supervisor is the entity in charge of the modes commutation strategy, which 
depends on the current context of execution, the context being defined by the resource state, 
the environment state and the orders to be performed. 

 

 A control architecture consists of a set of resources (cf. Fig. 1). 
 

 The Global Supervisor of a robot controller is responsible for the management of resources 
according to orders sent by the operator, and events and data respectively produced by event 
generators and perceptions. Event generators and perceptions not belonging to a resource thus 
refer to physical elements not contained in any resource. In the given example, we use such 
resource-independent event generators to notify, for instance, ‘low battery level’ and ‘loss of 
WiFi connection’ events to some resources as well as to the global supervisor. The lower level of 
the hierarchical decomposition of a robot controller is composed of a set of Input/Output 
controllers. These I/O controllers are in charge of periodical sensor- and actuator-data updating. 
Commands, event generators and perceptions interact with I/O controllers in order to obtain 
sensor data, and commands use them to set actuator values. I/O controllers contribute to the 
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abstraction of the technology which is used (set of sensors and actuators, with their specific 
“drivers”). 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Reactivity loops within the CoSARC Generic Architecture 
 

 Event generators are dynamically configured, i.e. the set of events to be monitored is 
dynamically determined according to the context of execution (or can be permanently monitored 
if necessary). It allows reactivity loops to be dynamically installed according to the context, and 
at different levels within the controller (cf. Fig. 2). A given event can be simultaneously notified 
to different components, even at different levels of the hierarchy (if they “subscribed” to this 
event). Reactions performed further to an event occurrence depend on the behavior specified in 
each concerned component: command switching (e.g. for obstacle avoidance), mode 
commutation (e.g. from the remote control mode to the autonomous one in case of 
communication link break), resource change (e.g. teleoperation of the MobileManipulator-
Resource instead of the MobileResource), etc.  
 

 The analysis of the controller architecture is an important stage because it allows outlining of 
all the entities involved in the actions/reactions of the controller (i.e. the robot behavior) and the 
interactions between them. To this end, we propose a dedicated design language; we will not 
deal with standards of data representation (position, velocity, orientation parameters, etc.) neither 
message formats, etc. 
 

III. COMPONENT-BASED LANGUAGE 

A.  General concepts 
 The CoSARC language is devoted to the design and the implementation of robot controller 
architectures. It proposes a set of structures to describe an architecture in terms of a composition 
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of cooperating software components. A component is a software entity that encapsulates behavior 
and data, provides and requires functionalities by means of ports, and which is subject to 
composition. This language draws from existing software component technologies such as 
Fractal [6] and Architecture Description Languages such as Meta-H [3]. 
 
  
 

 

 

 

 

 

 

 
Figure 3: Example of two connected representation components 

 
 The main features of components in the CoSARC language are ports, interfaces, properties 
and connections. A component’s port is a point of connection between the component and other 
components. A port references an interface which is a contract containing the declaration of a set 
of services. If a port is ‘required’, the component needs one or more services declared in the 
interface that the port references. If a port is ‘provided’, the component implements the services 
declared in the interface that the port references. Required ports must always be connected while 
provided ones not necessarily. The properties of components define their internal behavior (e.g., 
operations) and data (e.g., attributes). Their behavior implements services declared in the 
interfaces that are referenced by their provided ports and call some services declared in the 
interface that are referenced by their required ports. Connections are entities that can be used by 
developers to connect ports. A connection is used to connect a required port with a provided one. 
When a connection is established, the conformity of interfaces referenced by the provided and the 
required ports is checked, to ensure consistency. 
 
 In the CoSARC language, there are four types of components: Representation Components, 
Control Components, Connectors and Configurations. Each of them is used to deal with a 
specific aspect of controller architecture design. We present the specificities of these types of 
components in the following sub-sections. 

B.  Representation Components 
 This component type is used to describe a robot’s knowledge of its environment, its mission 
and its physical elements. Representation components can represent abstract entities, such as 
events, sensor/actuator data, orders, control laws (a law in this context is a model that describes 
how to compute a set of outputs based on a given set of inputs), etc. They can also represent 
concrete entities, such as those relating to the robot’s physical elements or elements of its 
environment. 
 Representation components are ‘passive’ entities. Their ports allow only synchronous 
connections, and interfaces that are referenced by their ports declare a set of synchronous 
services. Internally, representation components consist of attributes (state) and operations 
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(behavior) that use these attributes. Operations are the implementation of the services declared in 
provided ports; they can use services declared in required ports. Representation components can 
thus be composed between themselves when they require services of each-other. Indeed, a 
representation component consists of a set of provided ports that allows other representation 
components to obtain some of its static physical properties (wheel diameter, frame width, etc.) 
and set or obtain its dynamical properties (velocity and orientation of wheels, etc.). Figure 3 
shows a simple example of composition. The representation component called 
VehiclePositionControlLaw consists of: 
- one provided port, named VehicleActuatorsValue-Computation, using which another 

component, a control component for instance, can ask for a computation (of the value to 
apply to the actuator), 

- and two required ports. One of them references the 
VehiclePhysicalPropertiesConsultation interface, the other references the 
VehicleDynamicProperties interface. These interfaces are necessary for the computation as 
some parameters of the model depend on the vehicle on which the corresponding law is 
applied. The corresponding ports are provided by the representation component Vehicle. 
VehiclePositionControlLaw and Vehicle are so composed by connecting the two required 
ports of VehiclePositionControlLaw with the two corresponding provided ports of Vehicle. 

 
 Representation components are used by components of other types, such as control 
components and connectors. 
 

C. Control Components 
 A Control Component is used to describe and program entities in charge of the robot control 
activities. These entities, such as Event Generators, Commands, Actions, etc., are described in 
the CoSARC generic architecture (cf. section 2, Fig. 1). 
 The behavior of a control component determines the decision/reaction of the robot, according 
to its knowledge and the effective context. So each control component encapsulates a set of 
representation components that represent this knowledge. These representation components can 
be formal parameters of its services or of its attributes. 
 Control components are ‘active’ entities. Their ports permit asynchronous communications, 
and interfaces referenced by their ports declare a set of asynchronous services. Internal properties 
of a control component are attributes, operations and a Petri net with objects that describes its 
reactive asynchronous behavior [10].  
 The asynchronous behavior of a control component describes the way its operations are 
executed (synchronizations, parallelism, concurrent access to its attributes, etc.). Tokens inside 
the Petri net refer to representation components (the knowledge used by the control component), 
and the structure of the Petri net describes temporal and logical control flows applied from/to this 
knowledge (when computing its reaction). The reactive behavior also describes the way each 
control component synchronizes its internal activities with activities of others control 
components. 
 
 The use of Petri nets with objects is justified by the need of formalism to describe precisely 
not only synchronizations, concurrent access to data and parallelism within control components, 
but also interactions between them. Petri nets’ formal analysis capabilities, which have been 
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widely studied [7], provide developers with a way of verifying the controller model (its logical 
part). Moreover, Petri nets with objects can be directly executed by means of a token player. 
 
 Figure 4 presents an example of a control component that represents a command entity (cf. 
Fig. 1), named MobilePositionCommand.  It has three attributes: its periodicity, the Vehicle 
being controlled and the applied VehiclePositionControlLaw. The Vehicle and the 
VehiclePositionControlLaw are connected in the same way as described in Figure 3, meaning 
that the MobilePositionCommand will apply the VehiclePositionControlLaw to the Vehicle 
at a given periodicity. Such a decomposition allows the adaptation of the 
MobilePositionCommand to the Vehicle and the VehiclePositionControlLaw used. It is thus 
possible to reuse this control component in different controller architectures (for vehicles of the 
same type). This control component’s provided port references an interface named 
MobilePositionControl that declares services offered to other control components in order to be 
activated/deactivated/configured. Its required ports reference one interface each: 
MobileMotorsActuatorsAccess which declares services used to fix the value of the vehicle’s 
motors and MobileWheelVelocityandOrientationAccess which declares services used to 
obtain the values of the orientation and velocity of the vehicle’s wheels. These two interfaces are 
implemented by one or two I/O controllers (cf. Fig.1), depending on the developer’s choices 
and/or hardware architecture constraints. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Simple example of a control component 
 

 The (simplified) Petri net with objects representing the asynchronous reactive behavior of 
MobilePositionCommand is shown in Figure 4. It describes the periodic control loop 
performed by this control component. This loop is composed of three steps: the first one (firing 
of transition T1) consists of requests for sensors data, the second one (firing of transition T2) 
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consists of the computation of the reaction by executing VehicleActuatorsValueComputation 
services (cf. Fig. 3) and then by fixing the values of the vehicle motors, and the third one (firing 
of transition T3) consists of a wait for the next period before a new iteration (loop). Grey and 
black Petri net places represent, respectively, reception and transmission of messages 
corresponding to service calls. For example, places startExecution and stopExecution 
correspond to a service declared in the MobilePositionControl interface whereas places 
MobileWheelVelocityandOrientationRequest and MobileWheel-
VelocityandOrientationReceive correspond to a service declared in the 
MobileWheelVelocityandOrientationAccess interface. 
 

D.  Connectors 
 Interactions between composed control components, involving a large number of 
synchronizations and constraints, are modeled in the CoSARC language by protocols carried by 
components named connectors. Such interaction protocols then become reusable entities, as in 
many component-based approaches like [2]. Moreover, developers need not mix interactions and 
reactive behavior – which relate to different aspects – within control components.  
 Connectors are also components, used to connect ports of control components. A connector 
has at least two ports to connect at least two control components; each port defines the role of the 
control component within the given interaction. A role is specified by an interface that describes 
the contract that must be respected by the control component to be connected (to the port of this 
role). Like control components, a connector has several attributes and operations, and a Petri net 
with objects describing the asynchronous interaction it is responsible for. 
  

 An example of a (simple) connector used to connect two control components is shown in 
Figure 5. This connector, named Request/ReplyConnector, describes a simple interaction 
protocol between a Requester and a Replier. It consists of two ports: one provided port 
referencing the Requester interface and one required port referencing the Replier interface. The 
control component assuming the Requester role sends a request message to the control 
component assuming the Replier role, which then sends the reply message to the Requester. 
Constraints described in the Petri net with objects ensure (for example) that only one request will 
be sent by the Requester until it receives a reply, and that the Replier will process only one 
request until it sends the reply to the Requester. This connector can be used to establish 
connections between different control components, and each time the interaction to be described 
corresponds to this protocol. 
 
Just like control or representation components, connectors are not only modeling entities but also 
programming ones, i.e., entities that exist at runtime, ensuring communications between control 
components. 
 
Connectors, being also modeled by Petri nets, allow the building of the global Petri net, i.e., one 
resulting from the composition of control components. Thanks to this property, developers can 
analyze inter-component synchronizations, allowing then to check, for example, that the 
interconnection does not introduce any dead-lock. 
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Figure 5: Simple example of connector 
  

E.  Configurations 
 When a resource has been completely modeled, the result is a graph of the composition of 
control components by means of connectors (i.e., a software architecture). The CoSARC 
language provides another type of component, named Configuration, that contains this graph. It 
allows developers to encapsulate a software (sub-)architecture into a reusable entity. A 
configuration, at the design phase, can be considered (and so composed) as a control component. 
 Like all components, they have provided and required ports. These ports allow asynchronous 
communications and reference interfaces that declare asynchronous services. Ports of a 
configuration export (dotted lines) ports of control components that the configuration contains. 
At runtime, any connection to those ports is directly replaced by a connection to the initial port, 
i.e. to that of the concerned control component. Figure 6 shows an example of a configuration: 
the MobileResource, corresponding to a sub-architecture. This configuration exports the 
provided port of the MobileSupervisor and the required ports of MobilePositionCommand and 
MobileObstacleEventGenerator. 
 A configuration results from interconnections of control components, according to the pattern 
provided in the CoSARC generic architecture. For instance, the MobileResource is constituted 
by the MobileSupervisor, the MobileAutonomousMode, the MobileActionMoveToPosition, 
which interacts with the MobilePositionCommand, and the MobileObstacleEventGenerator. 
   

 

 

 

 

 

 

 

 

 
Figure 6: Simple example of a configuration 
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Controller. In the given example, the MobileManipulatorController configuration contains as 
many configurations as resources, i.e., the ManipulatorResource and the MobileResource. 
 
 The CoSARC language also provides structures to describe the hardware part of a controller 
(graphs of nodes, for instance), the different processes (containers) executing one or more control 
components and the scheduling of these processes on each node (its system manager). At the 
deployment stage, configurations are used to install/uninstall components on containers and to 
set the parameters of system managers.  
 

IV. CONCLUSION 

 
 We have briefly presented the CoSARC methodology, which is devoted to improving 
modularity, reusability and the upgradeability of control architectures. It is specifically dedicated 
to the integration of different aspects concerning robot control (control laws, physical 
descriptions, action scheduling, etc.), and can be seen as a framework into which any standard 
can be used by developers to represent their data, messages, services, etc. Moreover, the 
CoSARC language has the added benefit of relying on a formal approach based on Petri nets with 
objects formalism. This allows analysis to be performed at the design stage itself. After all, 
analysis cannot be ignored when designing the control of complex systems. 
 We are currently implementing the example of the Mobile Manipulator Robot Controller 
architecture. Future work will concern the CoSARC language execution engine and the CoSARC 
software engineering environment. 

 

REFERENCES  

[1] Alami, R. & Chatila, R. & Fleury, S. & Ghallab, M. & Ingrand, F. (1998). An architecture for 
autonomy, International Journal of Robotics Research, vol. 17, no. 4 (April 1998), p.315-337. 

[2] Aldrich, J. & Sazawal, V. & Chambers, C. & Notkin, D. (2003). Language support for 
connector abstraction, In Proceedings of ECOOP’2003, pp.74-102, Darmstadt, Germany, July 
2003. 

[3] Binns, P. & Engelhart, M. & Jackson, M. & Vestal, S. (1996). Domain Specific Architectures 
for Guidance, Navigation and Control, International Journal of Software Engineering and 
Knowledge Engineering, vol. 6, no. 2 (June 1996), pp.201-227, World Scientific Publishing 
Company. 

[4] Borrely J.J. et al. (1998). The Orccad Architecture, International Journal of Robotics 
Research, Special issues on Integrated Architectures for Robot Control and Porgramming, vol. 
17, no. 4 (April 1998), pp.338-359.  

[5] Brooks, R. et al. (1998). Alternative Essences of Intelligence, in Proceedings of American 
Association of Artificial Intelligence (AAAI), pp. 89-97, July 1998, Madison, Wisconsin, 
USA.  

[6] Bruneton, E. & Coupaye, T. & Stefani, J.B. (2002). Recursive and Dynamic Software 
Composition with Sharing, In Proceedings of the 7th International Workshop on Component-
Oriented Programming (WCOP02) at ECOOP 2002, June 2002, Malaga, Spain. 



12 

[7] David, R. & Alla, H. (2004). Discrete, Continuous and Hybrid Petri Nets, Ed. Springer, ISBN 
3-540-22480-7, 2004. 

[8] Gat, E. (1997). On three-layer Architectures, A.I. and mobile robots, D. Korten Kamp et al. 
Eds. MIT/AAAI Press, RR. N°3552, 1997. 

[9] Medvidovic, N. & Taylor, R.N. (1997). A framework for Classifying and Comparing 
Software Architecture Description Languages, in Proceedings of the 6th European Software 
Engineering Conference together with the 5th ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (ESEC/FSE), Springer-Verlag, pp. 60-76, 1997, Zurich, 
Switzerland. 

[10] Sibertin-Blanc, C. (1985). High-level Petri Nets with Data Structure, in proceedings of the 
6th European workshop on Application and Theory of Petri Nets, pp.141-170, Espoo, Finland, 
June 1985. 

[11] Stewart, D. B. (1996). The Chimera Methodology: Designing Dynamically 
Reconfigurable and Reusable Real-Time Software Using Port-Based Objects, International 
Journal of Software Engineering and Knowledge Engineering, vol. 6, no. 2, pp.249-277, June 
1996. 

[12] Szyperski, C. (1999). Component Software: Beyond Object Oriented Programming, 
Addison-Wesley publishing. 

[13] Volpe, R. et al. (2001). The CLARATy Architecture for Robotic Autonomy, in 
Proceedings of the IEEE Aerospace Conference (IAC-2001), vol. 1, pp.121-132, Big Sky, 
Montana, USA, March 2001. 

[14] Joint Architecture for Unmanned Systems. http://www.jauswg.org/ 
[15] Climbing and Walking Robots (CLAWAR) Network. http://www.clawar.com/home.htm  


