
HAL Id: lirmm-00106704
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106704

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing Drag-and-Drop Implementations
Maxime Collomb, Mountaz Hascoët

To cite this version:
Maxime Collomb, Mountaz Hascoët. Comparing Drag-and-Drop Implementations. 05077, 2005, 14 p.
�lirmm-00106704�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106704
https://hal.archives-ouvertes.fr

Comparing drag-and-drop implementations

Maxime Collomb, Mountaz Hascoët

LIRMM, UMR 5506 du CNRS
161 rue Ada

34 392 Montpellier Cedex
Tel: (33) 4 67 41 86 56 - Fax: (33) 4 67 41 85 00

{collomb, mountaz}@lirmm.fr

Abstract

In this paper, we present the drag-and-drop as it is implemented in four systems:
MacOS/Carbon, Windows/OLE, X-Window/Motif and Java/Swing. We use de-
composition in five steps to analyze each implementation and compare them. These
steps are: initialization, beginning of the interaction, drag, drop, and finalization.
We also compare data structures used by each system.

Key words: drag-and-drop, interaction model

1 Introduction

In this paper, we will present the drag-and-drop as it is implemented in four
systems: MacOS/Carbon, Windows/OLE, X-Window/Motif and Java/Swing.
Then, we will discuss the common parts and differences of these implementa-
tions.

First, we will describe the establishment of the model used to describe each
implementation of the drag-and-drop.

2 Establishment of the model

A drag-and-drop implementation contains two complementary aspects: (1) a
complex event model ensuring drag-and-drop feedback and control by user
and (2) a data transfer protocol and implementation. These two aspects are
present in the four systems presented here.

LIRMM - Rapport interne 19 December 2005

Event models usually introduce three actors: the source (the component from
where the object is moved), the system (toolkit and/or windowing system)
and the target (the component on which the object is moved).

The drag-and-drop mechanism can be decomposed in five steps [6]:

• Initialization that is made once when creating the source and target com-
ponents;

• Beginning of the interaction (detection of a pointer movement while a mouse
button is maintained pressed). After which the source component ask for a
drag-and-drop operation;

• Drag that consists of a pointer displacement, mouse button still pressed,
while notifying potential targets so they can accept or refuse the object;

• Drop that takes place when the mouse button is released and consists of
sending the data from the source to the target;

• Finalization that is done when freeing resources used by source and target
components.

The transferred data can be of multiple formats. For example, when dragging
a picture from a web page to a photo editing software, the picture should be
copied and ready for editing but when dragging to an html editor, the picture
url should be copied to the editor. This example illustrates the necessity of
transferring the data under different formats. It can be noted that the same
kind of multi-format transfer is used for copy-paste operations. Some editor
even proposes a special paste option to select the format of data to paste.

In the next sections, we will detail this mechanism for four different systems.

3 MacOS/Carbon

The MacOS X system from Apple has two graphical toolkits: Carbon, inherited
from previous versions of Mac OS, and Cocoa, inherited from NextStep. The
description of drag-and-drop mechanism on Cocoa can be found in [1] and do
not present originality compared to other systems presented here.

Thus, we will focus on Carbon toolkit [2] (figure 1) which is still widely used
(e.g. iTunes). In carbon, drag-and-drop facilities are provided through the
DragManager. DragManager is a module part of the Human Interface Toolbox
implemented in Carbon.

2

3.1 Initialization

Before any interaction, the drag-and-drop system has to be initialized. The
source component declares itself to the DragManager as a drag-and-drop source
by calling InstallWindowEventHandler(). The target component declare itself
as a potential target for drag-and-drop by calling InstallTrackingHandler()
followed by InstallReceiveHandler().

3.2 Drag detection

When a drag gesture is recognized by the system, it notifies the source compo-
nent through the dragHandler() method. Then, the source component will ask
for a drag-and-drop operation by calling TrackDrag() with a DragReference
object containing the data to transfer in parameter. TrackDrag() method will
terminate when the whole drag-and-drop operation will be completed.

3.3 Dragging

While the user is dragging the object, the source component is not notified
of every events and the target component is notified of entering, moving and
exiting events (trackingHandler()). Notifications contain a parameter of type
DragReference (the data) so the target can know the type(s) of the data
(thanks to the getFlavorFlags() method). If the target can manage at least
one type of data provided by the DragReference, it can ask the system for a
highlight of itself while the dragged object is within the component thanks to
the methods ShowDragHilite() and HideDragHilite().

3.4 Dropping

When the user drops the object, the target is notified by receiveHandler() and
then gets the data by calling getFlavorData() on the DragReference object.
The source component knows that drag-and-drop operation is finished thanks
to the termination of the TrackDrag() method.

3

Source System Target
InstallWindowEventHandler()

dragHandler(event)

dr: DragReference

trackingHandler(enterWindow, dr)
trackingHandler(inWindow, dr)
trackingHandler(leaveWindow, dr)

receiveHandler(dr)

RemoveEventHandler()
Destructor()

Constructor()

TrackDrag(dr, feedback)

Create()
AddDragItemFlavor(type, data)

EventHandler()

In
iti

al
iz

a-
tio

n
D

ra
g

de
te

ct
io

n
D

ra
gg

in
g

D
ro

pp
in

g
F

in
al

iz
a-

tio
n

getFlavorFlags(type)

ShowDragHilite(dr)

getFlavorData(type)

RemoveTrackingHandler()
RemoveReceiveHandler() Destructor()

EventHandler()

InstallTrackingHandler()
InstallReceiveHandler() Constructor()

Fig. 1. Drag-and-drop mechanism under Carbon.

3.5 Finalization

In order to remove the drag-and-drop support, source component has to call
removeEventHandler() and target component should call RemoveTracking-
Handler() followed by RemoveReceiveHandler().

3.6 Data Structures

A DragReference object contains the data under different formats. Each piece
of data is associated to an identifying of type (for example, TEXT refers to
the plain text format). The data can be given by the source component at
the beginning of the operation or, if needed, only the data types are given (so
the target can accept or reject the data) in addition of a callback routine that
will be called by the DragManager when the data will be needed (only if the
target accepts the data).

3.7 Conclusion

The MacOS/Carbon drag-and-drop mechanism features a DragManager that
ensure a consistent behavior through the different applications that use drag-
and-drop. It’s the only implementation in this paper that features such a
component.

4

4 X-Window/Motif

In the Motif toolkit (figure 2), the drag-and-drop model is based on the inter-
application communication protocol provided by XToolkit Intrinsic. It is also
based on the Uniform Transfer Model introduced in the version 2.0 of Motif
[3].

4.1 Initialization

To become a source for a drag-and-drop operation, a component has to be of
type DragSource thus recognize ButtonPress() events for the middle button.
On the other side, to become a potential target, a component must call the
XmDropSiteRegister() method.

4.2 Drag detection

The drag gesture detection is made by the source component when notified
of mouseEvent(). Then, it ask the system for a drag-and-drop operation by
calling XmDragStart() specifying a DragContext parameter containing the
transferable data. DragContext will be notified of advancement of the opera-
tion.

4.3 Dragging

While object is dragged, the DragContext is notified via the callbacks Xm-
NdragMotionCallback(), XmNdropSiteLeaveCallback() and XmNlevelEnter-
Callback(). The target component is notified via the optional XmNdragProc()
method.

The data type match between what is dragged and what accepts the target
is done by the system which is able to know the transferred data (method
XmNexportTargets() of the DragContext) and the data types accepted by
the target (methods XmNimportTargets() of the target)

At this step, there are two kinds of visual feedbacks: The target component
can manage a drag-under effect by providing a XmNdragProc() callback. And
the source component can manage a drag-over effect via a DragIcon object
that is able to customize the cursor to reflect the action in progress (move,
copy, etc.), type of the transferred data, state of the transfer, etc.

5

Source System Target

mouseEvent()

dc: DragContext

XmNdragMotionCallback()
XmNdropSiteLeaveCallback()

XmNlevelEnterCallback()

XmDragStart(dc, XmNconvertProc)

Create()

EventHandler()

XmDropSiteRegister()
Constructor()

EventHandler()

XmNdragProc()

XmNdropStartCallback()

XmNdropProc()

In
iti

al
iz

a-
tio

n
D

ra
g

de
te

ct
io

n
D

ra
gg

in
g

D
ro

pp
in

g
D

at
a

tr
an

sf
er

dc: DragContext
XmNdropProc() create()

XmNtransferProc()

XmDropFinishTransfer()
XmDropTransferStart()

XmNtransferProcCallback()

Fig. 2. Drag-and-drop mechanism under Motif.

4.4 Dropping

When the object is dropped, the XmNdropProc() callback of the target com-
ponent is called. It executes the method XmDropTransfertStart() which cre-
ates an object of type DropTransfert that will manage the data transfer and
determine the issue of the operation (success or failure).

During this step, visual effects cannot be customized. If the operation is a
success, the dragged object and the target combine but if it is a failure, then
the dragged object returns to its initial position to notify the user that data
has not been transferred.

4.5 Finalization

Motif does not provide any finalization routines.

4.6 Data structures

Developer has different possibilities to implement the data transfer under Mo-
tif. Data can be transferred using the X-Selection mechanism (via the X-
Server). This mechanism requires the data to be prepared at the beginning of
the operation.

A second possibility is to use UTM (Uniform Transfer Protocol) that is de-

6

signed to unify the data transfers in Motif 2.0 whatever is the context (drag-
and-drop, copy-paste, etc.). This protocol is based on a set of callbacks on both
source and target of the transfer that allows them to determine the optimal
format to use for the transfer and then to accomplish it.

The asset of this protocol is to be very general. But, on the downside, it
introduces a complex mechanism of callbacks that implies an important work
for the developer. This complexity is partially hidden in some widgets that
do a part of the work, but implementing drag-and-drop mechanism for new
widgets puts the developer in the front of this complexity.

4.7 Conclusion

Motif toolkit offers the most complex drag-and-drop mechanism. It is also
original by some aspects: for example, the drag gesture detection is made by
the source component by analyzing the mouse events. This leads developer
to re-create the same gesture-recognition-code for each widget. Furthermore,
behavior can be inconsistent between different widgets.

Another originality of the Motif drag-and-drop mechanism is to make the
system determine which targets are compatible with the dragged data. This
takes part in rendering this protocol complex with a great amount of callbacks.

5 Windows/OLE

The first drag-and-drop mechanism in Microsoft Windows was very simple
and consisted in managing the message WM DROPFILE. This mechanism
was only allowing files to be dragged. It has been overridden with the advent
of OLE (Object Linking and Embedding) that manages both copy-paste and
drag-and-drop mechanisms. We will discuss here of the OLE drag-and-drop
mechanism [7,5] (figure 3).

5.1 Initialization

Chronologically, the first action that will permit the user to drag and drop
objects is the registration of the target component as a potential target for
a drag-and-drop operation. To do so, interface IDropTarget has to be imple-
mented and system routine RegisterDragDrop() has to be called. On the source
component side, OLE support must be activated by executing OleInitialize()
system routine.

7

5.2 Drag detection

The drag gesture has to be recognized by the source component (it is only
notified of basic mouse events). Then, in order to initiate the operation, it calls
the DoDragDrop() method specifying an IDropSource and an IDataObject as
parameters. The execution of DoDragDrop() is synchronous: it ends when the
whole drag-and-drop operation finishes.

5.3 Dragging

While the object is dragged, the source component is involved through the
IDropSource interface via GiveFeedBack() and QueryContinueDrag() meth-
ods that provide the possibility to interrupt the operation at any time to the
source component. The target component is notified of events through three
methods: DragEnter(), DragOver() and DragLeave() when the cursor respec-
tively enters, moves over and leaves the component. When cursor is entering,
one parameter of the DragEnter() method is the IDataObject interface. So
the IDropTarget can ask the IDataObject for the type of data that is dragged
through the method QueryGetData().

Source System Target

In
iti

al
iz

a-
tio

n
D

ra
g

de
te

ct
io

n
D

ra
gg

in
g

D
ro

pp
in

g
F

in
al

iz
a-

tio
n

OleInitialize() RegisterDragDrop(handle, dt)Constructor()

Create()

Constructor()

PostMessage(mouseEvent)
DoDragDrop(ds, do)

ds: IDropSource

Create()
QueryContinueDrag()

GiveFeedBack()

do: IDataObject

Create()

DragRecognize()

DragEnter(position, do)
DragOver(position)

DragLeave()

Drop(position, do)

OleUninitialize() RevokeDragDrop(handle)Destructor() Destructor()

QueryGetData(format)

getData(format)

dt: IDropTarget

Fig. 3. Drag-and-drop mechanism under OLE.

5.4 Dropping

When the user releases the object, the target component is notified via the
Drop() method with the IDataObject as parameter. Next, it can ask the

8

IDataObject for the content of the dragged object thanks to the GetData()
method.

5.5 Finalization

If the source component does not need anymore to initiate drag-and-drop
operations, it has to remove OLE support with the OleUninitialize() method.
On the target component side, unregistering as a potential target can be done
by calling RemoveDragDrop().

5.6 Data structures

In OLE, data are encapsulated in an IDataObject interface, which can hold
data into different formats. This object is created by the source component at
the beginning of the operation and contains a set of methods that are called
by the target to determine which kind of data is available or to get the data
in a given format.

The data can be generated at the beginning or at the end of the operation
depending on the implementation of this object since IDataObject is simply
an interface.

5.7 Conclusion

The drawback of this protocol has already been observed in Motif: the source
component is responsible of the drag gesture detection. This can lead to in-
consistent behaviors.

6 Java/Swing

The model event of Java is based on the principle of delegation, event are
managed by specialized objects [4]. The package java.awt.dnd contains a set
of classes/interfaces that allows managing of drag-and-drop operations (figure
4). Although it is an AWT package, it is used in Swing applications too.

9

6.1 Initialization

When constructing the source component, an instance of a class implement-
ing the DragGestureListener interface has to be created and associated to the
component with the CreateGestureRecognizer() static method of the Drag-
Source class. On the other side, the target component must register itself
as a potential target by initializing his dropTarget property (with the setter
setDropTarget()) and by creating an instance of a class that implements the
DropTargetListener interface.

6.2 Drag detection

The system is responsible of detecting drag gestures. It notifies the source
component via the dragGestureRecognized() method of the DragGestureLis-
tener. The source component then decides to begin a drag-and-drop operation
by calling the startDrag() method of the DragGestureEvent received as para-
meter. StartDrag() claims two parameters: the data and a DragSourceListener
that will be notified of the advancement of the drag-and-drop operation.

6.3 Dragging

While the dragged object is moving, both source and target component are no-
tified by dragEnter(), dragOver(), dragExit() and dropActionChanged() meth-
ods but with different parameters: when the cursor enters a new target, it is
notified of the transferred data so it can watch at the data type and accept or
reject it. After the target has accepted or rejected the data (it is still dragged -
no real transfer has occurred yet), the source component is notified by the dra-
gEnter() method including the acceptance state of the target component. In a
general way, source component is always notified after the target component.

6.4 Dropping

As the object is dropped, target is notified by the drop() method. It then
accepts or rejects the drop, accesses the data and if data transfer worked,
finally declares the operation as a success. Then, the source component is
notified by the dragDropEnd() method.

10

Source System Target

In
iti

al
iz

a-
tio

n
D

ra
g

de
te

ct
io

n
D

ra
gg

in
g

D
ro

pp
in

g
F

in
al

iz
a-

tio
n

createDragGestureRecognizer(dgl)

create()

dragGestureRecognized()

dsl: DragSourceListener

create()

drop(position, data)

removeDragSourceListener(dsl)
setDropTarget(null)Destructor()

Destructor()

Constructor()

startDrag(dsl, data)

create()

dgl: DragGestureListener

acceptDrag() / rejectDrag()

acceptDrop() / rejectDrop()
dropComplete(success)

dtl: DropTargetListener

dragDropEnd(success)

setDropTarget(dt)
Constructor()

dragEnter(position)
dragOver(position)

dragExit()
dropActionChange(action)

dragEnter(position, dataType)
dragOver(position)

dragExit()
dropActionChange(action)

Fig. 4. Drag-and-drop mechanism under Swing.

6.5 Finalization

To stop managing drag-and-drop operations, source component calls the re-
moveDragSourceListener(listener) of the DragSource class and the target com-
ponent changes his dropTarget property with setDropTarget(null).

6.6 Data structures

The data object must be an instance of a class implementing the Transferable
interface. A minimal set of class implementing Transferable is provided by
Java to support basic formats (plain text, file list, image). These predefined
classes need the data to be given at the beginning of the operation.

6.7 Conclusion

The Swing mechanism (inherited from AWT) is multi-platform and therefore
introduces some limitations. Its main drawback is to need the data (object of
the transfer) to be generated at the beginning of the operation. It’s regret-
table, since late-generated-data are supported for data coming from non-java
applications. That’s why acceptDrop() has to be called before accessing data
coming from external application.

Furthermore, Swing drag-and-drop mechanism is quite complicated from the

11

developer point of view: no less than eighteen classes and interfaces are in-
volved in the drag-and-drop process.

7 Discussion

7.1 Differences: Dragging and dropping steps

Despite the similar general architecture illustrated by the five steps represen-
tation, the most notable differences are found in the core of the system during
the dragging and dropping steps. Thus, during the dragging step, three kinds
of events (or messages) are received: entering, moving over and leaving a tar-
get. These events are not generated in all systems: Swing notifies both source
and target components of these three events while OLE and Carbon only no-
tify the target and Motif only notifies the source component. This leads to a
drag-under/drag-over behavior that, even if reproducible on other systems, is
specific to Motif.

Another difference that appears between systems is the management of actions
and cancellation. Action can be copy, move, etc. and is selected through ctrl,
shift and alt modifier keys. But, while Carbon manages the entire action
process, Swing selects the action in function of modifiers and notifies the
source and target components. On the other side, Motif and OLE let the
source component choose the action to take in function of the modifiers. That
leads to a more flexible system but also to inconsistent behaviors of drag-
and-drop actions across applications. About the cancellation of the operation
(generally by pressing the escape key), the same difference appears: Swing and
Carbon manage it and Motif and OLE let the source component manage it.

During the dropping step, on all exposed systems, the target component is
notified first, accepts or refuses the drop, and after the source component is
notified of the end of the drag-and-drop. However, the data transfer does not
present a similar scheme on all systems: it is integrated in the drop notification
on Carbon, OLE and Swing and is a specific step on Motif. The data transfer
can be done according to two approaches: early-generated or late-generated.
Early-generated data is known at the beginning of the operation while late-
generated data is build at the end of the operation according to the type of
data that requires the target. All systems enable these two approaches though
it is more complex to use late-generated data on Swing since it requires writing
specific classes for data management.

12

7.2 Shared points: initialization, drag detection and finalization

Two elements are found in all systems and are almost identical: the initializa-
tion and the finalization. In all cases, potential sources have to be prepared
for drag-and-drop notifications and potential targets have to register them-
selves to the system. And, except Motif, all systems provide an unregistering
procedure for targets that get destroyed or become inactive.

Another step that is abstractly identical on the different systems is the drag
detection step. Depending on the system, the analysis of the mouse events is
more or less done by the system: for example, on OLE, the source component
has to analyze basic mouse events to detect a drag gesture while the work
is already done on Swing and the source component is directly notified by a
DragGestureRecognized() method. This difference is not of major order but
beg the question of consistency. However, at this point, it’s always to the
source component to ask for beginning the drag-and-drop operation.

It is noticed that drag-and-drop is ruled by an abstractly similar protocol from
one system to another. These similarities are due to the constraints imposed
by the interaction technique itself.

8 Conclusion

Based on the description of the four drag-and-drop systems described in this
paper, we can see that all the implementations can be described using five
functional steps. However, these implementations present deep dissimilarities
and any attempt of homogenization is very tedious. As attests the example
of Java/Swing, a multi-platform system introduces limitations to keep the
compatibility with each supported system.

9 Acknowledgments

We would like to thank Renaud Blanch for his precious help on existing im-
plementations analysis, and for his skills on MacOS/Carbon.

13

References

[1] Apple developer connection. Drag and drop.
http://developer.apple.com/documentation/cocoa/conceptual/draganddrop/.

[2] Apple developer connection. Drag manager programmers guide.
http://developer.apple.com/documentation/carbon/conceptual/dragmgrpro-
grammersguide/dragmgrprogrammersguide.

[3] Fountain Anthony, Huxtable Jeremy, Ferguson Paula, and Heller Dan. Motif
Programming Manual, 2nd edition, volume 6A. OReilly Associates, 2002.

[4] Gene De Lisa. How to drag and drop with java 2.
http://www.javaworld.com/javaworld/jw-03-1999/jw-03-dragndrop.html.

[5] James Brown. Ole drag and drop from scratch.
http://www.catch22.net/tuts/dragdrop.asp.

[6] M. Hascoët, M. Collomb, and R. Blanch. Evolution du drag-and-drop : du modèle
dinteraction classique aux surfaces multi-supports. revue I3, 4(2), 2004.

[7] Microsoft. The microsoft developer network. http://msdn.microsoft.com/.

14

