A New Method for Implementing Moment Functions in a CMOS Retina
Résumé
We present in this paper a new method for implementing geometric moment functions in a CMOS retina. The principle is based on the similarity between geometric moment equations and the measurement of the correlation value between an image to analyze and a range of grey levels. The latter is approximated by a binary image called mask using a dithering algorithm in order to reduce hardware implementation cost. The correlation product between the mask and the image under analysis gives an approximated value of the geometric moment with an error less than 1% of the exact value. Finally, the results obtained by our approach have been applied to an object localization application and the localization error due to the approximated moment values reported.