
HAL Id: lirmm-00106698
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106698

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component based Software Architecture of Robot
Controllers

Robin Passama, David Andreu, Christophe Dony, Thérèse Libourel Rouge

To cite this version:
Robin Passama, David Andreu, Christophe Dony, Thérèse Libourel Rouge. Component based Software
Architecture of Robot Controllers. 05059, 2005, 12 p. �lirmm-00106698�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106698
https://hal.archives-ouvertes.fr

1

 LIRMM UM II

Component based Software Architecture
of Robot Controllers

R. Passama, D. Andreu, C. Dony, T. Libourel

Rapport de Recherche LIRMM n° 05059

Septembre 2005

2

Abstract - The paper presents a methodology for the development of robot software controllers, based on
actual software component approaches and robot control architectures. This methodology defines a process
that guides developers from the analysis of a robot controller to its execution. A proposed generic software
controller architecture, useful for analysis and integration, and a dedicated component-based language,
focusing on modularity, reusability, scalability and upgradeability of controller architectures parts during
design and implementation steps, are briefly presented.

Keywords - Software Components, Control Architecture, Integration, Reuse, Petri Nets with Objects.

I. INTRODUCTION

 Robots are complex systems whose complexity is continuously increasing as more and more
intelligence (decisional and operational autonomies, human-machine interaction, robots
cooperation, etc.) is embedded into their controllers. This complexity also depends, of course, on
the mechanical portion of the robot that the controller has to deal with, ranging from simple
vehicles to complex humanoid robots [15]. These two portions of a robot, its mechanical part
(including its sensors and actuators) and its control logic, are intrinsically interdependent.
Nevertheless, for reasons of modularity, reusability and upgradeability, the controller design
should separate, as far as possible, these two aspects: the functionalities that are expected from
the robot on the one hand, and, on the other, the representation of the mechanical and
technological parts that implements them. This is necessary to attain platform independence, as
well as to favor upgradeability according to the technological development [14]. Indeed, the
software architecture (controller) should not be closely dependent on the technology (e.g. sensors
suite), neither on a specific hardware implementation (computing technology); that would reduce
the opportunity to take advantage of future technical advancements (Ultrasounds, laser, visual
systems could be used for obstacle detection for example).
 One current limitation in the development of robot software controllers is the difficulty of
integrating different functionalities, potentially originating from different teams (laboratories),
into a same controller, as they are often closely designed and developed for a given robot (i.e., for
a given mechanical part in particular). Hence, reusability, as well as scalability and
upgradeability, are aims that are currently almost impossible to achieve since both aspects of the
robot (control and mechanical descriptions) are tightly merged.
 Our goal is to provide a methodology [11] that rationalizes the development process of a
robot software controller in order to overcome these limitations. We thus present the CoSARC
(Component-based Software Architecture of Robot Controllers) development methodology based
on actual component [12] and architecture descriptions [9], approaches in software engineering
and control architectures in robotics. CoSARC defines a process that guides developers during
analysis, design, implementation, deployment and operation of a robot controller. Its structure is
based on two concepts: a generic software controller architecture, useful for analysis and
integration, presented here in section II, and a component-based language, useful for design and
implementation, presented in section III. This paper concludes by citing actual work on, and
perspectives of, the CoSARC methodology.

3

II. GENERIC SOFTWARE CONTROL ARCHITECTURE

 Robot control architecture is a widely studied domain. Three categories of architectures have
so far emerged: hierarchical (deliberative) architectures [8], subsumption architectures [5] and
mixed architectures. The proposed CoSARC generic architecture belongs to the mixed
architectures category, like ORCCAD [4], CLARATy [13] and LAAS architectures [1].
 The CoSARC approach aims to improve modularity, reusability and upgradeability within
robot control architectures. The generic architecture of CoSARC improves these aspects in order
to provide developers with abstractions that are useful for analyzing the control architecture
structure, taking into account both the robot’s physical part (operative part) and the robot-control
part (the robot’s intelligence, i.e. the part that exhibits its behavior). The central abstraction in the
CoSARC generic architecture is the Resource. A Resource is a part of the robot’s intelligence
that is responsible for the control of a given set of independently controllable physical elements.
For instance, consider a mobile manipulator robot consisting of a mechanical arm (manipulator)
and a vehicle. It is possible to abstract at least two resources: the ManipulatorResource which
controls the mechanical arm and the MobileResource which controls the vehicle. Depending on
developer’s choices or needs, a third resource can also be considered, coupling all the different
physical elements of the robot, the MobileManipulatorResource. This resource is thus in
charge of the control of all the degrees of freedom of the vehicle and the mechanical arm (the
robot is thus considered as a whole). The breaking down of the robot’s intelligence into resources
mainly depends on three factors: the robot’s physical elements, the functionalities that the robot
must provide and the means developers have to implement those functionalities with this
operative part.

Figure 1: The CoSARC Generic Architecture

Input/Output Controller

Global Supervisor

Resource Supervisor

Mode

Action

Resource

Command Perception
Event

Generator
Event

GeneratorPerception

1..*

1..*

1..*

1..* 1..* * * *

1..* 1..* 1..*

4

 A resource (cf. Fig. 1) corresponds to a sub-architecture decomposed into a set of
hierarchically organized interacting entities. Presented from bottom to top, they are:
- A set of Commands. A command is in charge of the periodical generation of command data to

actuators, according to given higher-level instructions (often setup points) and sensor data;
commands encapsulate control laws. The actuators concerned belong to the set of physical
elements controlled by this resource. An example of a command of the
ManipulatorResource is the JointSpacePositionCommand (based on a joint space-
position control law that is not sensible to singularities, i.e., singular positions linked to the
lining up of some axis of the arm).

- A set of Perceptions. A perception is responsible for the periodical transformation of sensor
data into, potentially, more abstract data. An example of a perception of the
ManipulatorResource is the ArmConfigurationPerception that generates the data
representing the configuration of the mechanical arm in the task space from joint space data
(by means of the direct geometrical model of the arm).

- A set of Event Generators. An event generator ensures the detection of predefined events
(exteroceptive or proprioceptive phenomena) and their notification to higher-level entities.
An example of an event generator of the ManipulatorResource is the
SingularityGenerator; it is able to detect, for instance, the singularity vicinity (by means of
a ‘singularity model’, i.e., a set of equations describing the singular configurations).

- A set of Actions. An action represents an (atomic) activity that the resource can carry out. An
action is in charge of commutations and reconfigurations of commands. An example of an
action of the ManipulatorResource is the ManipulatorContactSearch-Action, which uses
a set of commands to which belongs the ManipulatorImpedance-Command. This
command is based on an impedance control law (allowing a spring-damper like behavior).

- A set of Modes. Each Mode describes one resource behavior and defines the set of orders the
resource is able to perform. For example, the MobileResource has two modes: the
MobileTeleoperationMode using which the human operator can directly control the vehicle
(low-level teleoperation, for which obstacle avoidance is ensured), and the
MobileAutonomousMode in which the resource is able to accomplish high-level orders (e.g.,
‘go to position’). A mode is responsible for the breaking down of orders into a sequence of
actions, as well as the scheduling and synchronization of these actions.

- A Resource Supervisor is the entity in charge of the modes commutation strategy, which
depends on the current context of execution, the context being defined by the resource state,
the environment state and the orders to be performed.

 A control architecture consists of a set of resources (cf. Fig. 1).

 The Global Supervisor of a robot controller is responsible for the management of resources
according to orders sent by the operator, and events and data respectively produced by event
generators and perceptions. Event generators and perceptions not belonging to a resource thus
refer to physical elements not contained in any resource. In the given example, we use such
resource-independent event generators to notify, for instance, ‘low battery level’ and ‘loss of
WiFi connection’ events to some resources as well as to the global supervisor. The lower level of
the hierarchical decomposition of a robot controller is composed of a set of Input/Output
controllers. These I/O controllers are in charge of periodical sensor- and actuator-data updating.
Commands, event generators and perceptions interact with I/O controllers in order to obtain
sensor data, and commands use them to set actuator values. I/O controllers contribute to the

5

abstraction of the technology which is used (set of sensors and actuators, with their specific
“drivers”).

Figure 2: Reactivity loops within the CoSARC Generic Architecture

 Event generators are dynamically configured, i.e. the set of events to be monitored is
dynamically determined according to the context of execution (or can be permanently monitored
if necessary). It allows reactivity loops to be dynamically installed according to the context, and
at different levels within the controller (cf. Fig. 2). A given event can be simultaneously notified
to different components, even at different levels of the hierarchy (if they “subscribed” to this
event). Reactions performed further to an event occurrence depend on the behavior specified in
each concerned component: command switching (e.g. for obstacle avoidance), mode
commutation (e.g. from the remote control mode to the autonomous one in case of
communication link break), resource change (e.g. teleoperation of the MobileManipulator-
Resource instead of the MobileResource), etc.

 The analysis of the controller architecture is an important stage because it allows outlining of
all the entities involved in the actions/reactions of the controller (i.e. the robot behavior) and the
interactions between them. To this end, we propose a dedicated design language; we will not
deal with standards of data representation (position, velocity, orientation parameters, etc.) neither
message formats, etc.

III. COMPONENT-BASED LANGUAGE

A. General concepts
 The CoSARC language is devoted to the design and the implementation of robot controller
architectures. It proposes a set of structures to describe an architecture in terms of a composition

Input/Output Controller

Global Supervisor

Resource Supervisor

Mode

Action

Resource

Command
Perception

Event
Generator

Event
GeneratorPerception

6

of cooperating software components. A component is a software entity that encapsulates behavior
and data, provides and requires functionalities by means of ports, and which is subject to
composition. This language draws from existing software component technologies such as
Fractal [6] and Architecture Description Languages such as Meta-H [3].

Figure 3: Example of two connected representation components

 The main features of components in the CoSARC language are ports, interfaces, properties
and connections. A component’s port is a point of connection between the component and other
components. A port references an interface which is a contract containing the declaration of a set
of services. If a port is ‘required’, the component needs one or more services declared in the
interface that the port references. If a port is ‘provided’, the component implements the services
declared in the interface that the port references. Required ports must always be connected while
provided ones not necessarily. The properties of components define their internal behavior (e.g.,
operations) and data (e.g., attributes). Their behavior implements services declared in the
interfaces that are referenced by their provided ports and call some services declared in the
interface that are referenced by their required ports. Connections are entities that can be used by
developers to connect ports. A connection is used to connect a required port with a provided one.
When a connection is established, the conformity of interfaces referenced by the provided and the
required ports is checked, to ensure consistency.

 In the CoSARC language, there are four types of components: Representation Components,
Control Components, Connectors and Configurations. Each of them is used to deal with a
specific aspect of controller architecture design. We present the specificities of these types of
components in the following sub-sections.

B. Representation Components
 This component type is used to describe a robot’s knowledge of its environment, its mission
and its physical elements. Representation components can represent abstract entities, such as
events, sensor/actuator data, orders, control laws (a law in this context is a model that describes
how to compute a set of outputs based on a given set of inputs), etc. They can also represent
concrete entities, such as those relating to the robot’s physical elements or elements of its
environment.
 Representation components are ‘passive’ entities. Their ports allow only synchronous
connections, and interfaces that are referenced by their ports declare a set of synchronous
services. Internally, representation components consist of attributes (state) and operations

Vehicle

VehiclePosition
ControlLaw

VehiclePhysicalPropertiesConsultation

VehicleDynamicPropertiesAccess

VehicleActuatorsValueComputatio

port

referenced
interface

component

7

(behavior) that use these attributes. Operations are the implementation of the services declared in
provided ports; they can use services declared in required ports. Representation components can
thus be composed between themselves when they require services of each-other. Indeed, a
representation component consists of a set of provided ports that allows other representation
components to obtain some of its static physical properties (wheel diameter, frame width, etc.)
and set or obtain its dynamical properties (velocity and orientation of wheels, etc.). Figure 3
shows a simple example of composition. The representation component called
VehiclePositionControlLaw consists of:
- one provided port, named VehicleActuatorsValue-Computation, using which another

component, a control component for instance, can ask for a computation (of the value to
apply to the actuator),

- and two required ports. One of them references the
VehiclePhysicalPropertiesConsultation interface, the other references the
VehicleDynamicProperties interface. These interfaces are necessary for the computation as
some parameters of the model depend on the vehicle on which the corresponding law is
applied. The corresponding ports are provided by the representation component Vehicle.
VehiclePositionControlLaw and Vehicle are so composed by connecting the two required
ports of VehiclePositionControlLaw with the two corresponding provided ports of Vehicle.

 Representation components are used by components of other types, such as control
components and connectors.

C. Control Components
 A Control Component is used to describe and program entities in charge of the robot control
activities. These entities, such as Event Generators, Commands, Actions, etc., are described in
the CoSARC generic architecture (cf. section 2, Fig. 1).
 The behavior of a control component determines the decision/reaction of the robot, according
to its knowledge and the effective context. So each control component encapsulates a set of
representation components that represent this knowledge. These representation components can
be formal parameters of its services or of its attributes.
 Control components are ‘active’ entities. Their ports permit asynchronous communications,
and interfaces referenced by their ports declare a set of asynchronous services. Internal properties
of a control component are attributes, operations and a Petri net with objects that describes its
reactive asynchronous behavior [10].
 The asynchronous behavior of a control component describes the way its operations are
executed (synchronizations, parallelism, concurrent access to its attributes, etc.). Tokens inside
the Petri net refer to representation components (the knowledge used by the control component),
and the structure of the Petri net describes temporal and logical control flows applied from/to this
knowledge (when computing its reaction). The reactive behavior also describes the way each
control component synchronizes its internal activities with activities of others control
components.

 The use of Petri nets with objects is justified by the need of formalism to describe precisely
not only synchronizations, concurrent access to data and parallelism within control components,
but also interactions between them. Petri nets’ formal analysis capabilities, which have been

8

widely studied [7], provide developers with a way of verifying the controller model (its logical
part). Moreover, Petri nets with objects can be directly executed by means of a token player.

 Figure 4 presents an example of a control component that represents a command entity (cf.
Fig. 1), named MobilePositionCommand. It has three attributes: its periodicity, the Vehicle
being controlled and the applied VehiclePositionControlLaw. The Vehicle and the
VehiclePositionControlLaw are connected in the same way as described in Figure 3, meaning
that the MobilePositionCommand will apply the VehiclePositionControlLaw to the Vehicle
at a given periodicity. Such a decomposition allows the adaptation of the
MobilePositionCommand to the Vehicle and the VehiclePositionControlLaw used. It is thus
possible to reuse this control component in different controller architectures (for vehicles of the
same type). This control component’s provided port references an interface named
MobilePositionControl that declares services offered to other control components in order to be
activated/deactivated/configured. Its required ports reference one interface each:
MobileMotorsActuatorsAccess which declares services used to fix the value of the vehicle’s
motors and MobileWheelVelocityandOrientationAccess which declares services used to
obtain the values of the orientation and velocity of the vehicle’s wheels. These two interfaces are
implemented by one or two I/O controllers (cf. Fig.1), depending on the developer’s choices
and/or hardware architecture constraints.

Figure 4: Simple example of a control component

 The (simplified) Petri net with objects representing the asynchronous reactive behavior of
MobilePositionCommand is shown in Figure 4. It describes the periodic control loop
performed by this control component. This loop is composed of three steps: the first one (firing
of transition T1) consists of requests for sensors data, the second one (firing of transition T2)

MobilePositionControl

MobileMotorsActuatorsAccess

MobileWheelVelocity
andOrientationAccess

MobilePositionCommand
Attributes:
int period;
VehiclePositionControlLaw law;
Vehicle v;
Methods: //calculation and initialisation
operations
Asynchronous Reactive Behaviour:

<v, law>

[period,∞]

startExecution

stopExecution

MobileWheelVelocity
andOrientation

request

MobileWheelVelocity
andOrientation

receive

Fix Value
MobileMotorsActuators

T1

T2 T3

9

consists of the computation of the reaction by executing VehicleActuatorsValueComputation
services (cf. Fig. 3) and then by fixing the values of the vehicle motors, and the third one (firing
of transition T3) consists of a wait for the next period before a new iteration (loop). Grey and
black Petri net places represent, respectively, reception and transmission of messages
corresponding to service calls. For example, places startExecution and stopExecution
correspond to a service declared in the MobilePositionControl interface whereas places
MobileWheelVelocityandOrientationRequest and MobileWheel-
VelocityandOrientationReceive correspond to a service declared in the
MobileWheelVelocityandOrientationAccess interface.

D. Connectors
 Interactions between composed control components, involving a large number of
synchronizations and constraints, are modeled in the CoSARC language by protocols carried by
components named connectors. Such interaction protocols then become reusable entities, as in
many component-based approaches like [2]. Moreover, developers need not mix interactions and
reactive behavior – which relate to different aspects – within control components.
 Connectors are also components, used to connect ports of control components. A connector
has at least two ports to connect at least two control components; each port defines the role of the
control component within the given interaction. A role is specified by an interface that describes
the contract that must be respected by the control component to be connected (to the port of this
role). Like control components, a connector has several attributes and operations, and a Petri net
with objects describing the asynchronous interaction it is responsible for.

 An example of a (simple) connector used to connect two control components is shown in
Figure 5. This connector, named Request/ReplyConnector, describes a simple interaction
protocol between a Requester and a Replier. It consists of two ports: one provided port
referencing the Requester interface and one required port referencing the Replier interface. The
control component assuming the Requester role sends a request message to the control
component assuming the Replier role, which then sends the reply message to the Requester.
Constraints described in the Petri net with objects ensure (for example) that only one request will
be sent by the Requester until it receives a reply, and that the Replier will process only one
request until it sends the reply to the Requester. This connector can be used to establish
connections between different control components, and each time the interaction to be described
corresponds to this protocol.

Just like control or representation components, connectors are not only modeling entities but also
programming ones, i.e., entities that exist at runtime, ensuring communications between control
components.

Connectors, being also modeled by Petri nets, allow the building of the global Petri net, i.e., one
resulting from the composition of control components. Thanks to this property, developers can
analyze inter-component synchronizations, allowing then to check, for example, that the
interconnection does not introduce any dead-lock.

10

Figure 5: Simple example of connector

E. Configurations
 When a resource has been completely modeled, the result is a graph of the composition of
control components by means of connectors (i.e., a software architecture). The CoSARC
language provides another type of component, named Configuration, that contains this graph. It
allows developers to encapsulate a software (sub-)architecture into a reusable entity. A
configuration, at the design phase, can be considered (and so composed) as a control component.
 Like all components, they have provided and required ports. These ports allow asynchronous
communications and reference interfaces that declare asynchronous services. Ports of a
configuration export (dotted lines) ports of control components that the configuration contains.
At runtime, any connection to those ports is directly replaced by a connection to the initial port,
i.e. to that of the concerned control component. Figure 6 shows an example of a configuration:
the MobileResource, corresponding to a sub-architecture. This configuration exports the
provided port of the MobileSupervisor and the required ports of MobilePositionCommand and
MobileObstacleEventGenerator.
 A configuration results from interconnections of control components, according to the pattern
provided in the CoSARC generic architecture. For instance, the MobileResource is constituted
by the MobileSupervisor, the MobileAutonomousMode, the MobileActionMoveToPosition,
which interacts with the MobilePositionCommand, and the MobileObstacleEventGenerator.

Figure 6: Simple example of a configuration

 Since a configuration can contain others configurations, this structure allows developers to
hierarchically model the controller architecture. When an architecture is built following the
pattern provided by the CoSARC generic architecture, the ‘highest’ configuration is the Robot

MobileWheelVelocityandOrientationAccess

Mobile
Position

Command
Mobile

I/O
controller

Requester Replier

Request/Reply
Connector

send request receive request

send reply receive reply

Mobile
Supervisor

Mobile
Autonomous

Mode

Mobile
Action

Move To
Position

Mobile
Position

Command

Mobile
Obstacle

Event
Generator

Mobile Resource

11

Controller. In the given example, the MobileManipulatorController configuration contains as
many configurations as resources, i.e., the ManipulatorResource and the MobileResource.

 The CoSARC language also provides structures to describe the hardware part of a controller
(graphs of nodes, for instance), the different processes (containers) executing one or more control
components and the scheduling of these processes on each node (its system manager). At the
deployment stage, configurations are used to install/uninstall components on containers and to
set the parameters of system managers.

IV. CONCLUSION

 We have briefly presented the CoSARC methodology, which is devoted to improving
modularity, reusability and the upgradeability of control architectures. It is specifically dedicated
to the integration of different aspects concerning robot control (control laws, physical
descriptions, action scheduling, etc.), and can be seen as a framework into which any standard
can be used by developers to represent their data, messages, services, etc. Moreover, the
CoSARC language has the added benefit of relying on a formal approach based on Petri nets with
objects formalism. This allows analysis to be performed at the design stage itself. After all,
analysis cannot be ignored when designing the control of complex systems.
 We are currently implementing the example of the Mobile Manipulator Robot Controller
architecture. Future work will concern the CoSARC language execution engine and the CoSARC
software engineering environment.

REFERENCES

[1] Alami, R. & Chatila, R. & Fleury, S. & Ghallab, M. & Ingrand, F. (1998). An architecture for
autonomy, International Journal of Robotics Research, vol. 17, no. 4 (April 1998), p.315-337.

[2] Aldrich, J. & Sazawal, V. & Chambers, C. & Notkin, D. (2003). Language support for
connector abstraction, In Proceedings of ECOOP’2003, pp.74-102, Darmstadt, Germany, July
2003.

[3] Binns, P. & Engelhart, M. & Jackson, M. & Vestal, S. (1996). Domain Specific Architectures
for Guidance, Navigation and Control, International Journal of Software Engineering and
Knowledge Engineering, vol. 6, no. 2 (June 1996), pp.201-227, World Scientific Publishing
Company.

[4] Borrely J.J. et al. (1998). The Orccad Architecture, International Journal of Robotics
Research, Special issues on Integrated Architectures for Robot Control and Porgramming, vol.
17, no. 4 (April 1998), pp.338-359.

[5] Brooks, R. et al. (1998). Alternative Essences of Intelligence, in Proceedings of American
Association of Artificial Intelligence (AAAI), pp. 89-97, July 1998, Madison, Wisconsin,
USA.

[6] Bruneton, E. & Coupaye, T. & Stefani, J.B. (2002). Recursive and Dynamic Software
Composition with Sharing, In Proceedings of the 7th International Workshop on Component-
Oriented Programming (WCOP02) at ECOOP 2002, June 2002, Malaga, Spain.

12

[7] David, R. & Alla, H. (2004). Discrete, Continuous and Hybrid Petri Nets, Ed. Springer, ISBN
3-540-22480-7, 2004.

[8] Gat, E. (1997). On three-layer Architectures, A.I. and mobile robots, D. Korten Kamp et al.
Eds. MIT/AAAI Press, RR. N°3552, 1997.

[9] Medvidovic, N. & Taylor, R.N. (1997). A framework for Classifying and Comparing
Software Architecture Description Languages, in Proceedings of the 6th European Software
Engineering Conference together with the 5th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), Springer-Verlag, pp. 60-76, 1997, Zurich,
Switzerland.

[10] Sibertin-Blanc, C. (1985). High-level Petri Nets with Data Structure, in proceedings of the
6th European workshop on Application and Theory of Petri Nets, pp.141-170, Espoo, Finland,
June 1985.

[11] Stewart, D. B. (1996). The Chimera Methodology: Designing Dynamically
Reconfigurable and Reusable Real-Time Software Using Port-Based Objects, International
Journal of Software Engineering and Knowledge Engineering, vol. 6, no. 2, pp.249-277, June
1996.

[12] Szyperski, C. (1999). Component Software: Beyond Object Oriented Programming,
Addison-Wesley publishing.

[13] Volpe, R. et al. (2001). The CLARATy Architecture for Robotic Autonomy, in
Proceedings of the IEEE Aerospace Conference (IAC-2001), vol. 1, pp.121-132, Big Sky,
Montana, USA, March 2001.

[14] Joint Architecture for Unmanned Systems. http://www.jauswg.org/
[15] Climbing and Walking Robots (CLAWAR) Network. http://www.clawar.com/home.htm

