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AUTOMATIC GENERATION OF NOISE-FREE
TIME-ACTIVITY CURVE WITH GATED BLOOD-POOL
EMISSION TOMOGRAPHY USING DEFORMATION OF A
REFERENCE CURVE

Charles QDERAS DE KERLEAU, Jean-Francois ROUZET, Ehoud AHRONOVITZ,
Michel Ross|, Denis MARIANO-GOULART

abstract-This paper describes a new method for assessing clinicafrgers from a noisy regional
time-activity curve (TAC) in tomographic gated blood-paeintriculography. This method is based on
a priori knowledge on the shape of a TAC, and shape approximationrefdetion method was used to
generate different random Poisson deviates, coveringlatdrcount levels, of six representative TACs
in order to test and compare the proposed method with haoramd multi-harmonic reconstruction
methods. These methods were compared by evaluating falcalliparameters: time of end systole,
amplitude, peak ejection and filling rates. Overall, theuaacy of assessment of these parameters was
found to be better with the method described in this paper with standard multi-harmonic fits.

Index Terms—Gated blood-pool SPECT, Wall motion analysis, Time agtivitirve, Deformable
model fit.

1 Introduction

Tomographic gated blood-pool ventriculography (TRVG) keehnically simple and widely available
count-based method used for the assessment of cardia®mfunthis method is based on measurement
of the change in the amount of cardiac blood-pool activitthwime, due to the change in the size of a
given region of interest or to partial volume effects. Thesent-based methods were shown to be more
accurate than direct methods which are designed to loctleeentricular wall and measure lengths
or volumes [1]. TRVG permits simultaneous measurement @aitiequm of right and left ventricular
ejection fractions, volumes and outputs, regurgitanttivas, and regional wall motion in addition to
phase analysis [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1517]6, Recently, software dedicated to
the segmentation of TRVG data has been developed and lidtitus enhancing the potencial for
widespread use of this technique in the clinical setting [I® 20, 21, 22, 23, 24, 25, 26, 27, 28]
. An optimal three-dimensional method for the generatiomigtit and left ventricular time-activity
curves (TAC) was described in a recent study [29]. The “ladiethod” proposed by Vilairt al [29]



can be used to generate TACs for each surface voxel, wittclitgtg being calculated as the sum of
the activity of all cubic voxels of a radius traced betwees tbrresponding ventricular surface and a
defined ventricular center. This enables a more refined sigaty ventricular TACs for each voxel or
group of voxels on the surface of a segmented ventricleydiicty evaluation of local ejection fractions
(EF) and time of end systole (TES) as well as peak ejectioiRjREd filling rates (PFR). However, a
TAC representing the behavior of a single voxel on the sertda ventricle is generated from a limited
number of counts and substantial errors due to noise carelsemit

When analyzing the complete left ventricle using isotopémpr equilibrium ventriculography, ejec-
tion and filling parameters are best obtained by performipglgnomial or a multi-harmonic Fourier
fit on the TAC [30, 31, 32]. Multi-harmonic Fourier analysiashalso been performed on pixel TACs
in a region of interest containing the left ventricle, anedonathematical fits of the radionuclide data
were obtained [33]. However, when an accurate 3-dimensamealysis of ventricular wall motion is
necessary, multi-harmonic filtering may be unsuitable beeaf the noise level of the TAC derived for
each voxel on the surface of the ventricles.
The aim of this study was to develop a new method for assessirtjac function from TAC acquired
using gated blood-pool emission tomography. This new niethdased on the use afpriori knowl-
edge on the shape of a time activity curve. This method wageaoed to standard clinical harmonic
filtering methods using the accuracy of parameters deriad the fitted TAC.

2 Theory

Here we propose to derive the ejection fraction (EF), timeraf systole (TES) and peak ejection and
filling rate (PER and PFR) after fitting a noisy TAE(t) by suitable deformation of a reference TAC.
Simulated time-activity curves were scaled and reordendtiat the temporal duration of the heart cycle
was fixed at 1 sec and the maximum activity on the curve was &kédount per region of interest and

obtained for the first time sample. This is not a restrictivecpdure as any experimental clinical TAC
can be scaled and reordered in this way using suitable gcflotors for activities, times and for the

clinical measurements derived from the TAC.

2.1 Model of the reference TAC

A reference TAC model was designed to represent the systoticdiastolic function of a normal ven-
tricle. Five points were selected on a normal TAC. Three fgotorresponded to: 1) the beginning of
ventricular systole, 2) the end of ventricular systole, @hthe end of auricular systole (audible sound
when valves between ventricles and atria open). The othemptints were located in the last third
of the TAC corresponding to diastasis and arterial coritbactA continuous periodic modél(t) was
created using periodic cubic spline interpolation of themaples. This model presents the following
characteristics on its period (Fig. 1):

P(t):[0,1] — [0,1]
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AMtmin €]0,1]/

d
d_lf (tmin) =0 (1)

andvt €]0,1],

2.2 Reshaping the model

We will use two ways to reshape the modt) without losing the properties defined by (1). First, as
P(tmin) = 1—EF, any EF can be associated to the model by using the foltptamsformation:

log(1— EF)
log (P(tmin))

WhereD(t) represents the deformed curve. Given this transformatierare able to forc®(t) to have
any TES, PER and PFR. This can be done by replacing the vatidiyl a bijective continuous time
polynomial function,Q(t). This polynomial function is meant to reshape the mdagl). Thus, we
redefine the modified modél(t) as follows:

D(t) = P[Q(t)]°

Q(t) : 10,1} — [0,1],

withQ(t) being an increasing polynomial function such that
Q(0) =0andQ(1) =1.

D(t) = P(t)P with B = (2

®)

2.3 Modeling an experimental TAC

Having described the development of the mdel@l) and a way to reshape it, we turn our attention to
the use of this model. Our purpose is to smooth and inteaatoisy TAC defined by T samples,
E(t),i=1,2,...T, where T is the number of intervals acquired per cardiatecyc

2.3.1 First estimation of EF and TES

A rough estimation of the time of end systole, TE®f E(t;) is first calculated as follows: a periodic
spline interpolation oE(t;) is computed to provide an estimate of the ejection fractibgsE Substi-
tuting ERest in (2) provides a firstffesy) for B. We then search for the two lowest values&dt;), and
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if they occur consecutively TEg is set at the absolute minimum of the previously computethspl
interpolation. Otherwise, measured data points in thehtigichood of the TAC minimum are too noisy
to provide an accurate estimation of the TES using a simglaespterpolation of(ti,E(ti)). Thus,
the intercorrelation functioh(k) = 51, E(t))P(ti, )Pt is computed and TES:is set at the time of end
systole of the functioP(ti )P, wherel (j) = MAXc(o.1(! (K).

2.3.2 Key points

By definition D(t) is built with the help of a modé?(t), a3 value which controls EF and a polynomial
Q(t) which controls the global modified shape. If the experimietféita. were noise free, the polynomial
valuesQ(tj) =t/ for each acquired time sampiecould be computed as follows (Fig. 2):

Vi€ [1,T],3'(u,v) € [0,1]2 such that

E(t) = P(Ui)[3 = F’(Vi)B andy; <

if i <TESst thenti’ = Uj

if ti > TESstthent/ = v

Each point(t;,t/) will be called a “key point”, and the set of all key points wile x = {(ti,t/),i =
1,2,...,T}

2.3.3 Improving the  value

We are now going to prove that tfievalue and key points can lead to a better estimatiop. dve are
now going to prove that th@ value and key points derived from experimental noisy datdiaked so
that a more accurate estimation of key points can lead toterkedtimation ofi.

Key points and 3 value: Let us have a closer look at how the behavior of key points wigpen the
value of . If (t,E(t;)) is an acquired point, its associated key pdint/) is such thaP(t/)P = E(t).

For another value 8 (), the associated key poitti,t”) is such thaP(t”)? = E(t;).

So, we haveP(t))B = E(t;) = P(t")P".

Letp’ > B, then

P(t)P = P(t!)* < P(t/)P = P(t)) <P(t/)

if ti < TESs, thent!” <t/, because the polynomial functiéhis decreasing in the neighborhoodtof

if ti > TESs, thent” > t/, because the polynomial functiéhis increasing in the neighborhood tf

and conversely iy’ < 3. Consequently, adjusting tHg value is a way to increase or decrease the
ordinates of key points, depending on their position witpeet to TE S

Smoothness: The deformed moddD(t) is expected to have the same general shape as the reference
TAC P(t). A suitable approximation of the key poin(s, t') thus has to be smooth and increasing.

A polynomial least square approximation of the set of keyntsok can be used to decrease the
noise. We start the approximation with a polynomial of degmo and compute the Euclidean distance
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from « to the polynomial (least square method), followed by a pomial of degree three, again
computing the Euclidian distance. The difference betwéesed two distances is a measurement of
the improvement of the fit,e. the larger the difference the greater the improvement. \featethis
evaluation for polynomials of degree three and faic The polynomial approximatiorR(x), which
leads to the greatest improvement (least square distanit&ewised to improve the estimation Bf

Adjusting B value: The acquisition noise leads to a relatively smaller errdhenkey point §.t/) if t;
belongs to a neighborhood of the peak ejection or of the TAiGdirates because the absolute value of
the slope is maximal (Fig. 3). Thus, the key points in thigghbbrhood can be used to compute a new
value forf that would locate the key point on the previously computdgimpmmial approximation. For
each time sampli in the neighborhood of the peak ejection or filling rate, tigisted values foff are
computed as follows:
log(R(ti))
= 4

P=log(P(t) @
This set of values fop is then averaged and the mean is used to adjust the ejedictiofr EF roughly
approximated before.

2.3.4 ComputingQ(t) polynomial

the key points give an idea of the smoothness of the acquia wlith respect to our model. If the
experimental data were noise free, we would ex(@tj to interpolate all data:

Qt)) = t=0
Qt) = t
Qts) = t3
Qltr-1) = tr 4
Qtr) = tg
Q(1) = 1

If some noise is added, the best fit should look like a linegrassion of key points. The constraints
defined in (3) do not often allow interpolation of all acqaingoints. So the last step is to comp@€x)
for all real values between 0 and 1, satisfying (3) and cpoeding to a good approximation of (5).
Hence, let us defin@(x):

Q(x):aqxq+iaixi,n<qandn§T (6)

The first monomial,aq.x% is added to a polynomial function of degreeo make the condition
Q(1) = 1 possible.



If we searchQ(x) as the least square approximation of (5) on the vector spawergted byx9, x", x"~1

then the set of parametefay, an, ... a;) can be computed by solving the system:
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From a practical standpoint, the method described in thiepaas evaluated with= 10. For each
experimental TAC analyzedis set at the highest value smaller than T, for whfh) is increasing on
[0,1], and which provides the best least square distance betvggrandE(t;)i = 1,2,...T.

Figure 4 illustrates the differences between harmonicdasethods and the model deformation fit.
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3 ACCURACY EVALUATION

Six commonly encountered regional time-activity 8-poiotves were created and used as original
templates for noise superposition (Fig. 5). To take intcoaot the errors due to time sampling, the
minimum value of each curve was not included in any sampledesThese curves were designed
to produce two different ejection fractions (65% and 20%] #wee different end systole times (200
msec, 400 msec and 600 msec, with a cardiac frequency naadadt 1 beat/sec). The four reference
parameters measured for each curve are given in Table Ir&iffactivity values at end-diastole, N,
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(ranging from 500 to 1500 counts) were used to simulate wargpatistics. This range covers the usual
count rates measured in routine settings. Previous stadiésneasurements of local statistical noise
levels in a reconstructed section using a filtered back ptioje algorithm [34, 35, 36] have shown that
the order of magnitude of the coefficient of variation of mdisearly depends on the square root of the
number of counts. The noise in each TACs was thus assumedat®besson distribution [32].

For each count level N, the rejection method was used to gen&00 different random Poisson
deviates of the values of the TAG(t), k=1 to 500, i=1 to 8 [37]. The noise level in each TAC was
characterized by the end diastolic coefficients of vama{iGVep) of the simulated Poisson deviates
(i.e. the inverse of the square root of the count rate at end-d#stdhe noise levels simulated in this
study correspond to GAb ranging from 2.6% to 4.5%.

To comparatively evaluate the fit described previously, arieo transform was performed on sim-
ulated noisy TACs. New curves were reconstructed in the tloreain using the first, the first two and
first three harmonics (resp. methods H1, H2, H3), the components of frequendy= % 2f and
3f. This is equivalent to filtering by a square-shaped, lowsddter. The ejection fraction, time of
end systole, peak ejection rate, peak filling rate and tiveie bf occurrence were evaluated from the
analytic formulae of these filtered curves. These result® wempared to the evaluation of the same
parameters derived from(t) (method M) with the same previously described reference. TAC

We computed errors made by each method when measuringoedatrparameters from the noisy
curves. For each of the original test curves, 500 Poissorasvwere generated for 72 count levels
at end-diastole ranging from 500 to 1500. For the assessofieich ventricular parameter (EF, TES,
PFR, PER), we computed the mean and standard deviation eftbeobtained using first or multi-
harmonic Fourier fits and the method described in this paperse results are given in Table 2 for 20%
EF curves, and Table 3 for 65% EF curves. The chosen unite allcomparison of errors even if they
do not refer to the same original template.

Lastly, as the previously described test curves are basdiinensamples, they cannot be directly
used to evaluate changes in accuracy evaluation of systotl@stolic parameters when the gated time
intervals increase or decrease. Then these parameterevauated using the template-based fitting
method with 16 time sample test curves. These curves wela@pseld to simulate 8-frame data and
changes in the evaluation of TES, FES, PER and PFR were neglassing the template-based fitting
method described in this paper.

4 Results

Tables 2 and 3 show mean errors and standard deviationmethtaihen assessing TES, EF, PER and
PFR from noisy TACs using the four tested methods. After kimgcthat all means had a Gaussian
distribution, the two methods leading to the two smallestrsrwere selected and a paired Student test
was performed to compare the best two errors. The significthreshold was set @t= 0.005. When
two means are not significantly different they are indicdigd*” in Tables 2 or 3. In Tables 2 and 3,

a bold value denotes a mean error which is not significanffgrdint from zero.



Lastly, using 16 intervals instead of 8, the template bagdddgimethod described in this paper
leads to average variations, using test curves 1,2,3 guoneling to curves with 20% EF), of 3 ms for
TES, 0.3% for FES, 0.06 EDAS for PER and 0.04 EDAS for PFR. Average variations with test
curves 4,5,6 (corresponding to curves with 65% EF) are 6.fomEES, 2.9% for FES, 0.3 EDAS
for PER and 0.19 EDAS for PFR.

5 Discussion & Conclusion

In this paper our goal was only to extract reliable paransdtem a TAC acquired with a given number
of noisy samples. However, the template-based fitting ntkdlescribed in this paper requires relatively
accurate endocardial points as input. Consequenctlyhbiee of segmentation method used to derive
surface points probably affects the amount of noise in tipegmental TACs acquired. Software pack-
ages have already been proposed for TRVG segmentation 9120121, 22, 23, 24, 25, 26, 27, 28],
using various methods such as manual delineation, thidisigobr watersheds. Further clinical valida-
tion studies are necessary to evaluate the accuracy ofrttpae-based fitting method described in this
paper when input TACs present additional artefacts dueg@digmentation algorithm used.

The number of time samples, T, used to acquire TACs has bedglywdiscussed for tomographic
gated blood-pool ventriculography (TRVG) [32] or gated §HH38, 39, 40]. To ensure reliable mea-
surement with respect to noise, a minimum number of countst beiacquired for each time sample.
So T is directly connected to the exam duration which in rautlinical settings should not exceed 30
to 45 min. In practice, this limitation makes it hard to usealues greater than 16.

Our results show a moderate but significant alteration in 8Buation (compared with the repro-
ducibility of multi-gated angiography methods) with thenf@ate-based fitting model when T decreases
from 16 to 8 time intervals. This is consistent with previgusublished results [38, 39, 40]. This al-
teration can or cannot be accepted depending on the acawaaiyed by clinical studies. In particular,
the method described in this paper is more robust for TESiatiah, so most clinical studies dedicated
to assessment of this parameter may be performed with ointye8itervals, which makes it acceptable
in routine settings. On the other hand, accurate evaluafi&f or assessment of diastolic function may
require more time intervals. Further clinical studies agzeassary to specify each acquisition protocol,
depending on the clinical problem involved.

Noise can be reduced by the use of low pass filters, which is WhaH2, and H3 do. Using only
the lowest frequency, like H1, may miss crucial frequenanesetrieving ventricular parameters. The
results obtained with the 200 ms curves are a relevantriitish of this point. Frequencies necessary
to create TACs with early TES are higher than the first one,sangheasured TES seem to occur much
later with H1. PER evaluation is therefore widely underestied (absolute value). Moreover, large EF
errors occur for the same reason. Errors produced withqueyparameters lead to an underestimate of
PFR values. Using only one frequency does not allow H1 tongicoct a wide variety of curves, which
is why the standard deviations measured are the lowest.réRegahe large errors in the mean errors
evaluated with H1, the low standard deviations are less af mfoaccuracy than the consequence of a



poor highly constrained fit. Hence, all standard deviatimessured for peak rates are equal for a given
EF.

Using the first two harmonics (H2) we obtain better resultsriean values and standard deviations,
but some cases can still lead to major errors. The previooisigm is not fully overcome by adding
another frequency. The high value of some means indicatasdh H2 the standard deviation error
may again be more representative of H2 constraints thanctheacy of the reconstruction method. If
we expect our modeling to be efficient in all cases (even lpgal must be able to fit a large variety of
curves.

Adding a third frequency (H3) increases standard deviatlmrt avoids errors, especially for TES
and EF measurements. However, the accuracy of PER and PFsumaeeent decreases relative to
H2. The third frequency appears to be useful for reconstrygctome shapes, thus avoiding large error
because of the constraints observed before.

Another approach to reduce the noise involves the use ofinear filters (median, morphologic,
etd. However, these filters use local information and so cabeogfficient enough when the T value
is low. With the method described in this paper (M), we depetb a different approach to fit the
acquired curves. First, as we are seeking to generate ad@atriejection curves, we can include
priori knowledge. Indeed, we already know the main charactesistiche curves we are looking for.
The method M uses thia priori knowledge, defined in (1) as a guideline, to fit the acquirad dg
reshaping a model, thus allowing generation of TACs with engignificantly high frequencies. The
reference TAC used here was designed to fit experimentaesuraving one filling and one ejection
phase. Deformation of the reference TAC allows satisfgctivs regardless of the phase shift or the
magnitude of the experimental TAC. The reference TAC is guitable for the analysis of most usual
TACs (including severely hypokynetic TACs), except TACghwinore than one filling or emptying
phase. From a physiologic standpoint, this situation igalistic but such curves may be recorded for
instance when very noisy TACs are acquired with a severedkidgtic heart. Increasing the number
of shapes that can be generated by a method is a first step tovienghe accuracy of a method. The
second step is to provide an efficient way to find the best maaiglto avoid large errors. The means
obtained with M never lead to a large error for TES/EF or faalpeates. Moreover, irrespective of the
shape of the noisy experimental TAC, these mean errors dsigwificantly differ from zero, contrary
to H1, H2 or H3. The standard deviation for TES and EF are mesflivalent to those obtained with
H3. Peak rate standard deviations are higher with the mbeeb{ise M does not have any frequency
constraint), but mean results for PFR and PER are much lvétteM than H3.

In conclusion, the method proposed in this paper allows tebét of noisy TACs acquired in
tomographic radionuclide ventriculography than usualtih@rmonic reconstructions. Further clinical
studies are now necessary to evaluate its interest in tesseent of wall motion abnormalities among
patients. These studies will have to validate methods fon@By TACs generation (such as the method
proposed by Vilairet al [29]) and the accuracy of the 3D segmentation of right anvetricles for
each time sample.
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TABLE 1

TES | EF PER PFR
200ms | 20% | —1.50 EDAs 1 | 0.89 EDAs !
400ms| 20% | —0.75 EDAs ! | 0.58 EDAs !
600ms | 20% | —0.71 EDAs ! | 0.75 EDAs !
200ms | 65% | —5.26 EDAs ! | 232 EDAs !
400ms| 65% | —2.42 EDAs ! | 1.74 EDAs !
600ms | 65% | —2.10 EDAs ! | 3.39 EDAs !

11




TABLE 2

200ms 20% H1 H2 H3 M
TES(ms) | 48.7:409 | 21.1:256 | 6.9+27.3 | 15.9:44.2
EF (%) -6.6429 | -1.4+32 | 1.14:35 | 0.16£3.7
PER (EDA.sT) | 1.08:0.09 | 0.57:0.2 | 0.16:0.32 | 0.37:0.43
PFR (EDA.s) | -0.47£0.09 | -0.07£0.19 | 0.30+0.3 | -0.06+£0.33
400ms 20% H1 H2 H3 M
TES (ms) | 32.4t282 | -1.9 £37 | 7.8557.2 | -2.3 £481
EF (%) -1.66:2.2 | 0.48:30 | 1.82:32 | 0.90+3.2
PER (EDAsT) | 0.17£0.09 | -0.12£0.19 | -0.28:0.26 | -0.20:0.31
PFR (EDA.s1) | -0.01:0.09 | 0.09:0.16 | 0.33:0.25 | 0.14+0.25
600ms 20% H1 H2 H3 M
TES(ms) | -7.0£286 | 7.0:37.6 | -6.2t429 | 0.1:424
EF (%) -1.94:2.8 | -0.27£2.9 | 2.00:3.2 | 0.87+3.2
PER (EDAsT) | 0.15:0.09 | 0.01£0.18 | 0.27:0.27 | -0.07£0.25
PFR (EDA.s1) | -0.19£0.09 | 0.03:0.19 | 0.21:0.24 | 0.14:0.3
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TABLE 3

200ms 65% H1 H2 H3 M
TES (ms) | 814+99 | 442162 | 242+68 | 150:12
EF (%) 16582 | 25822 | 0.9+23 0.4+3.4
PER (EDAsT) | 3.74:0.06 | 2.1550.14 | 1.21:0.27 | 0.48:0.63
PFR (EDA.s1) | -0.80:0.06 | 0.20° £0.19 | 0.23:0.3 | 0.20 +:0.42
400ms 65% H1 H2 H3 M
TES (ms) 205:77 | -8.6£89 | 0.8:166 | -6.5:157
EF (%) 54418 | -0.6£20 | -0.7421 | 05421
PER (EDAsT) | 0.54:0.06 | -0.28:0.16 | -0.25:0.29 | -0.19+0.37
PFR (EDA.s1) | 0.13:0.06 | 0.05:0.19 | 0.25:0.27 | 0.20+0.39
600ms 65% H1 H2 H3 M
TES (ms) | -27.768.2 | -19.8:75 | -13.4:84 | -7.3t114
EF (%) -9.5£1.8 | -3.5:20 | -0.24£2.3 | -0.05:2.4
PER (EDAsT) | 0.36:0.06 | 0.38:0.2 | -0.47£0.3 | 0.3:0.3
PFR (EDA.sY) | -1.65:0.06 | -0.73:0.18 | 0.3t0.3 | -0.17£0.39
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