
HAL Id: lirmm-00106897
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106897

Submitted on 16 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Time Constraints for Generalized Sequential
Patterns
Céline Fiot

To cite this version:
Céline Fiot. Extended Time Constraints for Generalized Sequential Patterns. 06051, 2006, pp.34.
�lirmm-00106897�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00106897
https://hal.archives-ouvertes.fr

Extended Time Constraints for Generalized
Sequential Pattern Mining

Céline Fiot

Abstract

Mining temporal knowledge has many applications. Such knowledge can
be all the more interesting as some time constraints between events can be
pushed into during themining task. Aswell in datamining as inmachine learn-
ing, somemethods have been proposed to extract andmanage such knowledge
using temporal constraints. In particular some work has been done to mine
generalized sequential patterns. However such constraints are often too crisp
or need a very precise assessment to avoid erroneous information. Within
this context, we propose an approach based on graphs of sequences derived
from extended temporal constraints. These relaxed constraints enable us to
find more generalized sequential patterns. We also propose a measure of
the temporal accuracy of the extracted sequences compared to the initial con-
straints; this measurewill provide the user with a tool to analyse the numerous
extracted patterns.

1 Introduction

The quantity of data from the World Wide Web is growing dramatically: requested
URLs, number of requests or connexion duration, etc. are gathered automatically
by Web servers and stored in access log files. Analysing these data can provide
useful information for performance enhancement or customer targetting. In this
context, many research works have been proposed to mine usage patterns and user
profiles (Spiliopoulou and Faulstich, 1999; Yan et al., 1996; Zaiane et al., 1998).
In particular, (Masseglia et al., 1999) provides knowledge from databases of visited
page sequences.

The information thus discovered can often be improved by looking for temporal
knowledge. In certain cases (detection of frauds, failures, behavior analysis), it can
not only be useful but even necessary. Some learning techniques allow to manage
and to discuss such knowledge, such as (Allen, 1990), which defines operations on
rules associated to temporal intervals. The goal of those data mining techniques
is to extract recurring episodes from a long sequence (Mannila et al., 1997; Raissi
et al., 2005) or from bases of sequences (Agrawal et al., 1993; Agrawal and Srikant,
1995; Masseglia et al., 1998). Searching for such information becomes all the
more interesting since it allows to take into account different constraints between
events, such as the minimal or maximal duration separating two events (Srikant and

1

Agrawal, 1996; Zaki, 2000; Masseglia et al., 2004; Meger and Rigotti, 2004), or
constraints on regular expressions or rehearsals (Garofalakis et al., 2002; Capelle
et al., 2002; Leleu et al., 2003; Albert-Lorincz and Boulicaut, 2003).

Within this framework, generalized sequential pattern mining was introduced
in (Srikant and Agrawal, 1996). This data mining technique extracts frequent se-
quences satisfying user-specified constraints from a database of sequences (e.g.
successive purchases of customers in a supermarket). Various algorithms were pro-
posed to handle these constraints. Some push them directly into the mining process,
like the GSP algorithm (Srikant and Agrawal, 1996) and the DELISP algorithm (Lin
et al., 2002). In contrast some others propose a preprocess applying the constraints
to the sequences, which are then analyzed by some sequential pattern tool. The
GTC algorithm (Graph for Time Constraint), proposed in (Masseglia et al., 2004),
is based on this principle.

However, although these methods are effective and robust, more especially
the approach based on sequence graphs, they require the user to know exactly the
constraint values to be specified. The risk may then be to gather erroneous or useless
knowledge. Moreover, in some cases, these values are somewhat uncertain. Thus,
time constraints, as they are defined, allow to find new sequential patterns, but they
are still too stiff. Consequently, it may become necessary to make several attempts
with various combinations of these parameters before getting satisfactory results.
(Meger and Rigotti, 2004) has proposed to determine automatically the optimal
window of observation for repetitive episode mining in a sequence, but this is hardly
adaptable to sequential pattern mining. In this domain, to our knowledge, no work
proposes an automatical determination of the most appropriate time constraints.

Besides, for some applications, it could also be interesting to soften the con-
straints specified by the experts of the domain to refine their knowledge: the expert
knowledge is used as a starting point and mining results complete it.

Finally, the discovered sequential patterns, according to the specified time con-
straints, can quickly become so numerous that their analysis becomes less effective.
In that regard, a measure that could help the analysis of generalized sequential
patterns would be a valuable tool.

To tackle several of the aforementioned problems, in this article we propose a
method that can soften user-specified time constraints and provides the end-user
with a satisfaction degree of this initial time constraints.

After having presented the fundamental concepts associated to sequential pat-
terns and to generalized sequential patterns in next section, we present in section
3 a brief introduction to the fuzzy set theory and we define soft time constraints
and the temporal accuracy of a sequence. Then section 4 details our algorithm to
implement the handling of soft time constraint and section 6 develops our proposal
on an example. We then propose some experiments on both synthetical data and
web access logs in section 7. Finally, we conclude in section 8 on the perspectives
opened by our work.

2

2 Sequential Patterns and Time Constraints

This section defines the concepts used in the generalized sequential pattern mining
task. It broadly summarizes the formal description of the problem introduced in
(Agrawal and Srikant, 1995; Srikant and Agrawal, 1996).

2.1 Sequential patterns

Sequential patternswere initially defined in (Agrawal and Srikant, 1995) asmaximal
frequent sequences as follows.

Let O be a set of objects. Each object o is described by a list of records r
consisting of three information elements: an object-id, a record timestamp and a
set of items in the record.
Let I = {i1, i2, ..., iq} be a set of items. An itemset is a non-empty non-ordered
set of items, denoted by (i1i2 . . . ik). A sequence s is a non-empty ordered list of
itemsets, denoted by < s1s2...sp >. A n-sequence is a sequence of n items (or of
size n).

Example 1 Let us consider an example ofmarket basket analysis. The object is a customer,
records are the transactionsmade by this customer. Timestamps are the date of transactions.
If the customer Smith purchases products 1, 2, 3, 4, and 5 according to the sequence s =<

(1) (2 3) (4) (5) >, then all items of the sequence were bought separately, except products
2 and 3 which were purchased at the same time. In this example, s is a 5-sequence.

One sequence < s′1 s′2 ...s′m > is a subsequence of another one< s1 s2...sp > if
there aere integers l1 < l2 < ... < lm such that s′1 ⊆ sl1 , s′2 ⊆ sl2 , ..., s′m ⊆ slm .
We shall also write that s′ is included in s.

Example 2 The sequence s ′ =<(2) (5)> is a subsequence of s above, because (2)⊆ (2 3)
and (5) ⊆ (5). However,<(2) (3)> is not a subsequence of s.

All records from the same object are grouped together and sorted in increasing
order of their timestamp. They are called a data sequence. In order to efficiently
aid decision making, the aim is to discard non-typical behaviors according to the
user’s viewpoint. Performing such a task requires providing any data subsequence
in O with a frequency value freq(s). The frequency of a sequence is defined as the
percentage of objects supporting swith respect to the number of objects in database.
An object supports a sequence s iff s is included within the data sequence of this
object.

In order to decide whether a sequence is frequent or not, a minimum frequency
value minFreq is specified by the user and the sequence is said to be frequent if the
condition freq(s) ≥ minFreq holds. Given a database of object records the problem
of sequential pattern mining is to find all maximal sequences whose frequency is
greater than a specified threshold (minFreq) (Agrawal and Srikant, 1995). Each
of these sequences represents a sequential pattern, also called a maximal frequent

3

sequence.

This definition of sequences is rather strict and turns out not to be appropriate
for many applications, because time constraints are not handled. When verifying
whether a candidate sequence is included within another one, record partitioning
enforces a strong constraint since only pairs of itemsets are compared. However,
if the interval between two records of an object is short enough, they could be
considered as simultaneous. On the contrary, two events too distant could have no
link together. That is why generalized sequential patterns have been proposed in
(Srikant and Agrawal, 1996), introducing time constraints in order to improve the
definition of subsequences.

2.2 Generalized Sequential Patterns

Time constraints restrict the time gap between sets of records that contain consecu-
tive elements of the sequence. There are three different constraints. First, mingap
is the minimal time gap that must separate two consecutive itemsets in a sequence.
Then maxgap is the maximal time gap within which two consecutive itemsets of
a sequence must occur. Finally, windowSi ze is a sliding window during which
several records may be grouped into one itemset.

Handling time constraints, (Srikant and Agrawal, 1996) redefines when a data
sequence supports a sequence as follows.

Definition 1 Given user-specified windowSi ze, minGap and maxGap values, a
data sequence d =< d1...dm > supports a sequence s=< s1 · · · sn > if there exist
integers l1 ≤ u1 <l2 ≤ u2 <...<ln ≤ un such that :
i. si ⊂ ∪ui

k=li dk , 1 ≤ i ≤ n;
ii. timestamp(dui) - timestamp(dli) ≤ windowSi ze, 1 ≤ i ≤ n;
iii. timestamp(dli) - timestamp(dui−1) > minGap, 2 ≤ i ≤ n;
iv. timestamp(dui) - timestamp(dli−1) ≤ maxGap, 2 ≤ i ≤ n;

We will refer to timestamp(dli) as start-time(si) and timestamp(dui) as end-
time(si). In other words, start-time(si) and end-time(si) correspond to the first and
last timestamps of the set of records that contains si .
These time constraints, as well as the minimum frequency condition, are parame-
terized by the user.

Time constraints allow a more flexible handling of records, insofar as the end
user is then equipped with the following advantages for mining sequences:

• to group together itemsets when their timestamps are sufficiently close via
the windowSi ze constraint;

• to regard itemsets as too close to appear in the same frequent sequence with
the minGap constraint (i.e. to be considered as related);

• to regard itemsets as too distant to appear in the same frequent sequence with
the maxGap constraint (i.e. to be considered as related).

4

Example 3 In this example, we take the same context as for the previous examples: records
refer to the purchases of customers in a supermarket. Consider the data sequences C1 and
C2 of customers 1 and 2 given in Table 1.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
C1 1 2 3 4 5 6 7 8 9
C2 1 2 3 4 5 6 7 8

Table 1: Purchases made by two customers during one week

Let s =<(1 2 3 4)> be a sequence and the following time constraint parameters:
• minGap=0, consecutive itemsets must be at least one-day distant,
• maxGap=7, consecutive itemsets must be at most seven-day distant,
• windowSi ze=1, purchases may be grouped together over at most two consecutive
days.

Then Figure 1 shows how these time constraints are applied in order to determine whether
data sequences C1 and C2 support the candidate sequence s =< (1 2 3 4) > or not.

Figure 1: Description of time constraints, windowSi ze (ws), minGap (mg) and
maxGap (MaxG), on data sequences C1 and C2

1(1) 2(2) 3(3 4) 5(5 6 7) 6(8) 7(9)

ws = 1

l1 = 1 u1 = 3
l2 = u2

= 5
l3 = u3

= 6
l4 = u4

= 7

(a) C1, customer 1 data sequence

1(1)2(2 3 4) 3(5 6) 4(7 8)

ws = 1mg = 0
MaxG = 7

l1 = 1 u1 = 2
l2 = u2

= 3
l3 = u3

= 4

(b) C2, customer 2 data sequence
i (a b) denotes the itemset (a b) bought at date i

To make sequence s appear in data sequence C1, the purchases of days 1, 2 and 3 must
be grouped together. However, this itemset does not meet constraint (ii), since end-time(s 1)
- start-time(s2) = day 3 - day 1 = 2>windowSi ze. There exists no other possibility to find
s in this data sequence. Thus the data sequence C1 does not support sequence s.
To make sequence s appear in data sequence C2, the purchases of days 1 and 2 must be
grouped together. This itemset meets the windowSi ze constraint, since it has been built
over two consecutive days. The minimum gap between this first itemset and the next is then
day 3 - day 2 = 1 > 0 = minGap, which meets the minGap constraint (iii). So does the
maxGap constraint (iv). The data sequence C2 supports sequence s.

Note that if the specifiedvalues areminGap=0,maxGap=inf andwindowSi ze=0,
we get back the notion of sequential patterns as introduced in section 2.1 where there
are no time constraints and where items in an itemset come from a single record.

5

3 Soft Time Constraints

The main drawback of such constraints is that they are user-specified. They require
the data and constraint values to be well-known a priori. Results are thus subject to
a good knowledge of the end-user. Misvalued time constraints could indeed lead to
erroneous or incomplete knowledge. However no work, to our knowledge, has been
proposed to determine automatically optimal time constraints for sequential pattern
mining. We here propose to extend the above time constraints for generalized
sequential patterns using some principles of fuzzy set theory.

Moreover, extracted patterns become more and more numerous, particularly
during sequential pattern mining. So it becomes necessary to provide the end-user
with tools to analyse the sequential patterns he get.

In the case of generalized sequential patterns, some useful information could
be given by the duration of data sequences corresponding to time constraints. This
is the purpose of soft time constraints, that we define in this section.

Furthermore, these soft time constraints enable us to define a measure of tem-
poral accuracy expressing how well a sequence satisfies the initially user-specified
time constraint values.
We thus provide the user with flexibility in time constraint specification and with a
tool helping him to analyze the extracted patterns.

3.1 Fuzzy Set Theory

The fuzzy set theorywas introduced by (Zadeh, 1965). This theory generalizes crisp
set theory, admitting intermediary situations between all and nothing. Whereas in
the classical theory an element a belongs or not to a set A, in the fuzzy set theory a
may partially belong to A (then called a fuzzy set) and thus partially belong to its
complement. Besides enabling this partial membership, the fuzzy set theory allows
the transition of an object from one state to the next to be gradual.

Example 4 Let X be the universe of all possible sizes for a human being. One fuzzy set
A (e.g. small,medium or big) is defined by a membership functionµ A expressing for every
x of X the degree with which x belongs to A. This degree is in intervall [0,1]. An exemple
of these three fuzzy sets is graphically represented on Figure 2. Thus a person with height
x=1m60can be simultaneously small andmedium-sizedwith for example a degree of 0.7 for
the fuzzy set small (µM (x)=0.7) and a degree of 0.3 for the fuzzy setmedium (µM (x)=0.3).

Figure 2: Big and Small Fuzzy sets describing a person’s height

6

Operators in fuzzy logic are a generalization of crisp logic operators. In
particular, we consider negation, intersection and union. The operator (or t-
norm operator (triangular norm) is the fuzzy equivalent of the binary intersection:
µA∩B(x) = ((µA(x), µB(x)). The operator ⊥ or t-conorm operator (triangular
conorm) is similar to the binary union: µA∪B(x) = ⊥(µA(x), µB(x)). We denote
((resp. ⊥) the operator ((resp. ⊥) generalized to the n-ary case. Different
operators can be used as a t-norm (min, product ...). They are associated to their
dual operator for the t-conorm (e.g. max is the t-conorm for the min t-norm).
The min operator being idempotent we use it for the t-norm and consequently, the
max operator will be our t-conorm.

3.2 Principles and Notations

Our proposal of soft time constraints for sequential patterns is built by analogy
with fuzzy sets. Thus a sequence will not satisfy or not a constraint in a binary
way anymore, because the user may relax these time constraints. Each constraint
can then be regarded as a fuzzy set, its membership function giving a temporal
satisfaction degree for a given sequence. This degree is thus calculated for each
possible value of that time constraint, and tells the end-user to which extent the
initially specified constraint value has been fulfilled.

In order to answer user needs and to make our approach flexible, a minimum
temporal satisfaction degree ρx can be specified for constraint X of initial value
xinit .
The satisfaction degree of constraints being based on the membership function of
each constraint, specified coefficients are in the interval [0,1]. It is also possible to
set a constraint with certainty :

• If ρx = 1, the specified minimum temporal satisfaction degree is 1, i.e. the
user does not want the value of constraint X to vary. That constraint will be
set to the initial value and will not change; all generated sequences will have
a temporal satisfaction degree equal to 1.

• If ρx = 0, the user want constraint X to take each possible value; the tem-
poral satisfaction degree will depend on the constraint value generating the
sequence.

• In all other cases, ρx ∈]0,1[and the value x of constraint X will vary from
its user-specified value xinit and a limit value xρ for which the temporal
satisfaction degree is ρ(x) = ρx .

Note that if the specified values for minimum satisfaction degree of each time
constraint is 1, we get back the crisp time constraints, and thus, the notion of
generalized sequential patterns as introduced in section 2.2.

First of all, the useful limit value of time constraints (extreme values) have to
be determined. These values may correspond to the variation on the whole search
space (i.e. for ρx=0).

7

These values are computed from the crisp time constraints (ii), (iii) and (iv) in
section 2.2. They are given by the limit value allowed by those definitions.

The windowSi ze and maxGap constraints define the maximal gap between
two itemsets. For any given object, the maximal value they can be set at is thus
the duration between the first record and the last one. For the whole database,
this commen extreme value will thus be the maximal gap, over all objects, be-
tween the minimal and maximal record timestamp for the same object: M =
max
o∈O

(timestamp(romax) − timestamp(romin)).
The minGap constraint defines the minimal gap between two consecutive item-

sets. We have defined the limit value of this constraint taking into account the
crisp inequality it implies. The minimum gap between two records of an ob-
ject o is given by ∀o ∈ O,minr∈Ro(timestamp(r + 1) − timestamp(r)). For the
whole database, this gap corresponds to the minimal value for the set of objects.
It means: mino∈O(minr∈Ro(timestamp(r + 1) − timestamp(r))). Going to the limit,
the minGap constraint is expressed by the inequality:

mino∈O(minr∈Ro(timestamp(r + 1) − timestamp(r))) > mingap
mino∈O(minr∈Ro(timestamp(r + 1) − timestamp(r))) ≥ mingap + 1
mino∈O(minr∈Ro(timestamp(r + 1) − timestamp(r))) − 1 ≥ mingap

we obtain that the limit value for minGap is mino∈O(minr∈Ro (timestamp(r + 1) −
timestamp(r))) − 1.

But, in the case of one object having one single record, it would imply this
value to be -1. It would then imply that there could be no gap between two
consecutive itemsets. In other words, the sequence < (a b c) > could sup-
port the sequence < (a) (b) (c) >, which is not compatible with the definitions
given section in 2. That is why we lay down that, in this particular case, the
limit value of minGap would be 0. The limit value for minGap is then given by
m = max(min

o∈O
(min
r∈Ro

(timestamp(r + 1) − timestamp(r))) − 1, 0).

In the remainder of this section, we use the notations given in Table 2, in order
to distinguish the three time constraints.

Parameters wsinit , mginit and MGinit are the initial user-specified values for
the constraints windowSi ze, minGap and maxGap and ρws , ρmg and ρMG are the
minimum temporal satisfaction degrees associated to them. These coefficients will
enable the user to limit the variation of time constraints, according to his own re-
quirements. The identifier ws (resp. mg or MG) denotes the variable associated
with the windowSi ze (resp. minGap or maxGap) constraint, and ρ(ws) (resp.
ρ(mg) or ρ(MG)) denotes the satisfaction degree obtained by the value ws (resp.
mg or MG values) of that variable.

8

M maximal possible value for windowSi ze and maxGap
M = max

o∈O
(timestamp(r)omax − timestamp(r)omin)

ws variable for the windowSi ze constraint; may vary from wsinit to M
wsinit initial value of parameter windowSi ze, user-specified
wsρ limit acceptable value for ws, computed from ρws
ρws lowest acceptable satisfaction degree for windowSi ze
ρ(ws) temporal satisfaction degree obtained by the value ws of windowSi ze
MG variable for the maxGap constraint; may vary from MGinit to M
MGinit initial value of parameter maxGap, user-specified
MGρ limit acceptable value for MG, computed from ρMG
ρMG lowest acceptable satisfaction degree for maxGap
ρ(MG) temporal satisfaction degree obtained by the value MG of maxGap
m minimal possible value forminGap

m = max(min
o∈O

(min
r∈Ro

(timestamp(r + 1) − timestamp(r))) − 1, 0)

mg variable for the minGap constraint; may vary from m to mginit
mginit initial value of parameter minGap, user-specified
mgρ limit acceptable value for mg, computed from ρmg
ρmg lowest acceptable satisfaction degree for minGap
ρ(mg) temporal satisfaction degree obtained by the value mg of minGap

Table 2: Notations

3.3 Extending Time Constraints to Soft Time Constraints

We now detail how each soft time constraint is built and we illustrate it with a short
example.

3.3.a Soft windowSi ze

The value ws of windowSi ze constraint may vary from its user-specified value
wsinit and its limit value M , as shown on Figure 3.

Figure 3: Temporal satisfaction degree of windowSi ze according to the soft con-
straint

This soft constraint is described with a fuzzy set of which the membership

9

function (1) gives the accuracy for a specific value ws:

ρ(ws) =






1 if ws ≤ wsinit
1

wsinit−Mws − M
wsinit−M if wsinit < ws ≤ M

0 else
(1)

Theuser can then choose to allow the temporal satisfaction degree of thewindowSize
constraint to be somewhere between 1 and a lowest acceptable value ρws . That low-
est degree will be attained for a value wsρ >wsinit of ws.
More specifically, this largest acceptable window size is given by:

wsρ = -(wsinit − M)ρws + M. (2)

Example 5 Consider the two data sequences shown in example 3 and the sequence
s=<(1 2 3 4)>. Suppose that the user-specified time constraint parameters are ws init =1,
mginit =0 and MGinit =7, with ρws=0.7, ρmg=1 and ρMG=1.
Thus,ρws is the only lowest acceptable satisfactiondegree different from1, andwindowSi ze
is the only constraint possibly having several values. Applying equation (2) with M =
max((7− 1), (4− 1))=6 (Table 2, we get wsρ = -(1− 6) ∗ 0.7+ 6.= 2. The value ws of
windowSi ze will successively be 1 then 2.
Forws=1, grouping the pruchases of days 1 to 3 of data sequence C1 in order to accept the
candidate sequence s would violate the windowSi ze constraint. However with ws=2, we
can indeed group them and that ws value, by equation (1), yields a temporal satisfaction
degree ρ(ws) = ρ(2) = 0.8. The other constraints are satisfied as well, then the data
sequence C1 supports the candidate sequence s.
For data sequence C2, the purchases of days 1 and 2 are grouped together. Note that the
windowSi ze constraint is satisfied with ws=wsinit =1 and the corresponding satisfaction
degree is ρ(ws) = 1. The other constraint are also respected, the data sequence C2
supports the candidate sequence s.

3.3.b Soft maxGap

The value MG of maxGap constraint may vary from its user-specified value
MGinit and its limit value M .
This soft constraint is described with a fuzzy set of which the membership function
(3) gives the accuracy for a specific value MG:

ρ(MG) =






1 if MG ≤ MGinit
1

MGinit−M MG − M
MGinit−M if MGinit < MG ≤ M

0 else
(3)

Theuser can then choose to allow the temporal satisfaction degree of themaxGap con-
straint to be somewhere between 1 and a lowest acceptable value ρMG . That lowest
degree will be attained for a value MGρ >MGinit of MG.
More specifically, this largest acceptable window size is given by:

MGρ = -(MGinit − M)ρMG + M. (4)

10

Example 6 Consider the two data sequences shown in example 3 and the candidate se-
quence s=<(1 2 3 4) (7 8)>. Suppose that the user-specified time constraint parameters
are wsinit =2, mginit =0 and MGinit =3, with ρws=1, ρmg=1 and ρMG=0.3.
Thus ρMG is the only lowest acceptable satisfaction degree different from 1 andmaxGap is
thus the only constraint varying. Applying equation (4) with M=6, we get MG ρ = 5. The
value MG will successively be 3, 4 and 5.
For data sequence C1,purchases of days 1 to 3,as well as days 5 and 6,are grouped together
in order to accept the candidate sequence s. However, with MG=3, themaxGap constraint
is violated, as with MG=4. With MG=5, this constraint is satisfied and the temporal sat-
isfaction degree is then ρ(MG) = ρ(5) = 0.3 (3). The other constraints are also satisfied,
then the data sequence C1 supports the candidate sequence s.
For the data sequence C2, the records of days 1 and 2 are grouped together, satisfying
the maxGap constraint with MG=MGinit =3 and the corresponding satisfaction degree
is ρ(MG = 3) = 1. The other constraint are also satisfied, the data sequence C2 supports
the sequence s.

3.3.c Soft minGap

The value mg of minGap constraint may vary from its limit value m to its user-
specified value mginit . This soft constraint is described with a fuzzy set of which
the membership function (5) gives the accuracy for a specific value mg:

ρ(mg) =






1 if mg ≥ mginit
1

mginit−mmg − m
mginit−m if mginit > mg ≥ m

0 else
(5)

Theuser can then choose to allow the temporal satisfaction degree of theminGap con-
straint to be somewhere between a lowest acceptable value ρmg and 1. That lowest
degree will be attained for a value mgρ <mginit of mg.
More specifically, this largest acceptable window size is given by:

mgρ = 0(mginit − m)ρmg + m1 (6)

Example 7 Consider the two data sequences shown in example 3 and the candidate se-
quence s=<(1 2 3 4) (5 6)>. Suppose that the user-specified time constraint parameters
are wsinit =2, mginit =2 and MGinit =7, with ρws=1, ρmg=0 and ρMG=1.
Thus, ρmg is the only lowest acceptable satisfaction degree different from 1 and minGap is
thus the only constraint varying. Applying equation (6) with m = 0, we get mg ρ=0. mg
will successively be 2, 1 and 0.
For the data sequence C1, the purchases of days 1, 2 and 3. The minGap constraint is not
satisfiedwith mg=2, but it is with mg=1. In this case, the satisfaction degree for minGap is
ρ(mg) = ρ(1)=0.5 (equation (5)). The other constraints are satisfied, so the data sequence
C1 supports the sequence s.
For the second data sequence, the purchases of days 1 and 2. The minGap constraint
is not satisfied while mg is greater than 0. mg=0 yields, by equation (5), to a temporal

11

satisfaction degree ρ(mg) = ρ(0)= 0. The other constraints are also satisfied, the data
sequence C2 supports s.

Note that these soft constraints are defined in 3.3.a, 3.3.b and 3.3.c by using
fuzzy sets where the temporal satisfaction degree is described by a linear mem-
bership function between the constraint initial value and its extreme value M or
m. However, these functions could also be defined in a different way, e.g. by a
step function or by a function representing the proportion of objects in the data set
satisfying each value of the constraints.

3.4 Temporal Accuracy of a Sequence

We now define the level of time constraint satisfaction for a sequence considering
the three constraints (ii), (iii) and (iv), together. At the end of the mining task, we
get a list of frequent sequences. For each object, each of them has been generated
using specific time constraint values ws, mg and MG. These values are used to
compute the satisfaction degree of each constraint. These satisfaction degrees are
now combined into a global measure associated to the sequence.

For an object o, the temporal accuracy of a sequence s is defined for an object
o as the satisfaction degree yielded by the three time constraints considered simul-
taneously. It is calculated using a t-norm operator ((). For each object, several
occurrences of s may appear. So the occurrence satisfying the most the initial values
(i.e. with the highest temporal satisfaction degree) is searched through the set ςo of
subsequences of o using a t-conorm operator (⊥).

We define the temporal accuracy of a sequence s =< s1 · · · sn > for the object
o by the following equation:

#(s, o) = ⊥s∈ςo

(
(i∈1,n

(
ρws (end-time(si) − star t-time(si))

)
,

(i∈2,n
(
ρmg(end-time(si) − star t-time(si−1)),
ρMG (end-time(si) − star t-time(si−1))

)) (4)

For the whole dataset, the temporal accuracy of a sequence s is given by the
average aggregation of each object accuracy, i.e.:

ϒ(s) = 1
|O|

∑

o∈O
#(s, o) (5)

Example 8 Consider the two data sequences from example 3 and the frequent sequence
s =< (1 2 3 4) (5 6) > with the following parameters for soft constraints: wsinit = 1,
mginit = 2, MGinit = 4 and ρws=0.6, ρmg=0.4 and ρMG=0.5. We still have M=6 and
m=0. In this example, we use the min and max operators respectively for the generalized
t-norm (() and the generalized t-conorm (⊥).
For data sequence C1, s appears by grouping together days 1 to 3 on the one hand and
days 5 and 6 on the other hand. Then, start-time(s1)=1, end-time(s1)= 3, start-time(s2)=5

12

and end-time(s2)= 6. It is the single occurrence of s in this data sequence. Thus for C1,
the temporal accuracy of s is (details omitted):

#(s,C1) = min(ρws(2), ρws(1),min
(
ρmg(1), ρMG(5)

)
)

= min(0.8, 1,min
(
0.5, 0.5

)
)

= 0.5

Then the same computation is done for data sequence C2. Similarly, we get #(s,C2) = 0.5.
The temporal accuracy of sequence s for the whole database is thus given by:

ϒ(s) = #(s,C1) + #(s,C2)
2

= 0.5

4 Graph for Extended Time Constraints

Our implementation of these soft time constraints is based on the GTC algorithm
(Graph for Time Constraints) proposed in (Masseglia et al., 2004). The main idea
is to transform the data sequence of an object into a sequence graph in which each
path is a subsequence satisfying the time constraints. The sequence graphs of the
data sequences are then used to determine the frequent sequences by a sequential
pattern mining algorithm.

The efficiency of this approach was demonstrated. We chose to develop our
solution from this idea. We thus propose an algorithm allowing to build a sequence
graph for the soft time constraints which will also allow us, in a second phase, to
calculate the temporal accuracy of the extracted generalized sequential patterns.

4.1 Related Work

Several previous approaches have tackled the generalized frequent sequences prob-
lem.

The GSP algorithm proposed in (Srikant and Agrawal, 1996) is aimed at min-
ing Generalized Sequential Patterns. It extends previous proposals for sequence
mining by handling time constraints and taxonomies (is-a hierarchies). It uses a
generate-and-prune approach, that uses the frequent sequences of size k to generate
candidate sequences of size k + 1. Then the frequency of these (k + 1)-sequences
is calculated. Time constraints are handled when parsing a data sequence. For
each candidate sequence, GSP checks whether it is contained in the data sequence.
Because of the sliding windows and minimum and maximum time gaps, it is neces-
sary to switch during examination between forward and backward phases. Forward
phases are performed for dealing progressively with items and, while selecting
items, windowSi ze is used for resizing records partitioning. Backward phases are
required as soon as the maxGap constraint is no longer satisfied. In such a case,
it is necessary to discard all the items for which the maxGap constraint is violated
and to resume parsing the sequence starting with the earliest item satisfying the
maxGap condition.

13

In (Masseglia et al., 1998), another approach called PSP (Prefix-Tree for Sequen-
tial Patterns) was proposed. It fully picks up again the fundamental principles of
GSP, using a different structure for organizing the candidate sequences which thus
improves retrieval efficiency.

More recently, the DELISP algorithm (Lin et al., 2002) has been proposed for
mining sequential patterns with time constraints. It is based on the mining scheme
of Prefix-SPAN. Actually, the original database is divided into multiple subsets for
each prefix of a potential sequential pattern. While writing of the subsets, DELISP
reduces the size of the projected databases by bounded and windowed projection
techniques. The experiments proposed by the authors show a clear improvement of
DELISP over GSP. However, such a technique is restricted to prefix-growth algo-
rithms. Therefore the GTC algorithm (Masseglia et al., 2004) has been developped.
It improved the PSP approach by a more efficient handling of time constraints.

The GTC (Graph for Time Constraints) algorithm, taking a data sequence,
precalculates a relevant set of sequences to be tested. By precalculating this set,
the time spent analysing a data sequence when verifying candidate sequences is
reduced. Because handling of time constraints is done prior to and separate from
the counting frequency step of a data sequence, we propose to use this method
to implement the soft time constraints. Thus, the graph structure used by GTC,
described in the next section will then be used both for sequential pattern mining
and for computing temporal accuracy of frequent sequences.

4.2 General Strategy of the Algorithm

Our approach described in Algorithm 1 takes up all the fundamental principles of
GTC. It contains a number of iterations. Each iteration finds all the frequent se-
quences of the same size.

GETC is used as a preprocess for handling soft time constraints. Once a data
sequence has been transformed into a sequence graph satisfying the soft time con-
straints, frequent sequences are searched within the subsequence set of the sequence
graph. As a result, using the sequence graph, checking the time constraints becomes
useless during the candidate parsing: only inclusion must be verified. This pre-
process optimizes the GSP algorithm by handling separately time constraints, thus
avoiding backward and forward exploration while searching for frequent sequences.
Once the sequential patterns are extracted, the sequence graphs are weighted, then
explored one last time to calculate the temporal accuracy of each generalized se-
quential patterns extracted.

4.3 Sequence Graph Building

Froman input data sequence d , theGETCalgorithm (Algorithm2) builds a sequence
graph Gd(V, E) in which vertices are itemsets and paths represent subsequences

14

Main - Input: minFreq, DB
Ouput: F , frequent sequences on DB,

k longest length of frequent sequences

F0 ← ∅ ; k ← 1 ;
F1 ← {{< i >}/i ∈ I& f req(i) > minFreq}};
addWindowSize(S) ;
While (Candidate(k) 3= ∅) do
For each d ∈ DB do

(G) ← GETC(d) ;
countFrequency(Candidate(k),minFreq, (G)) ;

End For
Fk ← {s ∈ Candidate(k)/ f req(s) > minFreq};
Candidate(k + 1) ← generate(Fk) ;
k++;

End While
ComputeAccuracy(Fk);

return F ←
k⋃

j=0
Fk

Algorithm 1: Main algorithm

satisfying the time constraints.
First each itemset of the input sequence is associated to a vertex. Then the sub-

functionaddWindowSize combines records, trying to satisfy the softwindowSize con-
straint and adds to the graph any satisfying combination as a new vertex. Vertices
are affected to “levels” according to their start-time in order to reduce the time
spent for building edges. The next step consits in building the edges satisfying
both minGap andmaxGap soft constraints. Thus for each vertex, the first “level”
of vertices satisfying the soft minGap constraint is retrieved. For each vertex of
this set, the minGap constraint is satisfied and the maxGap constraint is checked.
If it is satisfied, a new edge is built between both vertices. Some optimization is
done by the addEdge and propagate subfunctions in order to reduce the number of
sequence inclusions. Finally, the remaining included subpaths are deleted from the
graph by the subfunctions pruneMarked and convertEdges.

The addWindowSi ze function scans each vertex x and determines for each of
them the other vertices y to which it can be combined (i.e. if y.date() - x .date() ≤
ws). Each vertex then corresponds to an itemset i associated to a starting timestamp
i .begin() and an ending timestamp i .end(). The vertices are grouped together in
levels by ending timestamp of the itemsets. It allows to analyse if the constraints
are satisfied by level and not for each vertex anymore. We thus reduce the runtime.

15

GETC- Input: d , a data sequence
Ouput: Gd (V, E), d graph sequence,

S vertex set of Gd , A edge set

S← buildVertices(d);
addWindowSize(S) ;
While (x 3= S.first()) do

l ← x .level().prec() ; mg ← mginit ;
While (x .start-time() - l .end-time() ≤ mg) do

contmg ← FALSE ;
If (x .start-time() > l .end-time()) Then
While (mg ≥ mgρ) do
If (constming(x ,l)) Then

contmg ← TRUE ;
mg ← mgρ -1 ;

Else
mg - - ;

End If
End While

End If
If (contmg == FALSE) Then
propagate(x ,l) ; l ← l .prec() ;

End If
EndWhile

For chq w ∈ l do
included ← TRUE ;
MG ← MGinit ;
While (MG ≤ MGρ) do
If (constMaxG(x ,w)) Then
addEdge(w,x) ;
MG ← MGρ + 1;

Else
MG++;

End If
End While

End For
x ← S.next(x) ;
EndWhile
pruneMarked(Gd (S, A)) ;
convertEdges(Gd (S, A)) ;
return Gd (S, A);

Algorithm 2: GETC

TheaddEdge algorithmbuilds the edges betweenvertices satisfying theminGap
and maxGap constraints. A definitive edge is created if the vertices are not already
linked in a sequence or by the inclusion of their successors or predecessors. In that
case, the built edge is temporary and becomes definitive if the sequence it builds is
maximal.
It is also during the running of this algorithm that included vertices are marked, they
will be later deleted if they are unnecessary.

propagate is used when a jump over a level l occurs because of the non-
satisfaction of the minGap constraint. It is used to build the sequences between the
vertices in level l and the successors of x which can not reach this level. Like in
addEdge, temporary or definitive edges are built depending on the likely inclusion
of the built sequence.

For each temporary edge from x to y, if y is included in a successor z of x and if
the successors of y are also successors of z, then there is an included subsequence,
the edge is unnecessary, it is so deleted.
In other cases, the edge is necessary to obtain every maximum sequences. It is then
converted into a definitive edge.

16

addWindowSize - Input: S, vertex set to scan (ordered ascendently with respect to
starting timestamp, ending timestamp) ;

copyS ← S ; α ← S.first() ;
While (α 3= S.last()) do

αnext ← S.next(α) ; β ← S.next(α) ; ws ← a ;
While (ws ≤ aρ) do
While (β.end() - α.begin() ≤ ws) do

i ← group(α, β) ;
[Add the vertex i after the vertex β
to copyS
To avoid rehearsals due to ws, we
add the condition if i 3= α]

If (i .itemset 3= α.itemset) Then
added ← FALSE ;
For each z ∈ β.level() do

If (z.itemset == i .itemset) Then
[then z.begin() < i .begin(), by building]
copyS.modify(z,i) ;
[z.begin() is modified to start-time(i)]
added ← TRUE ;

End If
End For

If (added == FALSE) Then
copyS.insert(i, β);
β.level().add(i) ;

End If
α ← i ;
[If α 3= S.last(), end loop]

End If
β ← S.next(β) ;
[If β 3= S.last(), end loop]
End While
ws ++ ;
EndWhile
α ← αnext ;
EndWhile
S← copyS ;

Algorithm 3: addWindowSize

During building, the marked vertices are those of included subsequences, the
function pruneMarked deletes them.

We proove in section 5 that, at the end of this process, GETChas built exactly all
the longest sequences, satisfying the soft time constraints windowSi ze,minGap and
maxGap, generated from the input data sequence. The GETC algorithm thus can
be used as a preprocessing phase to handle the soft time constraints, before the
sequential patterns are mined. After this step, the candidate sequence support is
computed on these sequence graphs.

17

addEdge - Input: S, two vertices r and s, A edge set of the graph;

If (r .succ() == ∅) Then
If (s.prev() == ∅) Then
A← A ∪{(r, s)} ;
unmark(r) ; unmark(s) ;

Else
For each p ∈ s.prev() do

If ((r ⊂ p) & (r .succ() ⊂ p.succ())) Then
included ← TRUE ;

End If

End For
If (included == TRUE) Then
arcTmp(r ,s) ;
mark(r) ;
[if no definitive edge exists from or to r]

Else
A← A ∪{(r, s)} ;
unmark(r) ; unmark(s) ;

End If
End If

Else
For chq t ∈ r .succ() do

If ((s ⊂ t) && (s.succ() ⊂ t .succ())) Then
included ← TRUE ;

End If
End For
If ((s.prev() 3= ∅) & (included == FALSE)) Then
For each p ∈ s.prev() do

If ((r ⊂ p) & (r .succ() ⊂ p.succ())) Then
included ← TRUE ;

End If
End For

End If
If (included == TRUE) Then
arcTmp(r ,s) ;
mark(r) ;
[if no definitive edge exists from or to r]

Else
A← A ∪{(r, s)} ;
unmark(r) ; unmark(s) ;

End If
End If

Algorithm 4: addEdge

propagate - Input: x , un sommet du graphe de séquences, l, un niveau du graphe de séquences

If (x .begin() > l.end()) Then
For chq u ∈ l do

For chq v ∈ x .succ() do
If (v .begin() - u.end() > mg)) Then

MG ← G ;
While (MG ≤ Gρ) do
If (v .end() - u.begin() ≤ MG) Then
If (u.succ() ∩v .prev()) Then
For chq t ∈ v .prev() do

If (u " t) Then
included ← TRUE ;

End If
End For
If (included == FALSE) Then
For chq w ∈ u.succ() do

If (w.succ() ⊂ u.succ()
& w ⊂ u) Then

included ← TRUE ;
End If

End For
End If

End If

If (included == TRUE) Then
arcTmp(u,v) ;
mark(u) ; [si aucun arc défi-

nitif de ou vers r]
Else
A← A ∪{(u, v)} ;
unmark(u) ; unmark(v) ;

End If
End If
MG ← Gρ + 1;

Else
MG + +;

End If
End While

End If
End For

End If

Algorithm 5: propagate

18

convertEdge - Input: G(S, A), a sequence graph

If (included == TRUE) Then
prune(arcTmp(x ,y)) ;

Else
A← A ∪{(x, y)} ;
prune(arcTmp(x ,y)) ;

End If
End For

For each arcTmp(x ,y) do
For each z ∈ x .succ()\y do

If ((y ⊂ z) && (y.succ() ⊂ z.succ())) Then
included ← TRUE

End If
End For

Algorithm 6: convertEdges

pruneMarked - Input: G(S, A), a sequence graph

For each s ∈ S do
If (s.marked == TRUE) Then
prune(s) ;

End If
End For

Algorithm 7: pruneMarked

19

4.4 Temporal Accuracy Computation

Once the sequence graphs has been built, we know which sequences are allowed
by the time constraints and which are forbidden. However, some sequences satisfy
the crisp constraints while others were built only by applying the soft constraints.
Thus their “quality” is not the same. Therefore we propose to calculate the temporal
accuracy level of each longest path of the sequence graph (each maximal sequence)
and to allocate it to each subsequence composing it.

In order to determine the time constraint values satisfyed by the paths in the
graph, each edge (x ,y) is weighted by ((µmg(y.begin()-x .end()),µMG (y.end()-
x .begin())) depending on the mg and MG values used to build that edge; each ver-
tex is similarly weighted by µws . These weights are computed by the valueGraph
function. The temporal accuracy of a sequence is then given by equation (5), in sec-
tion 3.4. This computation requires an additional iteration after sequential pattern
mining, in order to return each of them with its temporal accuracy.

With the function valueGraph, the graph is scanned. For each vertex, the
weight is computed with respect to windowSi ze and each of the edges with re-
spect to minGap and maxGap . Then for each frequent sequence, the algorithm
calcGenPrec computes the temporal accuracy thanks to the formula 5.

valueGraph - Input: Gd (S, A), sequence graph (not weighted)
of a data sequence d
µws , µmg , µMG , membership functions.

Output: Gd (S, A), weighted sequence graph

For each s ∈ S do
s.valuate(µws (s.end()-s.begin()) ;
For each t ∈ s.succ() do

arc(s,t).valuate(((µmg (t .begin()-s.end()), µMG (t .end()-s.begin()))) ;
End For

End For

Algorithm 8: valueGraph

calcGenPrec - Input: C, set of objects and their sequence graph
T set of frequent sequences,
µws , µmg , µMG , membership functions.

Output: T set of frequent sequences, with their temporal accuracy.

For each c ∈ C do
valueGraph(gc ,µws ,µmg ,µMG);
calcPrec(gc,T) ;

End For

For each t ∈ T do
t .degPrec← t .degPrec/C ;

End For

Algorithm 9: calcGenPrec

20

5 All the maximal sequences?

Definition 2 An itemset i is included in another itemset j iff both following condi-
tions hold:

• i .begin() ≥ j .begin(),

• i .end() ≤ j .end(),

We proove in this section that GETC builds exactly all the frequent sequences of
maximal length supported by the input data sequence.

Theorem 1 The inclusion of a sequence is not possible after GETC running.

Proof 1 Suppose that it exists two sequences s1 and s2 in the sequence graph such
that s1 ⊂ s2.
It means that the sequence graph contains a vertex y such that one of its predecessors
x is accessible from t, also predecessor of y, i.e. it exists a path in the graph (t, ..., y)
of length greater or equal to 2 and an edge (t,y).
By building conditions, this case can only appear during the propagate function
running. The existence of such a path implies an intersection betwenn the vertices
preceeding y and those following t. However if this situation appears, propagate
does not create a new edge from t to y. Thus GETC only builds the maximal path
and deletes the included ons.

Theorem 2 The GETC algorithm exactly builds all the solutions of maximal length
satisfying both constraints minGap andmaxGap.

Proof 2 The GETC algorithm scans each vertex of the graph. That implies that if a
path satisfying minGap and maxGap contains a vertex x, then this path is included
into the graph after running the GETC algorithm (even if its only vertex is x).
Every vertices are included in a path. The inclusion of path is impossible and if two
paths (x, ..., y) and (y′, ..., z) can be combined (i.e. if y′.start-time() - y.end-time()
> gρ and z.end-time() - x.start-time() > Gρ), they will be, because the algorithm
will build the edge (y,y′) while exploring the vertex y.
So the GETC algorithm builds exactly all the solutions of maximal length satisfying
the minGap and maxGap constraints.

21

Theorem 3 The addWindowSi ze algorithmbuilds exactly every vertices thatmay
be used for building every maximal length sequences satisfying the minGapõ and
maxGap constraints.

Proof 3 Suppose that every vertices resulting of the itemsets combination satisfy-
ing windowSi ze are built. Some of them are unecessary for the maximal length
sequence search.

(t) (x2) (y)

(x1)

Figure 4: addwindowSi ze

First of all, consider the case in which the graph contains a level with two ver-
tices x1 and x2 such that the itemsets of both vertices are the same and x1.end() =
x2.end() and x1.begin() < x2.begin(). Consider also a vertex t such that t .begin()
≤ t .end() < x1.begin() and a vertex y such that x1.end() < y.begin() ≤ y.end()
(figure 4).
We show that every sequences including x1 can also be obtained by including the
vertex x2 and that, consequently, just the vertex x2 is necessary for the search of
maximal sequences.

Suppose that it exists an edge between t and x1, it means that the minGap and
maxGap constraints are satisfied. So:

{
x1.end() − t .begin() ≤ maxgap a
x1.begin() − t .end() > mingap b (6)

And x1.end() = x2.end(), so equation 6-a becomes x2.end()− t .begin() ≤ maxgap.
The maxGap constraint is then also satisfied between t and x2.
On a également x1.begin() < x2.begin(), c’est-à-dire :

x2.end() − t .begin() > x1.end() − t .begin()
and so:
x2.begin() − t .end() > mingap

(7)

The minGap constraint is then also satisfied between t and x2. So a path going
through t then x2 will be built.

22

Now, suppose that such an edge cannot be built between t and x1. It means that
one of the minGap and maxGap constraints is not satisfied.
If the maxGap constraint is not satisfied, as x1.end() = x2.end(), the constraint will
not be satisfied between t and x2. If, on the contrary, it is the constraint minGap that
is not satisfied, it may be satisfied with x2. Indeed:

x1.begin() < x2.begin()
x1.begin() − t .end() < x2.begin() − t .end() (8)

It means that even if x1.begin() − t .end() ≤ mingap, we cannot conclude that
x2.begin() − t .end() ≤ mingap.

We have prooven that every sequence including x1 is a subsequence of a se-
quence including x2 and also that if a path do not go through x1, it may go through
x2. The vertex x1 is then redundant regarding the vertex x2 for the building of a
path arriving to the itemset represented by the vertices x1 and x2.

Now, suppose that there is an edge between x1 and y, it means that both con-
straints minGap and maxGap are satisfied, so:

{
y.end() − x1.begin() ≤ maxgap a
y.begin() − x1.end() > mingap b (9)

And, x1.end() = x2.end(), equation 9-b becomes y.begin() − x2.end() > mingap.
The minGap constraint is also satisfied between x2 and y.
We also have x1.begin() < x2.begin(), i.e. :

−x1.begin() > −x2.begin()
y.end() − x1.begin() > y.end()− x2.begin()
and so:
y.begin() − x2.end() ≤ maxgap

(10)

The maxGap constraint is then also satisfied between x2 and y. So a path going
through x2 then y will be built.

Suppose now that no edges can be buiilt between x1 and y. It means that one
of the constraints minGap and maxGap is not satisfied.
If the minGap constraint is not satisfied, as x1.end() = x2.end(), it will not be
satisfied between x2 and y. If, on the contrary, it is the maxGap constraint that is
not satisfied, it may be satisfied with x2. Indeed:

x1.begin() < x2.begin()
−x1.begin() > −x2.begin()
y.end() − x1.begin() > y.end()− x2.begin()

(11)

It means that even if t .end() − x1.begin() > maxgap, we cannot conclude that
t .end() − x2.begin() > maxgap.

23

We have shown that all sequences including x2 is a subsequence of a sequence
including x2 and also that if a path does not go through x1, then it may go through
x2. The vertex x1 is redundant with respect to the vertex x2 for the building of a
path coming from the itemset represented by the vertices x1 and x2.

Conclusion: for two vertices representing the same itemset and having the same
ending time, the vertex having the latest starting time is the only one being necessary
for the research of the maximal sequences.

(t)

(x2)

(y)

(x1)

Figure 5: addwindowSi ze

Consider now the case in which the graph contains into two successive levels
two vertices x1 and x2 such that the itemsets of both vertices are the same and that
x1.begin() = x2.begin() and x1.end() < x2.end(). Consider also a vertex t such
that t .begin() ≤ t .end() < x1.begin() and a vertex y such that x2.end() < y.begin()
≤ y.end() (figure 5).
We shox that all sequences including x2 can also be obtained by including the ver-
tex x1 and that, consequently, only the vertex x1 is necessary for the research of
maximal length sequence.

Suppose that there is an edge from t to x2, itmeans that the constraintsminGap and
maxGap constraints are satisfied, so:

{
x2.end() − t .begin() ≤ maxgap a
x2.begin() − t .end() > mingap b (12)

However, x1.begin() = x2.begin(), equation 12-b becomes x1.begin() − t .end() >
mingap. The minGap constraint is then also satisfied between t and x1.
We also have x1.end() < x2.end(), i.e. :

x1.end()− t .begin() < x2.end() − t .begin()
and so:
x1.begin() − t .end() ≤ maxgap

(13)

The maxGap constraint is then also satisfied from t to x1. So, a path will be built
going through t then through x1.

Suppose now that no edge can be built between t and x2. It means that one of
the constraints minGap and maxGap is not satisfied.

24

If it is the minGap constraint that is not satisfied, as x1.begin() = x2.begin(), it will
also not be satisfied between t and x1. If, on the contrary, it is the maxGap constraint
that is not satisfied, it may be satisfied with x1. Indeed :

x1.end() < x2.end()
x1.end()− t .begin() < x2.end() − t .begin() (14)

It means that even if x2.end() − t .begin() > maxgap, we cannot conclude that
x1.end() − t .begin() > maxgap.

We have shown that a sequence including x2 is a subsequence of a sequence
including x1 and also that if a path does not go through x2, it will not go through
x1. The vertex x2 is then redundant with respect to the vertex x1 for the building of
a path arriving to the itemset represented by the vertices x1 and x2.

Suppose now that there is an edge from x2 to y, it means that the minGap and
maxGap constraints are satisfied. So:

{
y.end()− x2.begin() ≤ maxgap a
y.begin() − x2.end() > mingap b (15)

However, x1.begin() = x2.begin(), equation 15-a becomes y.end() − x1.begin() ≤
maxgap. The maxGap constraint is then also satisfied between x1 and y.
We also have x1.end() < x2.begin(), i.e.:

−x1.begin() > −x2.begin()
y.end() − x1.begin() > y.end()− x2.begin()
and so:
y.end() − x2.begin() ≤ maxgap

(16)

The maxGap constraint is then also satisfifed between x1 and y. A path will then
goes through x1 then through y.

Suppose now that no edges can be built from x2 and y. It lmeans that one of the
two constraints is not satisfied.
If it is the maxGap constraint that is not satisfied, as x1.begin() = x2.begin(), it will
also not be satisfied between x1 and y. If, on the contrary, it is theminGap constraint
that is not satisfied, it may be satisfied with x1. Indeed :

x1.end() < x2.end()
−x1.end() > −x2.end()
y.begin() − x1.end() > y.begin() − x2.end()

(17)

It means that even if y.begin() − x2.end() ≤ mingap, it cannot be concluded that
y.begin() − x1.end() ≤ mingap.

We have shown that all sequences including x2 is a subsequence of a sequence
including the vertex x1 and also that if a path does not go through x2, it may go

25

through x1. The vertex x2 is then redundant with respect to the vertex x1 for the
building of path going from the itemset representd by the vertices x1 and x2.

Conclusion: for two vertices representing the same itemset and starting at the
same timestamp, only the one with the smallest ending time is necessary for the
search of maximal length sequences.

The addWindowSi ze algorithm builds exactly all the vertices that could con-
tribute in the building of all the maximal length solutions satisfying the minGap and
maxGap constraints.

Theorem 4 The GETCalgorithm builds exactly every sequences of maximal length
satisfying the windowSi ze, minGap and maxGap constraints.

Proof 4 From the theorem2, GETCbuilds exactly every solutions ofmaximal length
satisfying the minGap and maxGap constraints. We still have to verify that the
processing of the windowSi ze constraint does not allow inclusion.
Suppose that the sequence graph computed by GETC contains two sequences s1
and s2 such that s1 ⊂ s2. It means that the sequence graph contains a subgraph
such that one of its vertices y, included into another vertex z and such that y.next()
⊆ z.next().
But the algorithm addEdge and propagate have marked such a vertex y during
the building of the edges and the algorithm pruneMarked deletes every marked
vertices. By the building process, such inclusion is then impossible.

6 An Example

Consider the dataset in Table 3 (from the data, M = 17 andm = 0) and the following
parameters for soft time constraints:

• for windowSi ze, wsinit=2 and ρws = 0.87, which then yields wsρ=4;
• for maxGap, MGinit=4 and ρMG = 0.84, which then yields MGρ=6;
• for minGap, mginit=2 and ρmg = 0.5, which then yields mgρ=1.

6.1 Sequence Graph Building

The first step consists in building the sequence graph for data sequence O1. First,
the vertex set is initialized: each record is associated to one vertex. This is the
first line of the graph on Figure 6. Then the windowSi ze constraint is applied on

26

Timestamp 1 3 4 5 6 8 9 10 12 17 18
O1 1 - 2 3 3 4 4 4 - 5 6 7 8
O2 2 3 4 - - 5 6 - - - - -
O3 1 2 - 3 3 4 4 - 5 6 - - - -

Table 3: A dataset

each possible combination of vertices using addWindowSize. Only the combina-
tions satisfying the soft windowSi ze constraint (i.e. end-time(O1i)-start-time(O1i)
≤ wsρ=4) are kept.

Figure 6: Sequence graph for O1 at the end of vertex set creation by
addWindowSi ze

(1) (2 3) (3 4) (4) (4) (5) (6) (7) (8)

(1 2 3)
1

(1 2 3 4)
2

(2 3 4)
3

(4 5)
4 (5 6)

6

(4 5 6)
5

(7 8)
7

︸︷︷︸
I

︸︷︷︸
II

︸︷︷︸
III

︸︷︷︸
IV

︸︷︷︸
V

︸︷︷︸
VI

︸︷︷︸
VII

︸︷︷︸
VIII

︸︷︷︸
IX

i denotes the building order
VI denotes the sixth end-time “level”

Then edges satisfying both minGap and maxGap soft constraints, are added to
the graph using the main function and the propagate and addEdge subfunctions.
After this step, every subsequence of the initial data sequence satisfying the three
soft constraints is in the graph on Figure 71.

However some inclusions can remain. Last step consists in deleting these in-
clusions, using subfunction pruneMarked. The final sequence graph obtained from
data sequence O1 is described by Figure 8.

The longest sequences supported by data sequence O1 are then:
- <(1 2 3)(4)(4 5 6)> - <(1 2 3)(4)(4)(5)(6)(7 8)> - <(1)(2 3)(4)(4)(5)(6)(7 8)>
- <(1 2 3)(4)(4 5)(6)> - <(1)(2 3)(4)(4 5 6)> - <(1)(2 3 4)(4)(5 6)>
- <(1 2 3)(4)(4)(5 6)> - <(1)(2 3)(4)(4 5)(6)> - <(1)(2 3 4)(4)(5)(6)(7 8)>
- <(1 2 3 4)> - <(1)(2 3)(4)(4)(5 6)> - <(1)(2 3 4)(4 5)(6)>

1Note that in Figure 7, some vertices have been moved up from where they were in Figure 6, to
improve the graph legibility.

27

Figure 7: Sequence graph for O1 after edge creation, the circled numbers show the
edge creation order by GETC

(1) (2 3) (3 4) * (4) (4) (5) (6) (7) * (8) *

(1 2 3)

(1 2 3 4)

(2 3 4)

(4 5)

(5 6)

(4 5 6)

(7 8)

︸︷︷︸
I

︸︷︷︸
II

︸︷︷︸
III

︸︷︷︸
IV

︸︷︷︸
V

︸︷︷︸
VI

︸︷︷︸
VII

︸︷︷︸
VIII

︸︷︷︸
IX

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

Figure 8: Final sequence graph for data sequence O1

(1) (2 3) (4) (4) (5) (6)

(1 2 3)

(1 2 3 4)

(2 3 4) (4 5)

(5 6)

(4 5 6)

(7 8)

6.2 Temporal Accuracy of Extracted Patterns

From database Table 3 and soft time constraints specified in section 6.1, sequence
graph of each data sequence is built. Then sequential patterns are mined for. Gen-
eralized sequential patterns obtained with minFreq = 70%, are: < (2 3 4) >,
< (2 3)(4)(5 6) >, < (2)(4 5) >, < (3 4)(5) >, < (3 4)(6) > and < (3)(4 5) >,
each having a 100% frequency.

In order to analyse their relevancy according to user needs, their temporal ac-
curacy is computed. To do so, the sequence graphs are weighted, as described in
section 4.4. Vertices built with ws=0,1,2 has a weight of 1, with ws=3, a weight
of 0.93 and with ws=4, a weight of 0.87. Edges built with mg=1 are weighted to
0.5 for minGap and to 1 if mg=2. For maxGap, the wieght is 1 if MG ≤4, 0.92 if
MG=5 and 0.84 if MG=6.

These weights are used to compute the temporal accuracy of extracted patterns.
Results are presented on Table 4.

Once patterns were obtained with their temporal precision, we can analyze more
exactly the constraints used to generate them. The more the precision is close to 1,

28

Figure 9: Weighted sequence graphs for data sequences O1, O2 and O3

(1)1 (2 3)1 (4)1 (4)1 (5)1 (6)1

(1 2 3)0.93

(1 2 3 4)0.87

(2 3 4)1 (4 5)1

(5 6)1

(4 5 6)0.87

(7 8)10.84

0.5

0.5

0.5
0.5

0.5

0.50.5

0.84
1

0.5
0.5

1

1

data sequence O1

(2 3)1 (4)1 (5)1 (6)1

(2 3 4)1

(4 5)0.93 (5 6)1

0.51
1

0.5

0.5 0.5

1

data sequence O2

(1 2)1 (3)1 (3 4)1 (4)1 (5 6)1

(1 2 3)0.93

(1 2 3 4)0.87

(4 5 6)0.93

1 1

1 0.5 1

0.5

0.5

data sequence O3

Sequential patterns #Cl1 #Cl2 #Cl3 ϒ
< (2 3 4) > 1 1 0.87 0.96
< (2 3)(4)(5 6) > 0.5 0.5 0.5 0.5
< (2)(4 5) > 0.84 0.5 1 0.78
< (3 4)(5) > 0.84 1 1 0.95
< (3 4)(6) > 0.5 0.5 1 0.67
< (3)(4 5) > 0.84 0.5 0.5 0.61

Table 4: Temporal accuracy computation of discovered sequential patterns

the more the initial values specified by the user correspond to the timestamps in the
database. On the contrary, a weak precision indicates that the constraints are not
well suited to this dataset.

7 Experiments

In this section, we present a comparison of performances of the algorithm GETC
(for soft constraints) and the GTC algorithm (for crisp constraints). In a first part
we compare the behaviors of these algorithm, also using an implementation of PSP,
integrating or not the management of the constraints of time. In a second phase
we compare what patterns are extracted using soft and crisp constraints, first with
synthetical dataset then on web access logs. These experiments were carried out
on a PC - Linux 2.6.7 OS, CPU 2,8GHz with 2GB of DDR memory. All the
algorithms were implemented in C++ and use the PSP principle and structure to
mine for seqeuntial patterns.

29

7.1 Synthetic Datasets and GETC overall behavior

Results presented here were obtained from the processing of several synthetic
dataset containing approximately 1000 sequences of 20 records on average. Each
of these records contains an average of 15 items chosen among 1000.

The first phase consisted in comparing runtime without time constraint:
windowSi ze=0, minGap=0 and maxGap=∞ for GTC as well as for GETC, with a
minimum accuracy equal to 1 for each soft constraint. So, we compared the runtime
of our algorithm with those of PSP and GTC and we shown that GETC behavior
is similar to that of GTC and that runtime are almost identical, to extract the same
patterns.

We then repeated these measures by processing time constraints of time, with
an accuracy of 1 to compare the behavior of GETC and GTC for the handling crisp
time constraint. Figure 10(a) show the runtime evolution according to the value of
windowSi ze. GETC has a linear behavior close to that of the GTC. The difference
results from the temporal accuracy calculation step, by which the time increases
slightly with windowSi ze, the number of vertices in the sequence graphs increasing
with this parameter.
Finally, Figure 10(b) shows the runtime evolution according to the accuracy for a
minimum frequency of 0.37. Note that the runtime reaches a limit value which
corresponds to the limit values of the soft time constraints (M and m).

Figure 10: Runtime: (a) according to windowSi ze with minGap=2, maxGap=∞ and
minFreq=0.35 (for GETC, ρws=ρMG=ρmg=1); (b) according to accuracy depending on
several time constraints (minFreq=0.37); (c) according to minFreq regarding soft time
constraints with accuracy equal to 1 or not.

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6

tim
e

(s
ec

.)

windowSize

Running time according to the windowSize value

PSP
GTC

GETC

(a)

 0

 100

 200

 300

 400

 500

 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(s
ec

.)

accurracy

Running time according to the accurracy value

GETC(mg=1, MG=5, wS=1)
GETC(mg=1, MG=5, wS=0)
GETC(mg=0, MG=5, wS=2)

GETC(mg=0, MG=30, wS=30)

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.3 0.32 0.34 0.36 0.38 0.4 0.42

tim
e

(s
ec

.)

minSup

Running time according to the minSup value

GTC
GETC-4-0-10-1

GETC-0-1-5-0.75

(c)

The second part of our experiments concerned the analysis of the sequential
patterns extracted byGETC,with regard to the patterns extracted byGTC, according
to the accuracy of the various soft constraints. Figure 10(c) presents runtime for
GTC and GETC according to the minimum frequency according to values chosen

30

for each parameter. These values were calculated so that the time constraints used
for GTC and for GETC with an accuracy of 1 correspond to the limit values of
GETC with a precision different from 1. These parameters are:

• GETC with wsinit=0, mginit=1 and MGinit=5, with ρ=0.75, then wsρ = 4,
mgρ = 0 and MGρ = 10,

• GETC with wsinit=4, mginit=0 and MGinit=10 with ρ = 1,
• GTC with wsinit=4, mginit=0 and MGinit=10,

We note that GETCwith soft time constraints is not more expensive than GTCwith
the limit values of the constraints, while obtaining the same sequential patterns,
detailed by their temporal accuracy.

Besides, it can be interesting, in case we ignore the optimal value of one or
several time constraints, to use GETC with an minimum accuracy level different
from 1, to extend the search space. The analysis of the discovered patterns and
their accuracy can inform about a more adequate time constraint value. So, we
compared patterns extracted by GTCwith the patterns extracted by GETC, with the
same initial time constraints. The number found patterns is then greater, as shown
by Figure 11(a). By ordering them in decreasing order of accuracy, we found all the
patterns extracted by GTC (which have an accuracy equal to 1) then a list of patterns
of lower temporal accuracy corresponding to the soft constraints. This histogram
also shows that for this synthetic dataset, the constraints allowing to extract the most
patterns correspond to an accuracy in 0.8, 0.9.

Figure 11: (a): Patterns repartition depending on their temporal accuracy on synthetical
data (wsinit =0, mginit=1, MGinit =5 and ρws=ρmg=ρMG=0.5); (b): Patterns repartition
depending on their temporal accuracy on synthetical data (ws init =0, mginit=0, MGinit =0
and ρws=ρmg=1, ρMG=0.75, minFreq=0.2.

 0

 5

 10

 15

 20

 25

 30

0.
5<

p<
0.

7

0.
7<

p<
0.

8

0.
8<

p<
0.

9

0.
9<

p<
1

p=
1

of

 s
eq

ue
nc

es

accuracy

of sequences according to the accuracy value

GTC

 0

 5

 10

 15

 20

 25

 30

0.
5<

p<
0.

7

0.
7<

p<
0.

8

0.
8<

p<
0.

9

0.
9<

p<
1

p=
1

of

 s
eq

ue
nc

es

accuracy

of sequences according to the accuracy value

GTC
GETC (ws=0, mg=1, MG=5)

(a)

 0

 5

 10

 15

 20

 25

 30

 0.8 0.9 1

of

 s
eq

ue
nc

es

accuracy

of sequences according to the accuracy value

GETC (ws=0, mg=1, MG=5)
GTC

(b)

31

7.2 Soft Constraints to Mine Atypical Web Access

The aim of these experiments is to show that generalized sequential patterns ex-
tracted under soft time constraints bring more precise information compared to
those obtained with crisp time constraints.

In this case, access logs from a private photo gallery website have been mined
to analyse atypical behaviors. This website runs on an Apache server and uses a
mySQLdatabase accessed through PHP. It is divided into two parts, one is accessible
anonymously, the other requires an identification via login and password. We have
analyzed the errors logs and have isolated access logs corresponding to these errors
and also to non usual access (i.e.: access not browsing pages and not identified by
web browsers).

The “atypical” access logs are preprocessed: each IP adress becomes the ob-
ject_id, each connection request is coded as an item, as well as the request type,
the returned error and connecting software, timestamp is the date since January, 1st
1970 in seconds.

Example 9
IP id time request URL error software
253 5 GET “/PictureGallery/home.htm” 404 “Mozilla/4.0”
253 11 GET “/PictureGallery/index.htm” - -

Table 5: Example of access logs

Table 9 represents the access of the IPencodedby253 toURL“/PictureGallery/home.htm”
with request “GET” by the software “Mozilla/4.0”. Error returned was error 404 (page
does not exit). This access is followed 6 seconds later by the same request to URL “/Pic-
tureGallery/index.htm”. The software was not identified and no error was returned.

This atypical access log represents around 22,000 connection attempts during
approximately one year, by 510 different IPs, to 1181 different URLs. First we
compared performances of GETC to those of GTC.We have found the same global
behavior for both algorithm even if GETC still is a little slower tha GTC, because
of temporal accuracy computation. The interestingness of GETC shown by these
experiments stands in the additionnal information given by temporal accuracy. In
fact, we have reproduced the second step of experiments on synthetical datasets:
we applied to GTC crisp constraints that correspond to the initial values for GETC.
We have then compared extracted sequential patterns.

First of all we had to chose the values to specify as initial ones. As we were
mining for description of atypical behaviors we have decided to identify non human
profiles. This kind of profiles can be for example characterized by repeated requests
over a short period. That means that a sequence should be composed of itemsets that
havebeen recorded over one second (wsinit =0andρws = 1, nogroupingover records
is allowed). Theminimum gap between two itemsets will take its minimum possible

32

value, without varying (mginit=0 and ρmg=1). The constraint corresponding to the
behavior we want to highlight is maxGap. Automatical requests can be viewed as
requests to close to be done by human beings, so the maximum gap separating two
itemsets should be the shortest, 1 second. However we would like to be sure not to
ignore other profiles, so we decide to soften this constraint: we specify a temporal
accuracy less than 1 for maxGap(ρMG=0.75). We thus use the flexibility of soft
constraint maxGap in order to more precisely describe the atypical profiles.

Thenwe have compared different results obtained by varying temporal accuracy
ofMG from1 (the same results forGETCandGTC) to 0.75 (more patterns extracted
by GETC. As for synthetical data, when we obtained more patterns corresponding
to soft constraints, one part of the being also discovered with crisp constraints.
Histogram 11(b) shows the number of patterns for each temporal accuracy extracted
by GETC and those mined by GTC: every patterns extracted by GTC is found by
GETC with temporal accuracy equals to 1.

We also have a more relevant information as we have more descriptive patterns
for atypical behavior and each of them is detailed with its temporal accuracy. We
give some description of atypical behaviors we found with both algorithms:

• The bot pxyscand sent a CONNECT request to the URL 1185 of the web site. It
received the 405 Error (Unauthorizedmethod) (<(“CONNECT”, URL 1185, 405 Error,
“pxyscand/2.1”)...(3 times)...(“CONNECT”, URL 1185, 405 Error, “pxyscand/2.1”)>).

• One sequential pattern observedwith both GTC and GETC, is the access to the URL
“/mambo...” which does not exist. It seems to be a hacking attempt
(<(“/cvs/mambo/index2.php?_REQUEST...”, 404Error)(“/cvs/mambo/index2.php?_REQUEST...”,
404 Error)>).

Additionnal information obtained by GETC and not found by GTC is for example
that:

• This sequential pattern has a temporal accuracy of 0.95 and its frequency is 35%. It
means that the software Pompos tried to retrieve unexisting pages:
<(“cvs/index2.php?request...”,404 Error,Pompos)...once...
(“cvs/index2.php?request...”,404 Error,Pompos)>.

• One non-human typical access is the bot scanning, in particular the Image Bot from
Google. This bot does not appear when we use the crisp constraints. Analysing the
access logs we see that the average gap between two requests is 2 seconds
<(“/PictureGallery/thumbnail.php3?...”,Googlebot-Image/1.0)...once...
(“/PictureGallery/thumbnail.php3?...’,Googlebot-Image/1.0)...>.

8 Conclusion and Perspectives

Generalized sequential patterns presented by (Srikant and Agrawal, 1996) rede-
fined the inclusion of sequences in a broader way by introducing the use of time
constraints. These constraints, which allow to gather records or to separate them in
different sequences, enable the user to discover less obvious knowledge and closer
to his needs. However, this definition remains still too rigid, in particular if the user
only has a vague idea of the time constraints which bind its data. In this article

33

we thus propose to soften these time constraints for generalized sequential patterns,
using some principles of the fuzzy set theory. We so givemoreflexibility to the spec-
ification of the time constraint parameters. The implementation of our approach is
based on the construction of sequence graphs to handle the time constraints during
the sequential pattern mining process. The feasibility and the robustness of this
method were shown for GTC in (Masseglia et al., 2004). The principle of GETC
being the same, we were able to show its efficiency to solve the problem of mining
for generalized sequences with crips or soft time constraints and the resemblance
of its behavior with that of the GTC. We also highlighted the flexibility offered
by the soft constraints, as well as the interest of the temporal accuracy measure to
analyse sequential patterns by running experiments on both synthetical and real-life
datasets; it still remains us to validate the robustness of it. Finally, we intend to
extend the fuzzy sequential patterns presented in (Fiot et al., 2006b) to generalized
sequential patterns, with time constraints (crisp or soft).

34

