An Algebraic Approach to the German Sentence
Joachim Lambek, Anne Preller

To cite this version:
An algebraic approach to the German sentence.

Joachim Lambek
McGill University
Montreal
Canada
lambek@math.mcgill.ca

Anne Preller
LIRMM/CNRS
Montpellier
France
preller@lirmm.fr

Abstract: We attempt to show that the assignment of appropriate “types” to German verbs will determine the correct word order in German sentences. The types are elements of the “free pregroup” generated by a partially ordered set of basic types, pregroups being a generalization of partially ordered groups. We look at a selection of direct and indirect sentences, including questions and subordinate clauses, but we hope that our method will extend beyond the fragment of German grammar investigated here.

1. Introduction
Pregroups had been conceived in [L 1999] as an algebraic tool to recognize grammatically well-formed sentences in natural languages. In [L 2000] an attempt was made to explain the word order of German sentences with the help of appropriate types assigned to the German verbs. But only the orders SVO (subject, verb, object), SOV and VSO were considered. Here we wish to extend the discussion to include also the orders VOS, OSV and OVS. For the sceptical reader, here are some examples to show that all six permutations can occur in certain contexts:

\[
\begin{align*}
\text{sie liebt ihn} & \quad \text{(SVO)} \\
(dass) \text{ sie ihn liebt} & \quad \text{(SOV)} \\
\text{liebt sie ihn ?} & \quad \text{(VSO)} \\
\text{liebt ihn die Frau} & \quad \text{(VOS)} \\
(dass) \text{ ihn die Frau liebt} & \quad \text{(OSV)} \\
\text{ihn liebt die Frau} & \quad \text{(OVS)}
\end{align*}
\]

with stress on \text{ihn}, in reply to \text{wen liebt die Frau?}

However, the OVS example is a case of “topicalization”, something we will refrain from discussing in this article.

2. Algebraic background
We briefly recall the mathematical machinery. A pregroup is a partially ordered monoid in which each element \(a \) has a \textit{left adjoint} \(a' \), i.e. an element \(a' \) satisfying

\[
a' a \to 1 \to aa'
\]

and a \textit{right adjoint} \(a' \) satisfying

\[
aa' \to 1 \to a'a.
\]

Here, multiplication is denoted by juxtaposition and the partial order by an arrow. One easily proves various theoretical properties such as the uniqueness of adjoints, the contravariance of adjunction

\[
\text{if } a \to b \text{ then } b' \to a' \text{ and } b' \to a',
\]

1 This research was supported in part by the National Science and Engineering Research Council of Canada.
and certain identities, such as

\[(ab)^* = b^a , \quad (ab)^* = b^a , \quad a^{r} = a = a^{l} , \quad 1^l = 1^r .\]

In linguistic applications we are primarily interested in the *free pregroup* generated by a partially ordered set of so-called *basic types* \(a, b, c, \ldots\). From these we form the *simple types*

\[\ldots a^{l}, a^{r}, a^{l'}, a^{r'}, \ldots\]

by forming iterated adjoints (although in practice, never more than double adjoints are required). The elements of the free pregroup are strings of simple types, they will just be called *types*. Multiplication is now concatenation of strings and the empty string is the unit \(1\). Adjoints of strings are formed with the help of the above identities, and the partial order of strings is determined by the partial order of the set of basic strings with the help of contravariance of adjunction, as well as the *contractions*

\[a^a \to 1 , \quad aa^r \to 1\]

and the *expansions*

\[1 \to aa^r , \quad 1 \to a^a .\]

It was proved in [L 1999] that, as long as one merely wishes to show that a string of simple types reduces to a single simple type, say

\[\alpha_{1} \ldots \alpha_{n} \to \beta\]

in the free pregroup, only contractions are needed. However, for other purposes, for example to prove the above identities, which we will feel free to use, the expansions are necessary.

3. Basic types

Our investigation will be limited to a small fragment of German. To start with, we will assign basic types to the subject of a sentence. These will depend on a subscript \(p = 1, \ldots, 6\) denoting the person, where \(p = 1, 2, 3\) stand for the three persons singular and \(p = 4, 5, 6\) for the three persons plural. To account for variations in word order, we need to give different types to noun phrases and personal pronouns.

\[
\begin{align*}
\pi_p & \ = \ \text{subject (} p = 1, \ldots, 6 \text{)} \\
\tilde{\pi}_p & \ = \ \text{subject pronoun (} p = 3, 6 \text{)} \\
\nu_p & \ = \ \text{subject noun phrase (} p = 3, 6 \text{)}
\end{align*}
\]

We postulate

\[\tilde{\pi}_p \to \pi_p , \nu_p \to \pi_p \]

in the partially ordered set of basic types.

Next, we will assign basic types to the objects in German sentences, equivalently, object complements of German verbs. These depend on a subscript \(c = 1, \ldots, 4\) denoting the *case*, namely nominative, genitive, dative and accusative respectively. While the nominative normally belongs to the subject, it may also occur as the complement of verbs like *sein*, but we will not discuss this further. For some purposes (see Section 10), we also need “pseudo-objects”.

\[
\begin{align*}
o_c & \ = \ \text{object } c = 1, \ldots, 4 \\
\tilde{o}_c & \ = \ \text{object pronoun} \\
n_c & \ = \ \text{object noun phrase} \\
\tilde{o}_c & \ = \ \text{pseudo-object}
\end{align*}
\]

We postulate

\[\tilde{o}_c \to o_c , \tilde{o}_c \to o_c , \ n_c \to o_c .\]

German verbs may have none, one or to two object-complements. But, among the complements we should also count adverbs, such as *gerne, heute, nicht*, and separable prefixes like *mit* in *mitgeben, ich gebe... mit*.

The type of adverbs should really be divided into a hierarchy of subtypes (see the Duden, Section 1403, [K 1998]), but we shall avoid this complication here and write

\[\alpha = \text{adverb} \]

We will assign the same type to adverbiaal phrases, including prepositional phrases. To each separable prefix \(P\) we assign the type
\(\delta_p \) = separable prefix \(P \),
but we shall omit the subscript in what follows.

The type of sentences and propositional clauses will depend on a subscript \(t = 1, \ldots, 4 \) denoting the
tense-mood: present indicative, past indicative, present subjunctive, past subjunctive. We adopt the following
basic types:

\[
\begin{align*}
 s_t &= \text{statement in tense-mood } t \\
 q_t &= \text{question in tense-mood } t \\
 t_t &= \text{subordinate clause in tense-mood } t \\
 \tilde{s}_t &= \text{indirect statement in tense-mood } t \\
 \tilde{q}_t &= \text{indirect question in tense-mood } t .
\end{align*}
\]

Sometimes the tense-mood is irrelevant, so we introduce neutral types \(s, q, t, \tilde{s} \) and \(\tilde{q} \) and postulate

\[
s_t \rightarrow s, \ q_t \rightarrow q, \ t_t \rightarrow t, \ \tilde{s}_t \rightarrow \tilde{s}, \ \tilde{q}_t \rightarrow \tilde{q} .
\]

Other basic types are

\[
i = \text{infinitival phrase} \\
p_2 = \text{past participle with haben} \\
p_2' = \text{past participle with sein}.
\]

4. Types of verb infinitives

We shall assign types to verbs, as they might be listed in the dictionary. The types of other verb forms
can then be calculated, as we shall see in Section 5. The left column in the list below gives infinitival phrases of
type \(i \). Optional complements are placed in parentheses. In the right column we list the type of the infinitive of
the bare verb without complements, as it might be listed in the dictionary.

\[
\begin{align*}
 \text{(heute) kommen} & \quad \text{kommern: } (\alpha^r) i \\
 \text{(heute) ankommen} & \quad \text{kommern: } \delta' (\alpha^r) i \\
 \text{(den Mann/ihn) (heute) sehen} & \quad \text{sehen: } (\alpha^r) (\alpha') i \\
 \text{den Mann/ihn (heute) ansehen} & \quad \text{sehen: } \delta' (\alpha^r) \alpha' i \\
 \text{(dem Mann/ihm) helfen} & \quad \text{helfen: } (\alpha^r) i \\
 \text{des Mannes/seiner gedenken} & \quad \text{gedenken: } \alpha' \alpha' i \\
 \text{das Buch/es geben} & \quad \text{geben: } \alpha' i \\
 \text{dem Mann/ihm das Buch geben} & \quad \text{geben: } \alpha' \alpha' \alpha' i \\
\end{align*}
\]

From now on we shall largely ignore the optional adverb, which will be taken care of by Metarule 1 below.

\[
\begin{align*}
 \text{(dem Mann/ihm) helfen} & \quad \text{helfen: } (\alpha^r) i \\
 \text{des Mannes/seiner gedenken} & \quad \text{gedenken: } \alpha' \alpha' i \\
 \text{das Buch/es geben} & \quad \text{geben: } \alpha' i \\
 \text{dem Mann/ihm das Buch geben} & \quad \text{geben: } \alpha' \alpha' \alpha' i \\
\end{align*}
\]

\(^2\) We leave it open whether by “dictionary” is meant a suitable revised version of the Duden or the mental dictionary of the
native speaker.
Metarule 1: In the type of a bare infinitive, we may insert \(\alpha' \) after \(\delta' \) or, in the absence of a separable prefix, at the beginning.

The bare infinitive in the right column is assigned a type containing certain “valencies” \(v \) to bond with corresponding complements in the normal word order, as in the left column. From this type the types of the inflected forms (finite forms and past participle) are to be calculated. So are alternative types to explain deviations from the normal word order, if one of the complements is not a noun phrase, but a personal pronoun. (We have assumed that \textit{jemand} and \textit{etwas} represent noun phrases.) For example, the bare infinitive \textit{geben} may have the valency

\[
\begin{align*}
&n_3(o_4, o_3) \\
&\delta' n_4(o_4, i) \\
&\delta' n_4 o_4(i) \\
\end{align*}
\]

when the direct object is a noun phrase, but this does not explain the word order of

\[
\text{es dem Mann mitgeben}
\]

The easiest way to handle this is to assign a new type to \textit{geben}, namely \((\hat{o}_4, o, \delta') / i\). So we have:

\[
\begin{align*}
&\hat{o}_4 n_3 \delta' o_4(i) \rightarrow i \\
&\text{since } n_3 o_4 \rightarrow o_4 o_3 \rightarrow 1
\end{align*}
\]

(Recall that \(n_4 \rightarrow o_3 \), so that the type \(n_3 \) of \textit{jemand} may be replaced by \(o_3 \) in this reduction.)

But,

\[
\begin{align*}
&\ast \text{das Buch dem Mann mitgeben} \\
&n_4 n_3 o_4(i) \delta' o_4(i) \rightarrow i \\
&\text{since } n_4 \rightarrow \hat{o}_4
\end{align*}
\]

\[
\begin{align*}
&\ast \text{dem Mann es mitgeben} \\
&o_4 n_3 \delta' o_4(i) \rightarrow i \\
&n_3 \hat{o}_4 \delta' n_4 o_4(i) \rightarrow i \\
&\text{since } \hat{o}_4 \rightarrow n_4
\end{align*}
\]

This alternative type assignment will be shared by other bi-transitive verbs such as \textit{zeigen}. We take care of all such new type assignments by a metarule.

Metarule 2: If a verb infinitive has type \(n_4 o_4(i) \), then it also has type \(o_4 \hat{o}_4(i) \).

The most frequent combination of two objects as verb complements consists of a dative and an accusative as discussed above. But other combinations are also possible, as in

\[
\begin{align*}
&\text{den Mann des Diebstahls beschuldigen} \\
&o_4 n_2 n_4 o_4(i)
\end{align*}
\]
The following verbs require an infinitive or a past participle as complement:

- *wollen*:
 -
- *haben*:
 -
- *sein*:
 -
- *werden*:
 -

As a future auxiliary, the infinitive of *werden* does not really exist, but it will serve as a template for deriving the types of finite forms, such as *wirst* and *würdest*.

Among possible complements of verbs there are also indirect statements and indirect questions, for example:

- *hoffen*:
 -
- *fragen*:
 -
- *wissen*:
 -

For example, since

\[(\text{ich will}) \hat{o}_1 \rightarrow \hat{q}_i, \quad \hat{a}_4 \rightarrow a_4 \]

\[
\begin{align*}
\text{fragen,} & \quad \text{wer morgen kommt} \\
\end{align*}
\]

\[
\begin{align*}
\rightarrow & \quad i .
\end{align*}
\]

5. Types for inflected verb forms

Presumably, the dictionary lists only infinitives of verbs, together with some clues how to calculate other forms for irregular verbs. (For regular verbs such clues are not necessary.) For a verb *V* we are interested in its past participle *Part*(*V*) and the finite forms *C*(*V*) *p*(*V*), where *t* = 1,..., 4 stands for the tense-moods and *p* = 1,..., 6 for the persons singular and plural.

Here is the recipe for calculating the types of these forms:

Metarule 3. If the infinitive of *V* has type *X*′′*Y*′′, then the past participle

\[
\begin{align*}
\text{Part}_2(V) & \text{ has type } \begin{cases}
X' p_2 Y' & \text{if the perfect is formed with haben} \\
X' p_2^* Y' & \text{if the perfect is formed with sein}
\end{cases} \\
\text{and the finite form} & \begin{cases}
\pi_p^* s, Y' X' & \text{in statements} \\
X' \pi_p^* t Y' & \text{in subordinate clauses} \\
q_s Y' X' \pi_p^* & \text{in yes/no- questions}
\end{cases}
\end{align*}
\]

Here *X* and *Y* are strings of simple types, e.g.

\[X = \xi_n \cdots \xi_1, \quad (n \geq 0).\]

In particular, *Y* = 1 is often the empty string. For verbs with separable prefix *P*, *ζ* = *δ* (*P*) (but we usually omit the subscript). An optional adverb would occur as *ξ* or, if *ζ* = *δ* (*P*), as *ξ* = 1.

It is our intention to exploit this and later metarules to analyze various direct and indirect sentences, without overloading the dictionary.

6. Word order in declarative sentences

For the moment, let us concentrate on the special case *Y* = 1 in Metarule 3. Here are some illustrations:

\[
\begin{align*}
\text{Er} & \quad \text{kommt.} \\
\hat{\pi}_3 & \quad \pi_3' s_i \\
\rightarrow & \quad \pi_3 s_i \\
(\text{X = 1}) & \quad \rightarrow s_i
\end{align*}
\]
Er kommt heute an.
\[
\vec{\pi}_3 \pi'_3 s, \delta' \alpha' \alpha \delta \rightarrow \pi_3 \pi'_3 s_1 \delta' \alpha' \alpha \delta \rightarrow s_1
\]
\(X = \alpha \delta\), using Metarule 1

Er sieht es/etwas.
\[
\vec{\pi}_3 \pi'_3 s \circ a_4 \rightarrow s_1
\]
\(X = a_4\)

Er sieht es an
\[
\vec{\pi}_3 \pi'_3 s, \delta' o_4 \rightarrow \pi_3 \pi'_3 s_1 \delta' o_4 \rightarrow s_1
\]
\(X = a_4 \delta\)

Er gibt ihr/der Frau ein Buch
\[
\vec{\pi}_3 \pi'_3 s, o_3 \circ a_3 \rightarrow s_1
\]
\(X = o_3, n_1\)

Er gibt es der Frau.
\[
\vec{\pi}_3 \pi'_3 s, o_4 \circ \alpha \rightarrow s_1
\]
\(X = s_1\)

The following examples involve auxiliary verbs:

Er wollte nicht kommen
\[
\vec{\pi}_3 \pi'_3 s, i' \alpha \alpha' i \rightarrow s_2
\]
\(X = i\), using Metarule 1

Sie hätte ihn angesehen
\[
\vec{\pi}_3 \pi'_3 s_1 p_2' \rightarrow s_4
\]
\(X = p_2; X = \alpha \delta\)

Sie ist nicht gekommen
\[
\vec{\pi}_3 \pi'_3 s \circ p_2' \alpha \alpha' p_2' \rightarrow s_1
\]
\(X = p_2; X = \alpha\), using Metarule 1

Sie würde es ihm nicht gegeben haben
\[
\vec{\pi}_3 \pi'_3 s, i' \circ a_4 \circ a_4 \circ p_2 \circ p_2 i \rightarrow s_4
\]
\(X = \alpha \alpha \circ \alpha \alpha, \text{ Metarule 2}\)

To obtain examples with \(Y \neq 1\), we take \(Y = \tilde{s}\) or \(\tilde{q}\). Recall that the types of indirect sentences are \(\tilde{s}\) or \(\tilde{q}\) (to be analyzed in Section 7).

Er hofft, dass sie kommt
\[
\vec{\pi}_3 \pi'_3 s, \tilde{s} \circ \tilde{s} \rightarrow s_1
\]
\(X = 1, Y = \tilde{s}\)

Er hatte sie gefragt, ob sie käme
\[
\vec{\pi}_3 \pi'_3 s, o_4 \circ a_4 \circ p_4' \tilde{q} \rightarrow s_2
\]
\(X = p_4, Y = 1; X = o_4, Y = \tilde{q}\)
7. Word order in subordinate clauses

Indirect statements and questions may be introduced by the complementizers
\(\text{dass} \) : \(\tilde{s}t \)
\(\text{ob, wieso, wann etc.} \) : \(\tilde{q}t \)
respectively. These are then followed by an incomplete subordinate clause of type \(t_i \rightarrow t \) with the SOV word order, making use of Metarule 3. We start with some examples with \(Y = 1 \):

\[
\begin{align*}
\text{dass} & \quad \text{sie} & \quad \text{ihr} & \quad \text{ein Buch} & \quad \text{gibt} \\
\tilde{s}t & \quad \pi_3 & \quad \alpha & \quad n_4 & \quad n_4' \circ t_i & \quad t_1 & \quad \rightarrow \tilde{s} \\
& \quad (X = o_3 n_4) \\
\text{ob} & \quad \text{sie} & \quad \text{ihm} & \quad \text{nicht} & \quad \text{helfen} & \quad \text{wird} \\
\tilde{q}t & \quad \pi_3 & \quad \alpha & \quad o_4' i & \quad i' \pi_3' t_i & \quad \rightarrow \tilde{q} \\
& \quad (\text{Metarule 1}; \ X = i)
\end{align*}
\]

For our next few examples we require a new metarule:

Metarule 4: Dative and accusative pronouns of type \(\tilde{o}_c \) (\(c = 3 \) or \(4 \)) also have type \(\tilde{v}_p \tilde{o}_p' \circ \) (\(p = 3 \) or \(6 \)).

\[
\begin{align*}
\text{dass} & \quad \text{ihr} & \quad \text{die Frauen} & \quad \text{das Buch} & \quad \text{geben} \\
\tilde{s}t & \quad \tilde{v}_6 & \quad o_3 \tilde{v}_6' & \quad v_6 & \quad n_4 & \quad n_4' o_3' \circ t_i & \quad t_1 & \quad \rightarrow \tilde{s} \\
& \quad (X = o_3 n_4) \\
\text{ob} & \quad \text{es} & \quad \text{Gisela} & \quad \text{ihr} & \quad \text{gegeben} & \quad \text{hätte} \\
\tilde{q}t & \quad \tilde{v}_3 & \quad o_4 \tilde{v}_3' & \quad v_3 & \quad \tilde{o}_3 & \quad o_4' \circ t_2 & \quad p_2 & \quad p_2' \circ t_4 & \quad \rightarrow \tilde{q} \\
& \quad (X = \tilde{o}_4 n_4; \ X = p_4). \\
\text{wieso} & \quad \text{ihr} & \quad \text{Gisela} & \quad \text{das Buch} & \quad \text{geben} & \quad \text{will.} \\
\tilde{q}t & \quad \tilde{v}_3 & \quad o_3 \tilde{v}_3' & \quad v_3 & \quad (o_3 n_4)' i & \quad i' \pi_3' t_4 & \quad \rightarrow \tilde{q} t_i \quad \tilde{v}_3' o_3 \circ o_4' \circ t_i & \rightarrow \tilde{q} \\
& \quad (X = o_3 n_4; \ X = i)
\end{align*}
\]

8. Word order in yes-or-no questions.

We again apply Metarule 3, with \(Y = 1 \):

\[
\begin{align*}
\text{Kommt} & \quad \text{der Mann} & \quad \text{heute} & \quad \text{an?} \\
q & \quad \delta' \alpha' & \quad \pi_3 & \quad v_3 & \quad \alpha & \quad \delta & \quad \rightarrow q_1 \delta' \alpha' \circ \pi_3 & \alpha & \delta & \rightarrow q_1 \\
& \quad (X = a\delta, \text{using Metarule 1}) \\
\text{Hilft} & \quad \text{die Frau} & \quad \text{dem Jungen} & \quad \text{gerne?} \\
q & \quad \alpha' & \quad \pi_3' & \quad v_3 & \quad n_3 & \quad \alpha & \quad \rightarrow q_1 \\
& \quad (X = o_3, \alpha) \\
\text{Wird} & \quad \text{es} & \quad \text{Gisela der Freundin geben?} \\
q & \quad i' \pi_3 & \quad v_3 & \quad \tilde{o}_4 & \quad \pi_3 & \quad n_3 & \quad o_3' \circ \delta_4' i & \quad \rightarrow q_1 i' \pi_3 & \quad \pi_3 & \quad \tilde{o}_4 & \quad \delta_4' i & \quad \rightarrow q_1 \\
& \quad (X = i; \ X = \tilde{o}_4 o_3; \ \text{using Metarule 2})
\end{align*}
\]

\(^6\) Other indirect questions introduced by \(\text{wer, wen, wem} \), etc are treated in Section 11
9. Asking for the subject

To ask for the subject, one uses the question words *wer* or *was*, depending on whether the expected subject is a person or not. To keep this article in reasonable bounds, we will refrain from elaborating this distinction. The word order is the same as in a statement. Thus *wer* or *was* has type $qs^i\pi_3$, as in

\[\pi_3 \text{ kam heute.} \]

\[\text{Wer kam heute?} \]

\[\text{Es gefällt dir.} \]

\[\text{Was gefällt dir?} \]

Notice that we wrote q rather than q_1 or q_2, since question words are not marked for tense. Here are some more examples:

\[\text{Wer fragt ihn, ob er kommt?} \]

\[\text{Wer würde ihm das Buch geben?} \]

In the above examples, $p = 3$, but $p = 6$ may also occur:

\[\text{*Kam heute er/der Mann?} \]

In analogy with questions asking for the object (Section 10), one can also use

\[\text{wer/was : q} \pi_3^{i(i)} q^i \]

with a new type π_3^i, postulating $\pi_3^i \rightarrow \pi_3$ and add a new metarule:

Metarule: If the infinitive of V has type $X^i Y^i$, then $C_{q_3}(V)$ has type $q_3 \pi_3^{i} Y^i X^i$ ($p = 3, 6$)

This will account for

\[\text{Wer kam gestern?} \]

Note that the star on π_3^i prevents

\[\text{Kam heute er/der Mann?} \]

\[q_2 \pi_3^{i} \alpha^i \alpha \pi_3 \rightarrow q_2 \], since $\pi_3 \rightarrow \pi_3^i$.

In addition to the yes-or-no questions, there are what the Duden calls "Ergänzungsfragen". These are questions which ask for a missing subject, object or adverbal phrase.

Würde ihm die Frau nicht geholfen haben?

\[q_4^i \pi_3^i v_3 \alpha v_3^i \pi_3 \alpha o^i p_2 p_2^i \rightarrow q_4 \]

\[(X = i ; X = o_3 \alpha) \]
Welche Bücher gefallen dir?

Here the compound expression, welche Bücher, should have type \(qs^\ell \). We shall not discuss this any further.

10. Asking for a verb complement

To ask for an object complement of type \(o_c \), where \(c = 1,2,3,4 \), we use the question words

- *wer/was, wessen, wem, wen/was.*

The choice in cases \(c = 1 \) and \(c = 4 \) depend on whether we expect the object to be a person or not. We will ignore this distinction in what follows. We shall assign to these question words the type \(qo_o^\ell \). But first, let us look at some examples illustrating the cases \(c = 3 \) and \(c = 4 \). (The other cases occur more rarely.)

<table>
<thead>
<tr>
<th>Question</th>
<th>Type</th>
<th>Object</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wem gabst du das Buch?</td>
<td>(qo_o^\ell)</td>
<td>(du)</td>
<td>das Buch?</td>
</tr>
<tr>
<td>Was hattest du ihm gegeben?</td>
<td>(qo_o^\ell)</td>
<td>(du)</td>
<td>ihm gegeben?</td>
</tr>
<tr>
<td>Wem wolltest du das Buch geben?</td>
<td>(qo_o^\ell)</td>
<td>(du)</td>
<td>das Buch geben?</td>
</tr>
<tr>
<td>Wem wolltest du es geben?</td>
<td>(qo_o^\ell)</td>
<td>(du)</td>
<td>es geben?</td>
</tr>
</tbody>
</table>

The reason for the star is to prevent the following:

- *Gabst du das Buch ihm?*
- *Hattest du ihm gegeben das Buch?*
- *wolltest du das Buch geben dem Mann?*

which are not acceptable in German.

The new types of *gabst* and *gegeben* are derivable from the new types of *geben*, but to explain the latter, we require a new metarule, which will allow us to derive them from the old types

\[
\text{geben} : n_4^t o_3^i \iota, o_3^i o_4^i \iota.
\]

Metarule 5: If the infinitive of a verb \(V \) has type

\[
V^\ell z^i U^\ell i Y^\ell = (U z V) y^i Y^\ell
\]

where \(z \to o_c \), then it also has types

\[
V^\ell U^\ell ia^\ell y^i Y^\ell = (UV) y^i (Y o_c^i) y^i
\]

(in direct questions)

\[
V^\ell U^\ell o_c^\ell i Y^\ell = (o_c^\ell UV) y^i Y^\ell
\]

(in indirect questions)

The application to indirect questions will only come up in Section 11. But for now, we may infer, with the help of Metarule 3, that

\[
\text{Part}_{2}(V) : (UV) y^i p_2(Y o^\ell) y^i
\]

\[
\text{Part}_{2}(V) : (UV) ^i p_2(Y o^\ell) y^i
\]

\[
\text{C}_{4}(V) : q_4(Y o^\ell) ^i (UV) ^i Y^\ell
\]

which we used in the examples of direct questions above.

8 This type will also be used for the passive voice, Section 13

9 This type will also be used in relative clauses, Section 12
The adverbial question words, wann, wie, etc; transform a yes-or-no question into a more specific one which asks for an adverbial complement. Thus

\[\text{wann, wie, warum, wo...: } \text{qq} \]

The word order is the same as in a yes-or-no question. For example, the yes-or-no question

\[
\begin{align*}
\text{Siehst} & \quad \text{du} \quad \text{ihn} \quad \text{an?}
\end{align*}
\]

is transformed into the w-question

\[
\begin{align*}
\text{Wann} & \quad \text{siehst} \quad \text{du} \quad \text{ihn} \quad \text{an?}
\end{align*}
\]

Of course,

\[
\text{*siehst du ihn an heute?}
\]

remains ungrammatical, as \text{siehst} has type \[q, \delta, o_4, \pi_2, \delta \]

11. Indirect questions

An indirect question is either introduced by \text{ob} or by the same question word as a direct question, but with a different type as follows:

\[
\begin{align*}
\text{ob, wann, wie, warum, wo...: } \text{qt}^f
\end{align*}
\]

\[
\begin{align*}
\text{wer/was} & : \text{qt}^f \pi_5
\end{align*}
\]

\[
\begin{align*}
\text{wessen} & : \text{qt}^f \pi_p, o_4, \pi_p^f
\end{align*}
\]

\[
\begin{align*}
\text{wem} & : \text{qt}^f \pi_p, o_4, \pi_p^f
\end{align*}
\]

\[
\begin{align*}
\text{wen/was} & : \text{qt}^f \pi_p, o_4, \pi_p^f
\end{align*}
\]

\[(p = 1, \ldots, 6)\]

Note that the question words, \text{ob, wann, wie} etc., precede an incomplete subordinate clause (without complementizer) and transform it into a complete indirect question.

Here are a few examples

\[
\begin{align*}
\text{ob/wann} & \quad \text{du} \quad \text{ihr} \quad \text{das Buch} \quad \text{heute} \quad \text{geben} \quad \text{wirst}
\end{align*}
\]

\[
\begin{align*}
\text{qt}^f & \quad \pi_2 \quad \sim_3 \quad n_4 \quad \alpha \quad \alpha \quad n_4, o^4 \quad i, t_1
\end{align*}
\]

\[
\begin{align*}
\text{wer} \quad \text{ihr} \quad \text{das Buch} \quad \text{heute} \quad \text{geben} \quad \text{wird}
\end{align*}
\]

\[
\begin{align*}
\text{qt}^f \pi_3 \quad \sim_3 \quad n_4 \quad \alpha \quad \alpha \quad n_4, o^4 \quad i, t_1
\end{align*}
\]

\[
\begin{align*}
10 \text{ Another solution, similar to object complements, assigns the following type to the question words}
\end{align*}
\]

\[
\text{wann, wie warum, wo...: } q, \alpha \quad \text{qt}^f
\]

Here we assume \[\alpha^* \rightarrow \alpha \] and Metarule 5 with \[\alpha \] instead of \[o_i \] and \[p^* \] instead of \[o^4 \]. Then the yes/no question

\[
\begin{align*}
\text{siehst} & \quad \text{du} \quad \text{ihn} \quad \text{heute an?}
\end{align*}
\]

is transformed into the w-question

\[
\begin{align*}
\text{wann} \quad \text{siehst} \quad \text{du} \quad \text{ihn} \quad \text{an?}
\end{align*}
\]

\[
\begin{align*}
\text{q}^* \quad \alpha \quad \text{qt}^f \quad \pi_2 \quad \sim_3 \quad \alpha \quad \delta
\end{align*}
\]

where the star again prevents the ungrammatical

\[
\text{*siehst du ihn an heute?}
\]

\[
\begin{align*}
11 \text{ For completeness sake, we repeat here the types of } \text{ob, wann, wieso etc., given in Section 7}
\end{align*}
\]
12. Relative clauses

Among the many kinds of relative clauses discussed in the Duden [K 1998], we shall here concentrate on those that modify noun phrases and are introduced by a relative pronoun. We recall from our paper [LP 2003] that noun phrases were given the type

\[n_{gc} := (g, n, c), \]

where the subscript \(g \) stands for the gender (masculine, feminine, neuter), the subscript \(n \) for the number (singular, plural) and the subscript \(c \) for the case (nominative, genitive, dative, accusative).

The relative pronouns can be arranged in a matrix

\[
R = \begin{pmatrix}
der desse dem den
die deren dem die
das dessen das das
die deren denen die
\end{pmatrix}
\]

where the first three rows represent the genders singular and the last row the plural irrespective of gender. The columns represent the cases. The matrix \(R \) is almost the same as the matrix \(D \) for the definite article discussed in [loc.cit], except that all genitives and the plural dative contain an extra morpheme \((s)en\). Let \(g' = 1, 2, 3, 4 \); the entries of \(R \) are denoted \(R_{g'c} \).

A noun phrase of type \(n_{gc} \) may be modified by a relative clause starting with \(R_{g'c} \), where the case \(c' \) is independent of the case \(c \) and

\[
g' = \begin{cases} g, & \text{if } n = 1 \\ 4, & \text{if } n = 2 \end{cases}
\]

Its type is given by

\[
R_{g'c} : n_{g'c} t_{g'c} \rightarrow n_{g'c},
\]

where \(p \) stands for the person of the subject of the relative clause. Note that \(R_{g'c} \) agrees with the noun phrase it modifies in number and gender, but not in case.

To find the type of the finite form, use Metarule 5 to derive types \(V'U' o_{r}^{o} i \) for \(geben, sehen \) etc. from the infinitive \(V' z' U' i \). Then take the type for subordinate clauses in Metarule 3. In the same way, the past participle gets the new type \(V'U' o_{p}^{o} p_{2} \). Notice that in the case where the relative pronoun is the subject, the type \(V' z' U' p_{2} \) derived directly from the \(V' z' U' i \) still works.

Here are a couple of illustrations:

\[
\begin{align*}
den Mann, & \quad der & \quad mir & \quad das Buch & \quad gegeben & \quad hat \\
n_{14}, & \quad t_{14} n_{14} & \quad o_{3} & \quad n_{4} & \quad n_{4} o_{4} p_{2} & \quad p_{2} t_{1} & \rightarrow n_{14}
\end{align*}
\]
die Vorfahren, deren wir heute gedenken
\[n_{124}^{\alpha} o_2^{\alpha'} \pi_4^\alpha \rightarrow n_{124} \]
die Kinder, denen du es gabst,
\[n_{321}^{\beta} o_2^{\beta'} \pi_2^\beta \rightarrow n_{321} \]
die Frauen, denen ihr es heute geben werdet
\[n_{224}^{\gamma} o_2^{\gamma'} \pi_3^\gamma \rightarrow n_{224} \]
eines Mannes, den du gesehen hättest
\[n_{112}^{\delta} o_2^{\delta'} \pi_4^\delta \rightarrow n_{112} \]

The relative pronouns der/die/das, dessen etc. behave similarly to the question words wer/was, wessen etc in indirect questions. Just replace \(q \) in the type of wer/was, wessen by \(n_{geq,n_{pc}} \) to get the type of the corresponding relative pronoun. The order of words in relative clauses is the same as in indirect questions.

13. The passive voice

German admits two kinds of passive: with werden or with sein. We shall confine attention to the former, in particular to the most frequently occurring passive of the verb with a direct object. All such verbs that form the perfect with haben admit a passive:

\[
er \text{ hat sie gesehen / sie wird gesehen}
\]
\[
er \text{ hatte ihr ein Buch gegeben / ein Buch wurde ihr gegeben.}
\]

We derive these and many other examples with the help of an appropriate type assignment to the passive auxiliary werden. In contrast to the future auxiliary *werden, which is defective, it has all finite forms, an infinitive and a past participle, although the last is worden instead of *geworden.

\[
\text{werden} : \quad o_4^* p_2^* i = o_4^{**} p_2^* (p_2 o_4^*)^i
\]

Hence, by Metarule 3,

\[
\text{worden :} \quad o_4^* p_2^* i = o_4^{**} p_2^* (p_2 o_4^*)^i
\]

\[
C_p (\text{werden}) : \quad \pi_3^j s o_4^{**} p_2^j \quad \text{in statements}
\]
\[
q_0 o_4^{**} p_2^j \pi_3^j \quad \text{in yes-or-no questions}
\]
\[
o_4^* p_2^j \pi_3^j t_i \quad \text{in subordinate clauses.}
\]

Here are some examples

\[
\text{Sie wurde gesehen}
\]
\[\widehat{\pi}_3 \quad \pi_3^j s o_4^{**} p_2^j p_0 o_4^j \]

\[
\text{Wurde sie gesehen?}
\]
\[q_0 o_4^{**} p_2^j \pi_3^j \quad \widehat{\pi}_3 \quad p_0 o_4^j \]

(ich glaubte), dass sie gesehen würde
\[\text{sie gesehen} \quad p_0 o_4^j \]
\[o_4^* p_2^j \pi_3^j t_i \]

12 This is an instance where the string \(X = p_2 o_4^j \) of the infinitive \(X^j i \) includes a non-basic type.
We may extend the discussion from purely transitive verbs to verbs which admit an indirect object as well as a direct one:

\[
\text{Es wurde ihr gegeben.}
\]

\[
\text{Wurde es ihr das Buch gegeben?}
\]

\[(Ich \text{ glaubte), dass es ihr gegeben würde.}\]

To obtain the type \(o^i_p o^i_o\) of the past participle \text{gegeben}, use Metarule 5 to derive \(gaben: o^i io^i\) from the infinitive \(gaben: (o_i o^i_4)\) and then apply Metarule 3. In the following two examples, the Metarule 5 has to be used twice:

\[
\text{(Metarule 3, applied to \text{geben: } io^i_4 o^i_3, from \text{geben: } o^i_3 io^i_4, by Metarule 5)\]

\[
\text{(Ich \text{ weiß), wem es gegeben wurde.}}
\]

Finally, let us look at a more complex example:

\[
\text{Sie wurde gefragt, ob sie gesehen worden sei.}
\]
covered here. For the same reason, it was not possible to address many, if not most, of the concerns of modern linguists working within the Chomskyan paradigm.

REFERENCES

[BH 1964] Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading MA 1964

[P 1897] C.S.Pierce, The logic of relatives, The Monist 7 (1897), 121-217

13 Bierwisch [1996] had looked at German grammar from a ‘minimalist’ point of view, but did not address the problem of different word orders, which is our main concern.