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DISCRETE GEOMETRY AND SYMBOLIC DYNAMICS

VALERIE BERTHE

Avec mes pensées les plus amicales pour Christer Kiselman.

1. INTRODUCTION

The aim of this survey is to illustrate various connections that exist be-
tween word combinatorics and arithmetic discrete geometry through the
discussion of some discretizations of elementary Euclidean objects (lines,
planes, surfaces). We will focus on the role played by dynamical systems
(toral rotations mainly) that can be associated in a natural way with these
discrete structures. We will see how classical techniques in symbolic dy-
namics applied to some codings of such discretizations allow one to obtain
results concerning the enumeration of configurations and their statistical
properties. Note that we have no claim to exhaustivity: the examples that
we detail here have been chosen for their simplicity.

Let us illustrate this interaction with the following figure where a piece
of an arithmetic discrete plane in R3 is depicted, as well as its orthogonal
projection onto the antidiagonal plane A: 1 + 29 +x3 = 0 in R?, which can
be considered as a piece of a tiling of the plane by three kinds of lozenges,
and lastly, its coding as a two-dimensional word over a three-letter alphabet.

This paper is organized as follows. We first start with the most simple
situation, namely discrete lines and Sturmian words (see Section 2). Section
3 is devoted to the higher-dimensional case, i.e., to the study of arithmetic
discrete planes. We generalize this study performed mainly in the so-called
naive case, first, to a broader class of arithmetic discrete planes in Section

4, and second, to functional stepped surfaces in Section 5. Section 6 is
1



2 VALERIE BERTHE

concerned with the generation of arithmetic discrete planes by generalized
substitutions. Special focus is given to the Rauzy fractal associated with
the cubic Pisot number of minimal polynomial X3 — X? — X —1 = 0.

2. STURMIAN WORDS AND DISCRETE LINES

This section is devoted to the connections between arithmetic discrete
lines and Sturmian words. A wide literature has been devoted to the study of
discrete lines, as illustrated for instance in the surveys [KR04, BCKO04]. Let
us start by recalling the definition of an arithmetic discrete line, introduced
by Reveilles in [Rev9l].

Definition 1. Let v € R?, and p,w € R. The (lower) arithmetic discrete
line ® (v, p,w) is defined as

D(v, p,w) ={x €7 0< (v,v) + pu < w}.

Parameter p is called the translation parameter of ® (v, pu,w), and w is called
the width of D (v, p,w).

Two natural cases are more particularly studied, namely if w = ||V]||s then
D (v, u,w) is said naive, and if w = ||v||1, then D(v, u,w) is said standard.
One checks that a naive (resp. standard) line is made of of horizontal and

FIGURE 2.1. Left: a naive line. Right: a standard line.

vertical (resp. horizontal and diagonal) steps. One can code such a standard
line by using the Freeman code [Fre70] over the two-letter alphabet {0, 1}
as follows: one codes horizontal steps by a 0, and vertical ones by a 1. One
gets a so-called Stumian word (u,)nen € {0, 1},

More precisely, Sturmian words are defined as follows:

Definition 2 (Morse-Hedlund [MH40]). Let R,: R/Z — R/Z, x — z +
a mod 1 be the rotation of angle « of the one-dimensional torus T = R/Z.
Let u = (up)nen € {0,1}N. The infinite word u is a Sturmian word if there
exist a € (0,1), a € Q, x € R such that

Vn €N, u, =i <= R,(z) =na+z € I; (mod 1),

with Ip =[0,1 —af, 1 =[1 —a,1[or Iy =]0,1 —«a|, I =|]1 — a, 1].
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One thus checks that Sturmian words are codings of naive arithmetic
discrete lines. For more on Sturmian words, see the surveys [AS02, Lot02,
PF02] and the references therein.

The following lemma is classical for the study of Sturmian words. Its
interest for further generalizations is stressed in the survey [BFZ05].

Lemma 1. The word w = w; - - - wy, over the alphabet {0,1} is a factor the
Sturmian word u if and only if

Ly, "Ry Ly, M- RV, # 0.
Proof. By definition, one has
VieN, u, =i <= na+z € l; (mod 1).
One first notes that ugugy1 - - Upyr—1 = wy - - - wy, if and only if

ka+x € Iy,
(k+1Da+x € I,

(k+n—-1a+zel,,

One then applies the density of (na)nen in R/Z (recall that « is assumed
to be an irrational number). O

One easily checks that the sets I, N R L, N --- RV, are inter-
vals of T = R/Z. Furthermore, the factors of u are in one-to-one cor-
respondence with the n 4+ 1 intervals of T whose end-points are given by
—ka mod 1, for 0 < k < n. This implies that Sturmian words have exactly
n + 1 factors of length n, for every n € N. This is even a characterization of

Stumian words:

Theorem 1 (Coven-Hedlund [CHT73]). A word v € {0,1} is Sturmian if
and only if it has eactly n + 1 factors of length n.

The function that associates with a word the number of its factors of a
given length is called the complexity function. For more on this function,
see for instance [AS02]. One more generally deduces from Lemma 1 various
combinatorial properties of Sturmian words, such as the expression of den-
sities of factors [Ber96], that can be deduced from the equidistribution of
the sequence (na)pen.

Let us note that Definition 2 can be restated in terms of dynamical sys-
tems as follows. A dynamical system (X,T) is defined as the action of a
continuous and onto map T on a compact space X. An example of a geo-
metric dynamical system is given by (T, R,). In other words, a Sturmian
word is a coding of a dynamical system of the form (T, R,) with respect
either to the two-interval partition {lp = [0,1 —af, I1 = [1 — «, 1[} or to
{Ip =]0,1—al, I =|]1 —a,1]}.

As another example, let us consider symbolic dynamical systems. Let A
be a finite set. Let u € AN. Let £(u) be the set of its factors. The shift S
is defined as S : AN — AN (u,)nen = (Uny1)nen. The symbolic dynamical
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system generated by wu is (X,,S) with X, := {S"(u); ne N} = {v €
AN L(v) € L(u)} ¢ AY. One deduces from Lemma 1 that two Sturmian
words coding the same rotation have the same set of factors, and thus, that
the symbolic dynamical system generated by a Sturmian word coding the
rotation R, consists of all the Sturmian words that code the same rotation.

Note that several combinatorial properties of Sturmian words or of naive
arithmetic discrete lines respectively, have been studied and stated indepen-
dently: for instance, the notion of balance, and the chord property respec-
tively, have been considered in [MH38, MH40, Lot02, PF02] for Sturmian
words, and in [Fre74, Ros74, Hun85, Mel05] in discrete geometry. For more
details on the connections between Sturmian words and discrete lines, see
Chap. 1 of [Jam05b], and more generally, for references on discrete lines,
see the surveys [KR04, BCK04].

3. DISCRETE PLANES

Let us consider now the higher-dimensional case.

Definition 3. Let v € R?, and p, w € R. The arithmetic discrete hyperplane
PB(v, p,w) is defined as

P(v, p,w) = {x € 2% 0< (x,v)u < w}.

If w = ||v]|oo, then P(v, u,w) is said naive. If w = ||v||1, then P(v, p,w)
is said standard.

A piece of a naive plane (left) as well as a piece of a standard plane (right)
are depicted in the figure below

Let us see now how to associate with a standard arithmetic discrete plane
a coding as two-dimensional word on a three-letter alphabet that plays the
role of the Freeman code for arithmetic discrete lines.

Let (e1,eq,e3) stand for the canonical basis of R3. Let x € Z3 and
i€ {1,2,3}. Let Eq, E3 and F3 be the three following faces:

B = {\ez+pes| (\u)e0,1P},
Ey = {_)\el + pes | (Avu) € [O’ 1[2}7
Ey = {-Xex—pez| (A p) €0,1[*}.
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We call pointed face the set x+ E;. The point x is called the distinguished
vertex of the face x + F;. Note that each pointed face includes exactly one
integer point, namely, its distinguished vertez.

Let PB(v, [|v]|1) = B(v,0,||v|]1) be a standard arithmetic discrete plane.
One associates with P a so-called stepped plane P defined as the union of
faces of integral cubes that connect the points points of ,, as depicted in
Fig. 3.1. By integral cube, we mean a translate by a vector with integral en-
tries of the fundamental unit cube C = {> ,_,,, Mie;; A; € [0,1], for all i}
with integral vertices. The stepped plane P is thus defined as the bound-
ary of the set of integral cubes that intersect the lower open half-space
{x € Z3 (x,vg) < 0}. The vertices of P (that is, the points with integer
coordinates of P) are exactly the points of the arithmetic discrete plane B,
according for instance to [BV00].

FiGURE 3.1. Stepped surface.

Let A be the diagonal plane of equation x1 + x5 + z3 = 0 and let g be
the orthogonal projection onto A. Note that my(Z?) is a lattice in A with
basis (mg(e1), mo(e2)), and that mg(e3) = —mo(e1) — mo(e2). If we use this
basis for my(Z?3), then the restriction of my to Z3 becomes the following map,
also denoted by 7y by abuse of notation:

m0: 23 — 7%, x — (1 — x3,29 — x3).
According to [BV00, ABI02], the restriction of the projection map my to
PB(v, 1) is one-to-one and onto A:
V(my,mg) € Z*, 3 x + E; C P(v, p), w(x) = (mq,ma).

Furthermore, the projections of the faces of the stepped plane P (v, u) tile
the diagonal plane A with three kinds of lozenges (see Figure 1).

We thus provide each stepped plane with a two-dimensional coding as
follows. The two-dimensional coding of the stepped plane P(v,u) is the
two-dimensional word U € {1, 2, 3}Z2 defined, for all (m1,mz) € Z? and all
i€ {1,2,3}, by

Unims =1 <= Ix+ E; C P(v, ) such that (mq,mg) = 7(x).
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One checks (e.g., see [BV00, ABI02, ABS04]) that for (m,ms) € Z? and
i € {1,2,3}, then Uy, m, =1 if and only if:

(3.1) myv; +move + p mod vy +v2 +v3 € [v1 + -+ Vi1, v+ F g

Let us now introduce an analogue of the dynamical system (T, R,) coded
by the two-dimensional word U. Given two continuous and onto maps 7}
and T acting on X and satisfying T} o To = T o Ty, the Z2-action by T}
and Ty on X, that we denote by (X,T7,T3), is defined as

Y(m,n) € Z*, Yz € X, (m,n) -z =T" oTi(x).

As an example, consider a Z2-action by two rotations on the R/Z, that is,
the Z2-action defined by

(m,n) -z = RyRE(r) =2 +ma+nf mod 1.

Given any partition {P,--- , P;} of the torus and a point x we can define
a (two-dimensional) word U = (Um.n)(mn)ez2 € {1,2, ,d}%* coding the
orbit of x under this Z?-action by Umn) = @ whenever RPRjx € P, for
(m,n) € Z2. Two-dimensional Sturmian words, as introduced in Definition
4 below, are examples of such codings. Definition 4 corresponds to (3.1)
after a suitable renormalization by ||v||; of the parameters involved.

Definition 4 ([BV00]). Let U = (Unn)mmezz € {1,2,3}*". The two-
dimensional word U is said to be a two-dimensional Sturmian word if there
exist x € R, and «, 8 € R such that 1, «, 8 are Q-linearly independent and
o+ (8 < 1 such that

Y(m,n) € Z%, Um,n =i < Ry R5(z) =z +na+mfB € I; (mod 1),
with
Il = [0705[, I2 = [Cl,O[ +ﬂ[7 -[3 = [O[—Fﬂ,l[
or
I =]0,a], I =]a,a+ F], I3 =]a+ 3,1].
We consider here finite rectangular arrays of consecutive letters, that is,
Won—1 *° Wm—-1n-1
rectangular words w = : ; we say here that w has

wo,0 T Wm-1,0
size (m,n). The rectangular complezity of the two-dimensional word U is
the function py(m,n) which associates with each (m,n) € N2, m and n
being nonzero, the cardinality of the set L(,, ,,)(u) of rectangular factors of
size (m,n) occurring in w.
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won ' Wmn
The analogue of Lemma 1 also holds here: the word w =
we,0 W
is a factor of the two-dimensional Sturmian word coding U if and only if

(3:2) No<icmo<j<nRa By’ Tu, ; # 0.

We first deduce, since «, 3 are assumed to satisfy dimg(1, o, 3) = 3, that for
a given («, ), then the language of rectangular factors of U is here again
the same for every x. We also deduce results concerning the counting of
rectangular factors of a given size: there are exaclty mn + m + n factors of
size (m,n) in the two-dimensional Sturmian word U. We can not only deduce
topological results from (3.2) but also metrical results such as the following:
the frequencies of rectangular factors of size (m,n) of a two-dimensional
Sturmian word take at most min(m,n) + 5 values [BV0O].

Let us note that we have chosen in Definition 4 to restrict ourselves to
rationally independent parameters. Usually in arithmetic discrete geometry,
parameters are chosen to be integers. The results discussed above can also
be obtained for standard arithmetic discrete planes (v, u,w), whatever is
the value taken by dimg(1,v1, v2,v3). Properties deduced from the density
and even the equidistribution of the sequence (na),cq, for a being assumed
to be irrational, will be obtained by direct application of Bezout’s lemma.
For more details, see the complete study performed in [JamO05b].

4. FUNCTIONALITY

Naive planes have been widely studied (e.g., see [Rev91l, DRR95, AAS97,
V99, VC00, Jac01, Jac02, BB02, BB04, BCK04, Kis04]) and are well known
to be functional, i.e., in a one-to-one correspondence with the integer points
of one of the coordinate planes by an orthogonal projection map. In other
words, given a naive arithmetic discrete plane 3 and the suitable coordinate
plane, then for any integer point P of this coordinate plane, there exists a
unique point of B obtained from P by adding a third coordinate.

The aim of this section is to show how to extend the notion of functionality
for naive arithmetic discrete planes to a larger family of arithmetic discrete
planes. The results we will discuss are from [BFJ05, BFJP].

Instead of projecting on a coordinate plane, let us introduce a suitable
orthogonal projection map on a plane along a direction & = (a1, g, a3) €
73, in some sense dual to the normal vector of the discrete plane 5 (v, p, w),
that is, cqv1 + aavs + agvs = w, so that the projection of Z? and the points
of the discrete plane P (v, u,w) are in one-to-one correspondence.

One interest of the notion of functionality is to reduce a three-dimensional
problem to a two-dimensional one, allowing a better understanding of the
combinatorial and geometric properties of arithmetic discrete planes: this
allows us, first, to recode arithmetic discrete planes by a two-dimensional
word over the two-letter alphabet {0,1}, and second, to exhibit from this
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coding many geometric properties of arithmetic discrete planes (set of local
configurations, enumeration of (m,n)-cubes, statistical properties...).

To be more precise, let P(v, p,w) be an arithmetic discrete plane, and let
a € 72 be such that ged{ay, az, a3} = 1. Let 14 : R? — {x € R3, (a,x) =
0} be the affine orthogonal projection map onto the plane {x € R3, (a,x) =
0} along the vector . Then the map 7q : B(v,p,w) — 7ma(Z?) is a
bijection if, and only if, |(a, v)| = w. Note that for any rational arithmetic
discrete plane B(v, i, w), with v € Z3, y € Z, w € N and ged{vy,vo,v3} = 1,
then there exists a vector a € Z? such that |{a,v)| = w, i.e., such that the
map o : P(V, p,w) — ma(Z3) is a bijection. We say that any rational
arithmetic discrete plane has functional vectors.

Let I'o, be the lattice obtained by projecting the arithmetic discrete plane
PB(v, u,w) on one of the coordinate planes along the functional vector c.
We will make in all that follows the following assumption: there exists i €
{1,2,3} such that o; = 1, say ag = 1. Under this assumption, then I'o, =
Ze1 + Zes. This hypothesis gives an explicit and simple expression of the
preimage of a point in I'y: let B = P(v, p,w); the map 75! : Ty — B,
satisfies for all y € I', with y = y1e1 + y2ea:

“L(y) = viy1 + vy +
o y)_y_ w .

s

We define the height Hy o(y) at y as the third coordinate z3 of x = n3!(y) €
PB. One has

Hyaly) = Vflyl +Z2y2 + MJ'

Note that, since w = ajv1 + asve + azas, then the hypothesis ag = 1 is
equivalent to w € 11Z + voZ + vs, i.e., w — v3 € ged(v1,v2)Z in the rational
case. Also note that there does not always exist a functional vector @ with
a3 = 1. Consider for instance the case v = (6,10,15) with w = 20: it is
impossible to express w as a1v1 + asvy + agvy with one of the «;’s equal to
1.

4.1. Local configurations and (m,n)-cubes. Let us apply now the func-
tionality to (m,n)-cubes and local configurations, generalizing the study
performed for rational naive planes in [VC97, Sch97, Gér99, VC99, Jac02].
For the sake of consistency in the notation, we call them here m-cubes
with m = (my, mg) rather than (m,n)-cubes. Our stategy is the folllowing:
we recode arithmetic discrete planes according to a two-dimensional word
U € {0,1}% over the two-letter alphabet {0,1}, namely a so-called gener-
alized Rote word [Rot94], following the approach of [Vui99, BVO01]. Such a
two-dimensional word codes a ZZ?-action by two rotations with respect to
a partition of the one-dimensional torus into two intervals of length 1/2.
We then express m-cubes as equivalence classes of rectangular factors of
the two-dimensional word U, and show, for every m € N2, that the num-
ber of m-cubes in P(v, p,w) is computed by enumerating points on the
one-dimensional torus.
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Let B = B(v, y,w) be an arithmetic discrete plane and let a € Z3 such
that ged(a) = 1 and (o, v) = w. We assume that ag = 1 in all that follows.

Let m € (N*)2 be given. By m-cube we mean a local configuration in the
discrete plane that can be observed thanks to 7, through an m-window in
the functional lattice I', = Zey + Zea (see Figure 4.1). More precisely, the
m-cube C(y7 m) of B is defined as the following subset of J:

={n'(y +2),2z € [0,m1 — 1]e1 + [0,m — 1]ea} .

Two m-cubes C and C' are called translation equivalent if there exists a
vector z € Z3 such that C' = C + z.

s
¥ Y B ow

FIGURE 4.1. From left to right: the (3, 3)-cube of B(v,0,9)
(resp.  P(v,0,11), P(v,0,21), P(v,0,37)) centered on
(0,0,0), where v = 6e1 + 10ez + 15e3, and projected along
the vector —e1+eg (resp. e; —ex+e3, e;+es, 2e1+ea+e3).

In order to enumerate the different types of m-cubes that occur in ‘P,
that is, the different equivalence classes for the translation equivalence, we
represent them as local configurations as follows. An m; X mao-rectangular
word L = [Li, iy) (i1 in)€[0,m1 —1] x [0,mo—1] OVer the infinite alphabet Z is called
an m-local configuration of B if there exists y € Z? such that:

L = [H‘I&a(z) - Hm7a(y)]ZElIO,mlflﬂel+|IO,m271ﬂe2 :

Such a local configuration is denoted by LC(y,m).

Let us note that a local configuration is a plane partition. Indeed a plane
partition of N € N is a rectangular word w = [wj, i5 (i, i2)e[0,m1—1] x [0,ma2—1]
over the infinite alphabet N satisfying N = E -w; ; and, for all i1 € [0,m;—
1] and iy € [0, mo — 1], maX{le+1712,wZ1712+1} < Wiy g

Notation 1. Let L = [Li, 4] (i, in)e[0,m1—1]x[0,ma—1] D€ & local configuration
of size mq X mo. In all that follows, the notation L mod 2 stands for the
my x mg rectangular word [L;, ;, mod 2](i1,z‘2)e[[0,m1—1}]x[[o,mg—l]]-

4.2. A coding as a two-dimensional word. According to [Vui99], we
introduce a two-dimensional word coding in a natural way the parity of the
heights Hyp (y), for y in the lattice I'o = Zey + Zez. Indeed, for a naive
discrete plane P, it is well known that, given two points x and x’ of P
such that their projections by 7 are 4-connected in the functional plane,
then |zg—a%| < 1. In other words, the difference between the heights of x
and x’ is at most 1. A quite unexpected fact is that this property holds
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for any arithmetic discrete plane with ag = 1. More precisely, it is easy to
see that, for all y € I'q and ¢ = 1,2, Hp o (y +€i) — Hp o (y) takes only
two values, namely —|v;/w| and —|v;/w]—1. In each case, one of these
values is odd, whereas the other one is even; we define F; and O; to be
respectively the even and the odd value taken by —|v;/w| and —|vy /w]|—1;
we similarly define Fs and Os. It is now natural to introduce the following
two-dimensional word of parity of heights by identifying I's, to Z2:

2
(4'1) U= (Ui1,i2)(i1,i2)€Z2 = (H‘B,a(Y) mod 2)y€Z2 € {07 1}Z :
The two-dimensional word U satisfies, for each (iy,iz) € Z2

Ui, i, = 0 if, and only if, viiy + veis + p mod 2w € [0, w].

Indeed, one checks that U;, 4, = 0 if, and only if, L”l“ﬂiimﬂj is even, that

is, v141 + vaia + p mod 2w € [0, w|.

The word U is a two-dimensional Rote word; one-dimensional Rote words
have been introduced in [Rot94]; they are defined as the infinite words over
the alphabet {0, 1} that have exactly 2n factors of length n for every positive
integer n, and whose set of factors is closed under complementation, i.e.,
every word obtained by interchanging zeros and ones in a factor of the
infinite word wu is still a factor of u; two-dimensional Rote words have been
studied for instance in [Vui99, BVO01].

Let W = [wiy i) (i1,i2)€[0,m1 —1] x[0,ma—1] D€ @ rectangular word of size my x
ma over {0,1}. We define the complement W of W as follows:

W = [wil,iz](il,ig)é[[o,ml—l]]><[[O,mg—l]]ﬂ Where T = 0 and 6 = 1

We introduce the following equivalence relation defined on the set of rect-
angular factors of U of a given size:

V ~ W if, and only if, V € {W,W}.

The following result holds, inspired by [Vui99] where it is stated under the
assumption dimg(vy,v2,v3) = 3: let P = P(v, p,w) be a discrete plane
that admits a functional vector « satisfying a3 = 1; there is a natural
bijection between the equivalence classes of the relation ~ on the rectangular
factors of the two-dimensional word U of size m = (my, m2) and the m-local
configurations of P; furthermore, the m-local configurations of {3 are in one-
to-one correspondence with the translation equivalence classes of m-cubes
of L.

Lemma 2 plays here the role of our key lemma (Lemma 1).
Lemma 2. Let W = [wi, i,] (i) in)€[0,m1 —1]x[0,me—1] b€ @ Tectangular word of
size my X mg over {0,1}. Let Iy = [0,w[ and I; = |w,2w[. Let

mip—1mo—1

Iw = ﬂ ﬂ (Iwim — (v1i1 4+ v2i2) mod Qw) )

11=0 142=0
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The set Iy is a left-closed right-open interval of [0, 2w].

Let B = P(v,u,w) be a discrete plane with w — vy € vZ + voZ. If
dimg(v1,v2,v3) > 1 or P is rational and ged(vi,ve,2w) = 1, then a rectan-
gular word W over {0, 1} is a factor of U if, and only if, Iyy # 0. Otherwise,
if B is rational and ged(vi,ve,2w) = 2, then a rectangular word W over
{0,1} is a factor of U if, and only if, Iy contains an integer with the same
parity as L.

4.3. Enumeration of local configurations. Let us now investigate the
enumeration of m-cubes (m = (mq,m3y)) occuring in a given arithmetic
plane. The number of (3,3)-cubes included in a given rational naive arith-
metic discrete plane has been proved to be at most 9 in [VC97]. More
generally, in [Rev95, Gér99], the authors proved that, given a rational naive
arithmetic discrete plane B, P contains at most mqms m-cubes (to be more
precise, translation equivalence classes of m-cubes). In [Gér99] local config-
urations which are non-necessarily rectangular are also considered. In the
following theorem, we show that this property also holds in our framework.
For the sake of simplicity, we omit to mention that we consider translation
equivalence classes of m-cubes:

Theorem 2. Let P = P(v, u,w) be a discrete plane with w—v3 € v1Z~+v97Z.
Letm = (my,mz) € (N*)2. Then, P contains at most mims m-cubes. More
precisely, one has:

(1) If dimg(vy,ve,v3) =1, v € Z®, p € Z, w € Z and ged(v) = 1, then
B contains at most w m-cubes for every m = (my,mo) € (N*)2,
Moreover, for mi1 and ms large enough, P contains exactly w m-
cubes.

(2) Let us assume dimg(vy,va,v3) = 2. Let (p1,p2) € Z* be a generator
of the lattice of periods of the two-dimensional word U. Then B
contains at most mq|pa| + me|p1| — min{maq, |p1|} min{mes, |p2|} m-
cubes for (m1,mg) € N2,

(3) If dimg(v1,v2,v3) = 3, then P contains exactly mimg m-cubes for
every m = (my,mg) € (N*)2.

Let us note that the bounds upon which the previous results hold for m;y
and mo can be explicitly computed in terms of v and w. The proof is a
direct application of Lemma 2. For more details, see [BFJP].

We thus can establish that, whatever the type of B(v, u,w), namely ra-
tional or irrational, then the computation of the frequency of occurrence of
an m-cube of P(v, p,w) can be reduced to the calculation of the length of
an interval on the torus R/wZ. We also investigate in [BFJP] the closure of
the set of m-cubes of P(v, u,w) under the action of a particular geometric
transformation: the centrosymmetry.
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5. STEPPED SURFACE

Let us generalize this approach to more general discrete objects, namely
the functional stepped surfaces, such as introduced in [Jam04]. See also
[Jam05a, JP05, Jam05b, ABFJ].

A functional discrete surface is defined as a union of pointed faces (defined
in Section 3) such that the orthogonal projection m onto the diagonal plane
A: 21+ x9 + x3 = 0 induces an homeomorphism from the discrete surface
onto the diagonal plane.

As done for functional arithmetic discrete planes, one then provides a
discrete surface with a coding as a two-dimensional word over a three-letter
alphabet [Jam04, JP05]. Indeed, let S be a functional stepped surface. One
has SNZ3 = my({x+ E;; (x+ E; C 8}). Furthermore, given (my,ms) € Z?,
there exists a unique face x + E; C S such that (mi,ms) = mo(x + E;).
The following coding is thus well-defined: a two-dimensional word U €
{1,2, 3}Z2 is said to be the coding of the functional stepped surface S if for
all (my,ms) € Z? and for every i € {1,2,3}: Upym, =1 < Ix+ E; €
S such that (my, ma) = mo(x,3").

We illustrate this with the following figure where a piece of a discrete
surface in R? is depicted, as well as its orthogonal projection my onto the
plane A: x1 + x9 + x3 = 0, and its coding as a two-dimensional word over a
three-letter alphabet.

FIGURE 5.1. From discrete surfaces to multidimensional
words via tilings

Let us quote the following nice characterization of codings of discrete
surfaces. Let U € {1,2,3}%°. Then U is a coding of a discrete surface if and
only if the factors of U of the shape given in Fig. 5.2 are included in the
following set of factors:

6. FROM DISCRETE TO CONTINUOUS STRUCTURES

The aim of this section, based on the surveys [Lot05, BS05, BBLT06], is
to show how to generate discrete planes by means of a generalized substitu-
tion. We work out here in details the example of the so-called Tribonacci
substitution.

Let A be a finite set. As usual in word combinatorics, we denote by A*
the set of words over A and by ¢ the empty word. The set A* endowed with
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FI1GURE 5.2. Permitted factors and their 3-dimensional representation.
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the concatenation map is a free monoid. A substitution is an endomorphism
of the free monoid A*. A substitution naturally extends to the set of one-
sided words AN. A fized point of o is a word u = (u;);eny € AN that satisfies
olu) =u.

We consider the Tribonacci substitution o : {1,2,3}* — {1,2,3}* defined
on the letters of the alphabet {1,2,3} as follows: o : 1 +— 12, 2 — 13,
3 +— 1. The Tribonacci word is the (unique) fixed point of the substitution
o. More precisely, by noticing that ¢7(1) is a nontrivial prefix of the word
o7 *1(1), the sequence of words 1, o(1), o%(1), ...,0"(1), ... is easily seen
to converge to an infinite word denoted by ¢“(1). The first terms of this
word are

1213121121312121 ---

Note that the length, denoted by |o7(1)|, of 07(1) satisfies the Tribonacci
recurrence: |o773(1)| = |07 T2(1)|+ |07 T1(1)|+]07 (1), for every j € N, hence
the terminology.

The Tribonacci substitution has been introduced and studied in [Rau82].
For more results and references on the Tribonacci substitution, see [AR91,
AY81, IK91, Lot05, Mes98, Mes00, PF02].

The incidence matric My = (m; j)1<i j<n of a substitution o has entries
m; ; = |o(j)|i, where the notation |w|; stands for the number of occurrences
of the letter 7 in the word w. A substitution o is called primitive if there
exists an integer n such that o™(a) contains at least one occurrence of the
letter b for every pair (a,b) € A%. This is equivalent to the fact that its
incidence matrix is primitive, i.e., there exists a nonnegative integer n such
that M has only positive entries.

1 11
1 00
010
This matrix is easily seen to be primitive. The characteristic polynomial of
M, is X3 — X? — X — 1; this polynomial admits one positive root 3 > 1 (the
dominant eigenvalue) and two complex conjugates o and @, with |a| < 1.
The number 3 is a Pisot number (that is, an algebraic integer with all Galois
conjugates having modulus less than 1).

The incidence matriz of the Tribonacci substitution o is M, =
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If a substitution o is primitive, then the Perron-Frobenius theorem ensures
that the incidence matrix M, has a simple real positive dominant eigenvalue
(. A substitution o is called unimodular if det M, = +1. A substitution
o is said to be Pisot if its incidence matrix M, has a real dominant eigen-
value § > 1 such that, for every other eigenvalue A, one has 0 < |A| < 1.
The characteristic polynomial of the incidence matrix of such a substitution
is irreducible over @@, and the dominant eigenvalue 3 is a Pisot number.
Furthermore, it can be proved that Pisot substitutions are primitive [PF02].

The Tribonacci substitution is Pisot. The incidence matrix M, of the
Tribonacci substitution admits as eigenspaces in R? one exzpanding eigenline
(generated by the eigenvector with positive coordinates vg = (1/3,1/8%,1/3%)
associated with the eigenvalue (3) and a contracting eigenplane H.; we denote
by v, and vg the eigenvectors in C3 associated with o and @, normalized
in such a way that the sum of their coordinates equals 1.

One associates with the Tribonacci word u = (uy,)n>0 a broken line start-
ing from 0 in Z3 and approximating the expanding line vg as follows. We
introduce the abelianization map f of the free monoid {1,2,3}* defined by

f : {17273}* - Zgu f(w) = |w|1e1 + |’U)|262 + |w|3e37

where (e1, ey, e3) stands for the canonical basis of R3. Note that for every
finite word w, we have f(o(w)) = M, f(w).

The Tribonacci broken line is defined as the broken line which joins with
segments of length 1 the points f(uguj - -un—1), N € N (see Figure 6.1).
In other words we describe this broken line by starting from the origin, and
then by reading successively the letters of the Tribonacci word u, going one
step in direction e; if one reads the letter 1.

One easily checks that the vectors f(upuj...un), N € N, stay within
bounded distance of the expanding line of M,,, which is exactly the direction
given by the vector of probabilities of occurrence of the letters 1,2,3 in wu.
It is then natural to try to represent these points by projecting them along
the expanding direction onto a transverse plane, that we chose here to be
the contracting plane H,. of M.

Let 7 stand for the projection in R? onto the contracting plane along the
expanding line generated by the vector vg. We thud define the set R as the
closure of the projections of the vertices of the Tribonacci broken line:

Ro = {n(f(ug...un-1)); N € N}.

The set R, is called the Rauzy fractal associated with the Tribonacci sub-
stitution o (see Figure 6.1). It can be divides into three pieces, called basic
pieces, defined for ¢ = 1,2,3 as

Ro(i) ={n(f(uop...un—1)); uy =14, N € N}

One checks that the the Rauzy fractal is a compact set, that is the closure
of its interior; it has a non-zero measure, a fractal boundary and it is the
attractor of some graph-directed iterated function system [Rau82].
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One interesting feature of Rauzy fractal is that it can tile the plane in
two different ways [Rau82, TR06]. These two tilings are depicted in Fig.
6.2. The first one corresponds to a periodic tiling (a lattice tiling), and the
second one to a self-replicating tiling. By tiling, we mean here tilings by
translation having finitely many tiles up to translation (a tile is assumed to
be the closure of its interior): there exists a finite set of tiles 7; and a finite
number of translation sets I'; such that R? = U; Uy,er; i + i, and distinct
translates of tiles have non-intersecting interiors; we assume furthermore
that each compact set in R? intersects a finite number of tiles.

FI1GURE 6.1. The Rauzy broken line and the Rauzy fractal.

- e

FIGURE 6.2. Lattice and self-replicating Tribonacci tilings.

6.1. Discrete planes and tilings. The self-replicating multiple tiling asso-
ciated with the Rauzy fractal has close connections with arithmetic discrete
planes. We consider indeed the standard lower arithmetic discrete plane
with parameter p = 0 associated with vg that we denote for short by ‘B, :

Po={xcZ% 0<(x,v5) < Z (€i,vg)}.
i=1,2,3

We also consider the stepped plane P, associated with it, such as defined
in Section 3. This discretisation of the contracting hyperplane H. = {x €
73; (x, v) = 0} consists in approximating the plane H, by selecting points
with integral coordinates above and within a bounded distance of the plane.
It thus can be considered as the dual of the broken line. One checks that
the stepped plane P, is spanned by:

(6.1) P, = U (x,),

(x,5)€Z3x{1,2,3}, 0<(x,vg)<(e;,vg)
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where for x € Z3 and for 1 < i < 3:

(x,4) =={x+ ) _Njej; 0< A <1, for 1<j <3, j#i}.
J#i
This union is a disjoint union up to the boundaries of the faces. Let us
note that we have changed our definition of faces with respect to Section 3
((x,3*) versus x + F;). This change of notation will be more convenient for
the following.
Let us project now the stepped plane P, on the contracting space H,. and

replace each face (x,) by the corresponding basic piece of the Rauzy fractal
R (7). The tiling (6.1) becomes

(6.2) H, = U 7(x) + Ry (i).
(x,4)€Z3x{1,2,3}, 0<(x,v3)<(e;,vg)

According to [Rau82] and [IR06], (6.2) provides a tiling of the contracting
plane H, namely the self-substitutive tiling depicted in Figure 6.2. The
terminology self-substitutive comes from the fact that it can be generated
thanks to a graph-directed iterated function system given by the substitution
.

Let us give now a construction of 3, based on the notion of a geometric
generalized substitution due to [AIO1], see also [IR06].

We define F* as the R-vector space generated by {(x,i); x € Z3, i €
{1,2,3}}. We define the following generation process which can be consid-
ered as a geometric realization of the substitution ¢ on the geometric set F*
consisting of finite sums of faces:

V(x,a) € Z" x {1,2,3}, Ef(o)(x,a) = > (M,'(x+1(p)),b).
o(b)=pas

Theorem 3. [AIO1] The stepped plane P, is stable under the action of
Eq(0)* and contains the unit cube

U:=(0,1) + (0,2 4 (0,3).

The iterates (Eq(0)*)"(U) all belong to P, and they generate larger and
larger pieces of the stepped plane P,. By taking the limit and by projecting
by ™, one gets

Po = lim 7(Ei(0)")"(U).

n—-+00
Let us recall that B, is a discrete approximation of the contracting plane
of the incidence matriz M. After projection and renormalization, the pieces
M2m(E1(o)*)"(U) converge and their limit is equal to the Rauzy fractal:

Ry = lim M'n(Ei(c))"(U).
n—-+00

For more on generalized substitutions and generation of discrete planes,
see [ABI02, ABS04, ABFJ, Fer].
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FIGURE 6.3. Generation of P, by iterates of Ef (o).

6.2. Rauzy tilings. We have seen that two tilings can be associated with
the rauzy Fractal, namely, a self-substitutive tiling, and a lattice tiling, as
illustrated in Figure 6.2. More precisely, one has in the lattice case

the union being disjoint in measure, and
I'= Z((sa(l) - 50(3)) + 2(50(2) - 50(3))

This latter tiling plays an important role in the spectral study of the sub-
stitutive dynamical system (X, S) generated by the Tribonacci word (such
as defined in Section 2). Indeed, one of the main incentives behind the
introduction of Rauzy fractals is the following result:

Theorem 4 ([Rau82|). Let o be the Tribonacci substitution o: 1+ 12, 2 +—
13,3 +— 1. The Rauzy fractal R, (considered as a subset of R?) is a funda-
mental domain of T?. Let Rg: T? — T? x — x+(1/8,1/8%). The symbolic
dynamical system (X, S) is measure-theoretically isomorphic to the toral
translation (T?, Rg).

The Tribonacci lattice tiling has been widely studied and presents many
interesting features. In particular, the Tribonacci central tile has a “nice”
topological behavior (0 is an inner point and it is shown to be connected with
simply connected interior [Rau82]), which leads to interesting applications
in Diophantine approximation [CHMO1] where points of the broken line
corresponding to 0™(1), n € N, are proved to produce best approximations

for the vector (%, %) for a given norm associated with the matrix M,. See

also [HMO06] for the case of cubic Pisot numbers with complex conjugates
satisfying the finiteness property (F).

Rauzy fractals can more generally be associated with Pisot substitutions
(see [BK06, CS01a, CS01b, IR06, Mes00, Mes02, Sie03, Sie04] and the sur-
veys [BS05, PF02]), as well as with Pisot §-shifts under the name of central
tiles (see [Aki98, Aki99, Aki0O, Aki02]), but they also can be associated with
abstract numeration systems [BRO05], as well as with some automorphisms
of the free group [ABHS06].
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Conjecture 1. Let ¢ be a Pisot unimodular substitution. The following
equivalent conditions are conjectured to hold:

(1) the symbolic dynamical system (X,,.S) is measure-theoretically iso-
morphic to a translation on the torus;

(2) (Xs,S) has a pure discrete spectrum;

(3) the associated Rauzy fractal R, generates a lattice tiling, i.e.,

Kﬁ = U’YGF(RU + 7))

the union being disjoint in measure, and I' = 37, 4, Z(35(b) —
d,(a)), for a € A.

The conjecture holds true for two-letter alphabets [BD02, HS03, Hos92].
Substantial literature is devoted to Conjecture 1 which is reviewed in [PF02],
Chap.7. See also [BK06, BK05, BBK06, BS05, IR06] for recent results.

7. CONCLUSION

Let us conclude by giving a brief list of geometric discretizations that can
be descirbed by symbolic codings of dynamical systems.

e Standard arithmetic discrete lines and Sturmian words are particular
codings of rotations over the one-dimensional torus T with respect to a
two-interval partition, one interval having as length the parameter of the
rotation.

e Similarly, standard arithmetic discrete planes and two-dimensional Stur-
mian words are codings of a Z2-action by rotations over the one-dimensional
torus T with respect to a three-interval partition, two intervals having as
respective length the parameters of the Z2-action.

e More generally, functional arithmetic disrete planes can be coded thanks
to generalized Rote words defined as codings of a Z?-action by rotations over
the one-dimensional torus T with respect to a two-interval partition, with
two intervals of the same length. For more examples of codings associated
with naive or standard arithmetic discrete planes expressed in terms of dy-
namical systems, see [Jam05b] where codings by remainders, by umbrellas
and by parity of heights are considered.

e In a dual way, we have seen how to associate with the Tribonacci substi-
tution a broken line that can be considered as a discrete line in R3. A lattice
tiling by the Rauzy fractal can then be produced that has close connection
with a rotation on the two-dimensional torus T?2.

e Lastly, let us quote [BN] as an example of a symbolic coding of discrete
rotations defined as the composition of Euclidean rotations with a round-
ing operation, as studied in [NR03, NR04, NRO5]. Indeed, it is possible to
encode all the information concerning a discrete rotation as two multidimen-
sional words C,, and C, called configurations. These configurations C,, and
C’, can be coded by discrete dynamical systems defined by a Z2-action on the
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two-dimensional torus T?. As a consequence, results concerning densities of
occurrence of symbols can be deduced.
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