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Résumé : Les répétitions locales dans les génomes sont appelées répétitions en tandem. Elles sont
constitués de plusieurs copies légèrement différentes d’un motif répété et changent durant l’évolution
lorsque ces copies subissent des mutations ponctuelles, lorsque des événements d’amplification ajoutent
de nouvelles copies par duplication ou des copies sont enlevées par contraction de copies identiques.
Ces modifications font évoluer les répétitions en tandem de manière dynamique. Cette constatation
soulève deux problèmes : la Reconstruction d’une Histoire de Duplications vise à retrouver l’histoire
des amplifications et des mutations qui ont produit une répétition donnée à partir d’une copie ancestrale
du motif. Étant données deux répétitions en tandem prélevées à une même position génomique dans
deux individus différents, nommées allèles, et une fonction de coût pour les amplifications, contractions
et mutations, l’Alignement d’Allèles consiste à trouver l’alignement des deux séquences de coût minimal.
Nous présentons ici un état de l’art sur ces deux problèmes qui permettent d’étudier les mécanismes
évolutifs propres aux répétitions en tandem. La présentation est étayée d’un survol des applications
biologiques dans lesquelles les répétitions en tandem interviennent.

Abstract: Local repetitions in genomes are called tandem repeats. A tandem repeat contains multiple,
but slightly different copies of a repeated unit. It changes over time as the copies are altered by
mutations, when additional copies are created by amplification of an existing copy, or when a copy is
removed by contraction. Theses changes let tandem repeats evolve dynamically. From this statement
follow two problems. Tandem Repeat History aims at recovering the history of amplifications and
mutations that produced the tandem repeat sequence given as input. Given the tandem repeat sequences
at the same genomic location in two individuals and a cost function for amplifications, contractions,
and mutations, the purpose of Tandem Repeat Allele Alignment is to find an alignment of the
sequences having minimal cost. We present a survey of these two problems that allow to investigate
evolutionary mechanisms at work in tandem repeats.

Mots clés : mots, périodicité, répétition en tandem, évolution, duplication, phylogénie, revue, aligne-
ment.
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Abstract. Local repetitions in genomes are called tandem repeats. A tandem repeat contains
multiple, but slightly different copies of a repeated unit. It changes over time as the copies are
altered by mutations, when additional copies are created by amplification of an existing copy, or
when a copy is removed by contraction. Theses changes let tandem repeats evolve dynamically.
From this statement follow two problems. Tandem Repeat History aims at recovering the
history of amplifications and mutations that produced the tandem repeat sequence given as
input. Given the tandem repeat sequences at the same genomic location in two individuals and
a cost function for amplifications, contractions, and mutations, the purpose of Tandem Repeat

Allele Alignment is to find an alignment of the sequences having minimal cost. We present
a survey of these two problems that allow to investigate evolutionary mechanisms at work in
tandem repeats.

1 Introduction

A striking genetic difference between species is the size of their genome. Relatively simple organisms,
like the protist Amoeba dubia, may have much larger genome than Homo sapiens for instance. These
dramatic differences are due to the presence of repeats. In general, in eukaryotes, organisms whose cells
bear a kernel, duplicated genetic material is abundant and can account for up to 60% of the genome.
Although some of the mechanisms that generate these repeats are known, from the point of view of
evolution, the reasons for such redundancy remain an enigma.

Repeats whose copies are distant in the genome, whether or not located on the same chromosome,
are called distant repeats. In this review, we focus on repeats whose copies are adjacent on a chromo-
some. Because of this characteristic, they bear the name of tandem repeats. Among those, biologists
distinguish micro-satellites, mini-satellites, and satellites, according to the length of their repeated
unit: between 1 and 6 base-pairs, between 7 and 50 base-pairs, and above 50 base-pairs1, respectively.
These names are mainly used for repeats located in regions that do not contain genes. In addition to
these sub-classes, numerous groups of similar genes that originate from the same ancestor gene are
organized in tandem. They are termed tandemly repeated genes.

Local repeats in the DNA arise, grow or disappear through molecular events that copy a contiguous
segment on the DNA and insert one or many copies of it next to the original segment, or perform the
dual operation. We name these two types of events amplification and contraction. Like any other
segment of the genome, the repeated copies also change through point mutations: insertion, deletion
or substitution of one base. Point mutations give rise to approximate tandem repeats. The pattern of
point mutations along the tandem array of copies informs us on the parent-child relationships between
copies. In other words, it gives access to the history of the tandem repeat.

The relatively high frequency of these events let these local repeats evolve rapidly. For a given
species and at a precise location on the chromosome, a locus, the repeat varies in sequence and/or
length in different individuals. Hence, such a locus is said to be polymorphic and each different
sequence encountered at this locus is called an allele.

1 Chromosomes are made of a double-stranded Deoxyribonucleic Acid (DNA) helix, whose basic building block
is a pair of bases. The unit of a DNA sequence is thus called a base-pair and is abbreviated by bp.



1.1 Approximate Tandem Repeats

In biology, local repetitions in DNA are called ”tandem repeats” irrespectively of the number of copies.
In computer science, a local repetition is dubbed a square if it contains two copies, a cube if it contains
three, and so on.

An amplification creates a substring that is an Exact Tandem Repeat, ETR for short. An ETR
is a power of the original pattern: for an integer m, it equals um if the pattern is u. When later in the
course of evolution point mutations affect this ETR, they let identical positions in adjacent copies differ
and the ETR becomes an Approximate Tandem Repeat, ATR for short. Note that any sequence
is an ATR of some motif. In practice, only repeats whose copies are similar enough receive atten-
tion. The level of internal similarity that distinguishes any random sequence from a sequence of true
repeats, i.e., that is created by some amplifications, is defined from a statistical view-point (for exam-
ple in the software TRF [Ben99]) or by an information theoretical measure ([RDDD96,RDD+97]).
The problem of detecting significant ETR or ATR is an active area of research (see for instance
[RDD+97,SM98,DDR99,Ben99,KK00,KK01,SG02]). In the sequel of the paper, by ATR we mean a
tandem repeat with sufficient internal similarity. An example of an ATR is given Fig. 1 under the form
a multiple alignment of its copies.

Point mutations could cause two adjacent copies to diverge so far that their common ancestry is
not recognizable anymore from sequence similarity. In this case, it is not a repeat anymore. A major
hypothesis is that amplification is favored by the similarity of adjacent patterns, and that when copies
have diverged for a long time such former repeat does not undergo amplification anymore. In highly
polymorphic loci, like some minisatellites, amplifications and contractions are more probable than point
mutations. On the contrary, tandemly repeated genes can accumulate hundreds of mutations and still
undergo some amplifications; in this case, amplifications and contractions are less frequent than point
mutations.

When one wishes to establish the common ancestry of any two genes, one first searches for sequence
similarity. The similarity is quantified through sequence alignment. The Alignment is a weighted
version of the Longest Common Subsequence problem and, in the classical setup, considers only
point mutations. An exact solution is based on dynamic programming [Gus97,SK99]. Dealing with
tandem repeat requires to consider also amplifications and contractions. We do not report on other
algorithmic and combinatorial problems on local repetitions and refer the reader to numerous textbooks
on the subject, among which [Lot99,CHL01,Gus97].

c t g a g c t c A a C c t t g c t c T g a g c A T c a t c t t - c t
c t g a g c t c c a t c t t A c A c T g a g A A G c a C c t G - c t
G C A a g c t c c a t c t t g c t T G g a g c t c c T t c t t g c t
c C A a g c t c T a t c - t A c t c c A a g c t c c a t c t t g c t
c A g a g c t c c a t c - t g c t c c A a g c t c c a t c t t g c t
c G A a g T G c c a - A t C g c t c c A a g c A c T a t c t t g c t
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Fig. 1. A multiple alignment of the 8 copies of a tandem repeat found on the human chromosome 22. The lines
of the alignment contain the copy in the same order than on the chromosome. Symbols in bold uppercase mark
differences between the current copy and a 34 bp consensus motif. On the third column from the right, the
copies 3 to 6 all have an extra g character suggesting that they may have arisen through an amplification of
arity 4 after the g was inserted in the original copy.

1.2 Interest in Tandem Repeats

In this section, we summarize theoretical, technical, and medical interests in tandem repeats.



Theoretical Interests.
The abundance of tandem repeats rise some theoretical questions concerning their role in the structure
and evolution of the genome. How and why do they appear and evolve? Are they correlated to other
local characteristics of the DNA? How frequently do new genes appear through tandem amplification?
Already in the 70’s, Ohno [Ohn70] argued that gene duplication is a major force in the evolution
of genomes. For more information on these topics, the reader may refer to textbooks on molecular
evolution like [PH98,Li97].

Technical Interests.
Tandem repeats, especially polymorphic micro- and mini-satellites, have proven useful in many areas
of molecular biology. Polymorphic markers are used since the beginning of the 90’s to construct low
resolution genetic maps. A well-known example is the first genetic map of the human genome built with
more than 5000 microsatellites markers [CCW93]. These microsatellites also serve in linkage analysis
and positional cloning to detect and locate molecular variations causing disorders [Len02][Chap. 3].
Linkage analysis looks for inheritance correlations between a trait and genetic markers within a pedigree.
Polymorphic tandem repeats are markers of choice for Mendelian diseases because the discriminative
power of linkage analysis increases with the number of alleles.

In population genetics, polymorphic markers enable biologists to trace the propagation of genetic
traits in populations. For instance, highly polymorphic mini-satellites allow to confirm the “Out of
Africa” hypothesis, i.e., that our species originated in Africa and invaded afterwards the rest of the
world [AAM+96]. Differences between alleles of highly polymorphic markers, like the minisatellite MSY1
on the human Y chromosome (see Section 3), give us access to recent populations history.

Because of their level of variability, some polymorphic tandem repeats distinguish any two individ-
uals from the same population and enable the technique of DNA fingerprinting [JWT85a,JWT85b].
Such markers serve as genetic identifiers in forensic studies for the identification of dead corpse, in
paternity testing, and so on [GJW85,HJ85]. In 1992, the skeletal remains exhumed in 1985 in Brazil
were identified through testing of bone DNA to be those of Dr Josef Mengele, the Auschwitz ’Angel of
Death’ [JAHS92].

Medical Interests.
At last, tandem repeats are involved in several diseases. Variable minisatellites are known to influence
the development of type-1 diabetes, epilepsy and some cancers [BJ97]. Some microsatellites are known
to play a role in the regulation of some genes. The most well-known examples are the dozen of severe
neurodegenerative diseases caused by large amplifications of CAG/CGG microsatellites either inside or
near a gene: fragile X mental retardation, myotonic dystrophy, Huntington’s disease, etc (see references
in [Wel96,Li97,HGH98]). In healthy individuals, the tandem repeat size varies around a few tens of
copies, while in affected individuals the number of copies at the same locus reaches hundreds or a
thousand in some cases.

For all these reasons, there are some needs to understand the evolution of tandem repeats. The
two problems surveyed in this article should help to establish which mechanisms are responsible for
amplification or contraction and in which cases, to estimate how fast the copies of a repeat change
over time, to investigate hypotheses on the disease development or to recover recent evolutionary
relationships.

1.3 Two problems of interest

Let us first introduce a notation for strings. Let Σ be a finite alphabet of size σ. A sequence of n letters
of Σ indexed from 1 to n is called a word or a string of length n over Σ. We denote the length of a
word U := U [1] . . . U [n] by |U |. For any 1 ≤ i ≤ j ≤ n, U [i, j] := U [i] . . . U [j] is called a substring of U .
For U, V ∈ Σ∗, U.V denotes the concatenation of U and V . For any integer h > 0, Uh denotes the h-th
power of U , i.e., the concatenation of h times U . We denote by Σ∗, respectively by Σn, the set of all
finite words, resp. of all words of length n, over Σ. dL, dH denote respectively the Levenshtein and the
Hamming distance on Σ∗.



Definitions.
We first define the events a sequence can undergo. The classical point mutation events are substitution
of a symbol by another, insertion or deletion of a symbol. Let k be the pattern length, i.e., the
minimum size of substrings that can be copied. We term amplification the general event that generates
copies in tandem of a substring and contraction the dual event. The order of an amplification is the
number of patterns that are copied at a time and its arity is the number of copies produced by the
amplification plus one.

Definition 1 (Amplification - Contraction). Let T be a text over Σ and k, i, m > 0 be integers
such that ik ≤ |T | and m ≥ 2. An amplification of order i and arity m on T replaces a substring
u in T of length ik by um of length mik. In other words if u := T [j, j + ik − 1], it creates a new
text T ′ := T [1, j − 1].T [j, j + ik − 1]m.T [j + ik, |T |]. We say u is the pattern of the amplification. A
contraction of order i and arity m on T ′ is the dual event of the amplification, that is, it replaces
um by u and yields a new text T ′′ := T .

g a t a

g a t a g a t a

g a t a g c 

g a t a g c t a g c t a g c t a

g a t a g c t a 

g c t a t c t a g c t a t c t ag a t a g c t a 
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g c t a t c t a

Fig. 2. An example history of an approximate tandem repeat with a basic motif size of k := 4. The following
events occurred in order: an amplification of order 1 and arity 2 (pattern is gata), a substitution of an a by a c,
an amplification of order 1 and arity 3 (pattern is tagc), a substitution of a g by a t, an amplification of order 2
and arity 2 (pattern is gctatcta). The patterns and the copies produced are respectively underlined with dashed
and straight lines; the number of arrows of an amplification equals its arity.

When amplifications are of arity 2 only, we use the word duplication instead. Point mutations and
amplifications are illustrated in Figure 2. It is natural to extend this definition by allowing i and m to
be rationals instead of integers. Unfortunately, none of the works reported in literature consider this
case. Often the terms duplication, triplication, and m-duplication are used instead of amplification. We
choose amplification to avoid ambiguity. Also in [BD99], contraction is used with another meaning that
we will give later on. In the biological literature, long amplifications are also called expansions.

Given these basic definitions, we can informally state our two problems:

Tandem Repeat History : Given the sequence of one approximate tandem repeat and its minimal
pattern size, recover its history of amplifications and mutations.



Tandem Repeat Allele Alignment : Given two allele sequences of the same polymorphic tandem
repeat locus, compute an optimal alignment between the two sequences considering point mutations,
as well as amplification and contraction events.

2 History of a Tandem Repeat

Given the sequence of an approximate tandem repeat and a minimal pattern size, we want to recover
the series of events that led to the present sequence. This problem resembles the one of Phylogenetic

Reconstruction. For this problem, given a set of sequences of the same gene or protein from different
species, one wants to recover the evolutionary tree that led to the apparition of the actual species from
an ancestral one by a series of speciations (i.e., division of a species in two). The present sequences are
associated with leaves and ancestral species with internal nodes of the tree. In our setup, amplifications
replace speciations and can have an arity m greater than two (thereby creating m-ary branching). A
natural question arises: can one represent the history of a tandem repeat by a tree? It is in general
not the case since subsequent amplifications/contractions can act on sequence segments that are not in
phase according to the minimal pattern size (cf. Figure 2). In other words for a given pattern size k,
all amplifications may not start at position 1 + jk for some integer j. To restrict to histories that can
be depicted by a tree, one has to limit the starting positions of amplifications to those that respect the
pattern phase. This is the Fixed Boundary constraint [BD99]. Most researchers envisaged the history
problem, which was first proposed by Fitch [Fit77], with this restriction, since they consider the case
of tandemly repeated genes where it seems to apply.

Logically, researchers harbored their formalizations from the field of phylogeny reconstruction and
considered the problem as an optimization problem with two different criteria. The first criterion is
the maximum of parsimony; one searches for a tree with sequences labeling internal nodes that
minimize the number of evolutionary events. The second is minimum evolution and gives rise to
distance-based approaches which search for a tree that minimizes the distance between leaves, but
do not compute ancestral sequences. [Fit77,BD99,TWY02,EGL02,JKHM02] followed the first line and
[TWY02,EG02,EG03] gave algorithms for the second. Note that when one considers tree-like histories
as in phylogeny, the order of events is only partially known. Without the help of a molecular clock, it
is impossible to order events that lie in different branches of the tree.

All researches achieved on this subject assume that the minimum pattern size, denoted k, is known
and that the copies of the repeat have been aligned in a multiple alignment (see Figure 1 for an example).
In the case of the distance based approach, the multiple alignment serves to compute a distance between
any pair of copies; the method takes as input the resulting distance matrix. This assumption is real
restriction since in a complex history there might be several patterns whose sizes are different and not
necessarily multiples of another. The problem of multiply aligning sequences is in general NP-hard and
thus, the history reconstruction relies on an approximate solution. Finally, this requirement introduces
circularity since the multiple alignment itself and the determination of the pattern size depend on the
history of the repeat.

The last restriction imposed by all attempts made so far is that apart from point-mutations only
amplifications, but no contractions, occurred in the development of a tandem repeat. The history
depicts an always increasing repeat which gains new copies at each amplification. From a biological
point of view, it is known that tandem repeats undergo multiple amplifications and contractions, but this
restriction allows not to consider infinite sequences of events. However for some loci, the reconstructed
history seems robust to deletions in the sense that after the deletion of one copy, it still satisfies the
constraint of a tandem repeat history. Robustness is also proven when only amplification of order 1
occurred in the history.

After commenting on the different assumptions, we can state the problem more formally. Unfor-
tunately in the literature, most authors do not tackle with exactly the same problem. Often the for-
malization is expressed in different ways and each work investigates specific versions of the problem.
Here, we introduce an unambiguous terminology and a unifying definition such that each version of the
prolem based on the parsimony criterion is an instance of this definition.
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Fig. 3. Reconstruction of a tandem repeat history by successive reductions. The basic motif size is k := 4.
The history contains three reductions, each combines contractions and mutations if the reduced copies are not
identical. The merged copy resulting from the second reduction has a subset of symbols at the first position,
while the one of the last reduction has a subset of symbols at the second position. The first ambiguity is resolved
in the next reduction and does not appear anymore at the root.

From now on, let k denote the minimum pattern size, T be the approximate tandem repeat sequence,
and M be the multiple alignment of the copies of T . Let d be a metric on strings over Σ. Figure 1
shows such a multiple alignment with n := 8 copies and k := 34 columns. We want to find backwards
in time the series of events that led to T from a single copy of an unknown pattern. The history is the
repetition of the following process: new identical and adjacent copies were added by amplification and
then diverged by point mutations. Recovering the history backwards requires to reduce the number
of copies to one. We introduce the notion of reduction. A reduction rewinds the process described
above. Indeed, it chooses adjacent but (in general) not identical copies, rewinds the differences between
copies by point mutations, and contracts the now identical copies. To a reduction of order i and
arity m, denoted ri,m, that transforms u1 . . . um into u is associated a cost function of the form:
C(ri,m) :=

∑
j d(uj , u) + A(i, m) where A(i, m) is a cost function for an amplification of order i and

arity m. The choice of an additive function could be discussed, but seems natural since the genetic events
do not occur at the same time and are based on different and independent molecular mechanisms. The
reconstruction of a history by successive reductions is illustrated in Figure 3.

Definition 2 (Maximum Parsimony Tandem Repeat History (MP-TRH)). Let T be a tandem
repeat sequence containing n approximate copies of a motif, k be an integer, M be a multiple alignment
of k columns and n lines, such that the i-th line contains the i-th copy of T with possibly some indels, and
C be a cost function for reductions. The Maximum Parsimony Tandem Repeat History problem
is to find the minimum cost series of reductions that convert M into a single copy of length k. (The
multiple alignment is reduced until one line is left.)

This series of reductions gives a putative reverse history for T and an associated ancestral pattern. k
is also called the repeat unit length and the size of the problem is kn. We denote the n copies of the
tandem repeat s1, . . . , sn.

Variations Around a Theme.
Some works [BD99,JKHM02] consider an alignment with insertions and deletions. This means that in
each line k is the number of columns but not the copy’s length. Other authors consider that copies
differ only by mismatches/substitutions; in their case, k is the number of columns in the alignment as
well as the copy’s length. In the first and second cases respectively, the authors use the Hamming and



the Levenshtein distances on Σ∗. When one considers the Hamming distance, one usually discards all
columns of the alignment that contain indels. In the case of divergent genes, the number of columns
left, k, may be much less than the lengths of the genes that were amplified. In that case, k is not the
biological pattern size.

Even if Tang and coworkers [TWY02] include a general cost function in their formalization, all
algorithms published so far including theirs only account for differences between copies, but not for
amplifications (i.e., A(i, m) := 0).

A major constraint is the Fixed Boundary constraint which specifies that amplifications start
only in the first column of the alignment. From the computational view-point, it constrains strongly
the problem, since many alternative contractions starting at different positions in T , i.e., columns in
M , would yield the same result. Also, when boundaries are not fixed, the history cannot be represented
by a tree; one needs a more complex structure. From the biological point of view, many tandem repeats
do have not an integer, but rather a truly rational number of copies, showing that boundaries of
amplifications vary. Nevertheless, when considering tandemly repeated genes, the currently accepted
biological model enforces fixed boundaries for amplifications.

Definition 3 (Fixed Boundary Maximum Parsimony Tandem Repeat History (FBMP-
TRH)). This problem is identical to MP-TRH except that reductions start at a position 1 + jk for
some 0 ≤ j ≤ n − 2.

In each section, we will precise exactly which version of the problem is examined. Under the criterion
of Minimum Evolution, the problem is called Minimum Evolution Tandem Repeat History and
is defined in Section 2.6, where two greedy and one exact algorithm are presented. Its complexity class
is unknown. In summary, in the Maximum Parsimony case we face a NP-hard problem for which a
2-approximation, a Polynomial Time Approximation Scheme (PTAS), and several greedy algorithms
have been described.

2.1 Benson and Dong’s Approximation and Greedy Algorithms.

[BD99] is the only reference where the general MP-TRH problem with variable boundaries is inves-
tigated; the paper also deals with the restricted version with fixed boundaries and amplifications of
arity 2 (these are termed “binary duplications” in the paper). Their cost function accounts for the
Levenshtein distance between copies and charges no cost for amplifications; that is d := dL and for any
order i and arity m, A(i, m) := 0. The authors provide a greedy algorithm for the general problem, a
2-approximation, and two ways of computing lower bounds. They also report that the greedy algorithm
performs in general better than the approximation and is close to the lower bounds. In their paper, the
notion of contraction means a reduction.

We describe the greedy algorithm and the 2-approximation which is based on an ordered spanning
tree built on the tandem repeat copies. Before that, we give a little correction of the cost function and
of the reduction rule2.

When a reduction of arity m is applied to the multiple alignment M , a merged copy replaces the m
reduced copies. At a column j, differences between the contracted copies may suggest several characters
for j-th position of the merged copy. In a reduction step, Benson and Dong authorize such a position
to store a set of putative ancestral symbols. To compute optimal ancestral characters, one needs to
count for each possible symbol its number of occurrences in the j-th column of the contracted copies
and to store the set of all symbols having the majority at the j-th position of the merged copy. If
one then chooses any symbol having the majority, say x, for the j-th position of the merged copy, the
number of point mutations that must be accounted for is given by: m−count[x] where the vector count
stores the counts mentioned above. Indeed, each contracted copy whose j-th character differs from x
requires a single point mutation. The cost function in [BD99] does not consider the relative counts of
the characters at a given position; this leads to an incorrect number of mutations, i.e., an incorrect
cost.

2 G. Benson told us he also noticed this error and corrected it in his algorithms



A Greedy Algorithm for MP-TRH. The greedy algorithm iteratively applies the reduction with
the lowest cost ratio; it prefers the reduction with highest arity and breaks other ties arbitrarily. The

cost ratio of a reduction is defined as:
C(ri,m)
k(m−1) , i.e., the reduction cost over the arity minus one times

the unit length k.

When the arity of reductions is restricted to 2, the greedy algorithm takes O(kn3) time and when
any arity is allowed it takes O(kn3 log(n)). Let us first explain the complexity for the restricted case.
The cost for each possible reduction is computed for increasing order between 1 and b n

2 c. For order i,
there are reductions starting at all columns on line j such that 1 ≤ j ≤ (n− 2ik) and at column one on
line (n − 2ik) + 1. In the left to right order, the cost of reductions whose substrings overlap by all but
the first and last characters can be deduced in O(1). Thus, all costs can be obtained in O(kn) time. For
each reduction step, the computation takes O(kn2) and as there are at most n−1 steps the complexity
in O(kn3). In the case of unrestricted arity, the algorithm is more complex since for a given order i
and a given position, the costs for arity m can be deduced from those of arity m − 1 in O(1). At most
n/m costs are updated; the complexity for each step and the total complexity become O(kn2 log(n))
and O(kn3 log(n)), respectively.

A 2-approximation for Fixed Boundaries Order-1 Amplifications. The approximation pre-
sented in [BD99] is for what the authors call the “restricted problem”: when amplifications have a fixed
boundary and their order is 1. In the restricted case, the history can be represented by a leaf and edge
ordered and labeled tree whose leaves represent the copies of the tandem repeats. Such a tree is called a
duplication tree. Internal nodes are labelled by ancestral copies. To an edge (tj , tl), where tj , tl ∈ Σk

are the labels of the linked nodes, is associated the cost d(tj , tl).

The proof relies on the concept of ordered spanning tree (OST). Given an ordered set of nodes
V := {1, .., n}, an OST is a spanning tree on V such that for any two edges (b1, e1) and (b2, e2), b1 < e1,
b2 < e2, we have (b1 − b2)(b1 − e2)(e1 − e2)(e1 − b2) ≥ 0. In other words, if the nodes are placed on a
line, the edges are on the same side of the line on the plan and do not cross each other. An example of
an OST is given in Figure 4. We will consider OSTs on the ordered set of copies, s1, . . . , sn and assign
d(sj , sl) as the distance between nodes j and l, 1 ≤ j, l ≤ n. For both types of trees, the cost of a tree
is the sum of the costs of its edges.
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Fig. 4. An ordered spanning tree on n := 8 nodes (in curved lines) and its associated duplication tree drawn
(in straight lines). The number at an internal nodes represents the leaf label that has been lifted up to that
node. In the lifted duplication tree, only edges mark by dashed lines have non-zero cost; all other edges have
the same label at each extremity and cost zero.



An ordered spanning tree B on s1, . . . , sn describes the structure of a unique duplication tree. It
is possible to construct the latter from the former in linear time. This is illustrated in Figure 4. Note
that branching the 5th node either to the right or to the left is determined according to the cost of
branch entering that node. If in this tree, one assigns to each internal node the label of one of the leaves
in its subtree, one obtains a duplication tree B∗ whose cost equals the one of the ordered spanning
tree. We propose to call B∗ a lifted duplication tree. The duplication tree given in Figure 4 with
the leaf labels associated to internal nodes is a lifted duplication tree. The same idea of lifting the leaf
labels up the tree was proposed by Wang and coworkers [WJL96] to compute a 2-approximation for
the Phylogenetic Multiple Alignment problem and their approximate tree was termed a lifted
tree.

Fig. 5. An optimal duplication tree on n := 8 leaves (straight lines), a depth-first traversal of it (dashed lines),
and a simple cycle on the leaves (curved lines).

Proof (of the 2-approximation.). Let P be the optimal duplication tree, and R be a depth-first traversal
of P . As each edge of P is visited twice in R we have cost(R) = 2 × cost(P ). Let SR be the cycle
obtained by visiting the leaves in order and cycling from leaf sn to leaf s1. As d satisfies the triangle
inequality, cost(SR) ≤ cost(R). Now, removing any edge in SR yields an ordered spanning tree TR.
Thus, we have cost(TR∗) < cost(SR) ≤ cost(R) = 2 × cost(P ); TR∗ is a 2-approximation of P . ut

An example of an optimal duplication tree with n := 8 copies, its depth-first traversal and a trivial
cycle (i.e., corresponding to P , R, and SR, respectively) are given in Figure 5. Note that the topology
of TR∗ varies very little with the input (since TR equals SR minus one edge) and presents no biological
interest in itself. On the opposite, a true minimum OST and its associated duplication tree provide
an informative approximate solution. Benson and Dong exhibit a dynamic programming recurrence to
compute the minimum OST (on all possible intervals of lines in M) in O(kn2 + n3). We will see below
that Tang et al. [TWY02] also use the lifting technique to obtain a 2-approximation for this problem
in O(n2(k + n3)).

Open questions:

– Is MP-TRH with variable boundaries approximable?



2.2 Tang et al. Dynamic Programming Approach.

In their framework, Tang and coworkers [TWY02] allow only duplications, that is amplifications of
variable order but of arity 2, and fixed boundaries. They generalize the duplication tree introduced
by [BD99] in a duplication model to enclose information relative to duplications of order higher
than one. We first describe this model. We present their dynamic programming scheme for what they
call the Single Gene Duplication problem, that is FBMP-TRH restricted to arity 2 and order 1.
(Actually, the authors do not really tackle with their general model.) In Benson and Dong’s vocabulary,
this corresponds to the “restricted” FBMP-TRH. The dynamic programming scheme is flexible and
by combining it with the lifting technique, they obtain a 2-approximation and claim a PTAS can be
achieved with the same technique. The authors also give an algorithm for the distance-based problem,
but we will delay its presentation until Section 2.6.

2 3 4 5 6 7 81

Fig. 6. An example of a duplication model or of an unrooted duplication tree with n := 8 leaves. Each node
represents a copy of the tandem repeat, either an ancestral one at an internal node or a present one at a leaf.
Subsets of internal nodes that are duplicated together by a duplication of order 2 are surrounded by a dashed
line. These correspond to blocks in the terminology of [TWY02].

The Duplication Model. The duplication model is a duplication tree (from [BD99]) with higher order
duplications. A duplication of order i duplicates i adjacent copies, say s1 . . . si, into s1,l . . . si,ls1,r . . . si,r

3

where sj,l, sj,r denote the right and left children of sj . As a duplication tree is ordered, the left to right
order of nodes represents the sequence order of the copies; this is valid for both internal nodes and
leaves. If we place a duplication of order i in such a tree, it must take i nodes representing adjacent
copies and create i left and i right children. Therefore for j < h ≤ i, the edge connecting sj and its
right child sj,r crosses all edges connecting sh and its left child sh,l, i.e., (sh, sh,l). This the only way
two edges can cross in the model and it requires that i ≥ 2. Such a model is said to be consistent with
the ordering of the leaves/copies on the sequence. This is the main constraint that a tree must satisfy

3 Note that there are no commas in the notation; it means that the copies are adjacent on the chromosome.



to be a duplication model. Nodes involved in higher order duplications form a block and all blocks are
memorized in the duplication model. Figure 6 illustrates the notion of duplication model.

For a given duplication model, it is possible change the order of nodes to uncross all edges and obtain
a unique planar tree topology. Tang et al. name it the associated phylogeny. The term phylogeny means
a binary tree without order constraint that represents the evolution of genes/species associated with
its leaves. A way to answer our problem is to use a phylogenetic reconstruction method on the set of
copies without the order constraint, and check if the returned phylogeny has an associated duplication
model. There exist efficient heuristics for phylogenetic reconstruction (for instance [Gas97]). Tang et al.
investigate what we call the Recognition problem, that is to find the duplication model associated
with a rooted phylogeny if it exists, and they give a O(n2) algorithm for it. Note that the problem size
is n, i.e., the number of leaves of the phylogeny.

The Dynamic Programming Scheme. In [TWY02], the authors define the MP-TRH with fixed
boundaries with an arbitrary additive cost function for the reductions. However, the dynamic program-
ming scheme they present is further restricted to the FBMP-TRH with order 1 duplications only. In
this case, the duplication model has no edges crossing each other and is simply a tree on an ordered
set of leaves. In the remainder of this section, we use the word “tree” instead of “duplication model”
for simplicity. The authors consider the Hamming distance between words, and not the Levenshtein
distance as in [BD99].

Let s belong to Σk, i, j be integers such that 1 ≤ i ≤ j ≤ n and S, Sl, Sr be subsets of Σk. A tree for
an interval subset of the copies, si, . . . , sj , is said to span the interval [i, j]. With Maximum Parsimony
criterion, each internal node is labelled with a putative ancestral copy. We introduce a notation used
below in the recurrence. Let D([i, j]) be the cost of an optimal tree spanning [i, j]. Let D([i, j], s) be the
optimal cost of a tree spanning [i, j] and whose root is labelled by s. If i < j, let an integer m satisfy
i ≤ m < j and D([i, j], s, m) be the minimum cost of tree spanning [i, j] whose root is labelled by s,
and whose left and right subtrees span [i, m] and [m + 1, j], resp. For s ∈ Σk, D([i, i], s) is initialized
to 0 is s = si and to infinity otherwise. It follows from these definitions that:

D([i, j]) = min
s∈S

D([i, j], s) (1)

D([i, j], s) = min
i≤m<j

D([i, j], s, m) (2)

D([i, j], s, m) = min
v∈Sl

(D([i, m], v) + d(s, v)) + (3)

min
w∈Sr

(D([m + 1, j], w) + d(s, w))

A tree spanning the whole repeat can be recovered by backtracking through the matrices from entry
[1, n]. If one chooses S, Sl, Sr equal to Σk the returned cost and tree are optimal, but the running time
is exponential in k. Indeed, it is in O(|Σ|2k(k + n3)) since computing all Hamming distances between
any two strings of length k is done in O(k × |Σ|2k) and filling the matrices for each of the n2 intervals
takes O(|Σ|2kn) time.

Now, if one restricts S, Sl and Sr in such a way that to an internal node is associated the label of
either its left or of its right child, the result is a lifted duplication tree. By a lemma from [WJL96], the
cost of such tree is at most twice the cost of an optimal tree. This gives a 2-approximation algorithm in
O(n2(k + n3)) time. The authors also report that the PTAS developed by Wang and Gusfield [WG97]
can be adapted to this problem.

The 2-approximation of [TWY02] yields a lifted tree as the 2-approximation of [BD99] obtained from
the trivial cycle. The latter is more effective since it requires linear time. Its improvement using the
minimum OST is computed in only O(kn2+n3) time. Another remark is that the dynamic programming
scheme delivers an optimal solution in a time that is only exponential in k. Thus, FBMP-TRH with
order 1 duplication is Fixed Parameter Tractable for parameter k. We refer to [DF99] for details on
Parameterized Complexity.



2.3 An Exhaustive Exploration Approach

Elemento and coworkers [EGL01,EGL02] investigate the same problem as in [TWY02]: recovering the
duplication tree of tandemly repeated genes. They define independently the concept of duplication
model and call it a partially ordered duplication history. They name such an unrooted history
a tandem duplication tree. The authors argue that the Fixed Boundaries restriction applies here,
because the main mechanism of gene amplification is unequal recombination. They exhibit an expo-
nential algorithm, named DTExplore, that exhaustively searches the space of duplication histories. The
algorithm works for a limited number of copies, in the order of n = 10. In addition to some applications,
the algorithm is used to compare empirically the number of phylogenies with n leaves with the number
of duplication models with n copies. The authors conclude that, although the number of duplication
models seems exponential, it represents a small fraction of the number of phylogenies. This question is
addressed later on in [GHJMM03] and is detailed in Section 2.4. We also present their O(n2) solution
for the recognition problem as defined in Section 2.2.

Like in [TWY02], authorized amplifications are duplications (i.e., of arity 2) of variable order. In
their vocabulary, a duplication of order x is denoted an x-duplication. The distance measure between
gene copies is the Hamming distance and no cost is charged for amplifications (i.e., d = dH and
A(i, m) = 0 for all i, m).

An Exhaustive Search Strategy. The algorithm DTExplore simulates the duplication process to
explore in a depth-first search manner the space of all duplication histories of n leaves. It starts with
a rooted tree with two leaves and applies a duplication of order x to obtain a tree with 2 + x leaves.
The process is iterated until the number of leaves reaches n. The current phylogeny is given as input
to Fitch’s algorithm [Fit71] which computes its Maximum Parsimony score (i.e., the optimal ancestral
copies for all internal nodes). The algorithm backtracks and duplications of any possible order are
applied to visit all topologies. DTExplore outputs the phylogenies with the minimal score.

This first version of DTExplore suffers from redundancy as it generates several time the same rooted
duplication model. An improvement is achieved by enabling DTExplore to memorize which duplication
model has already been visited. This is performed by encoding each model in a character string and
storing all codes in a prefix tree. Each generated topology is first encoded, searched for in the prefix
tree, and its maximum parsimony is evaluated only if it was not found in this data structure. The speed
improvement is drastic.

A Simple Recognition Algorithm. Given the topology of a phylogeny on n leaves, the Recogni-

tion problem is to decide if the topology also is a duplication model. Elemento et al. [EGL02] report
a simple O(n2) algorithm for it. It iteratively reduces the phylogeny by replacing the 2i leaves of an
order i duplication by their fathers. At most n such steps are performed, if all duplications were of
order 1. At each step, to identify a possible duplication, it searches for a subset of adjacent 2i leaves
that are appropriately intermingled. If this search fails, the phylogeny is not a duplication model and
the algorithm returns false. Otherwise, it stops with a tree reduced to a root and answers true. The
search is done in O(n) time at each step. After investigating the combinatorics of duplication models,
Gascuel et al. [GHJMM03] improve the algorithm’s complexity to O(n) (cf. Section 2.4).

2.4 Combinatorics of Duplication Trees

In the same framework than [EGL02], Gascuel and coworkers [GHJMM03] investigate the number of
different rooted duplication trees with n leaves, denoted RDT(n). They exhibit a recurrence for it
and show it is the double of the number of unrooted duplication trees. They deduce an algorithm to
uniformly sample duplication trees and a linear time procedure for the Recognition problem. Here
again, amplifications are of variable order and of arity 2.



Counting Duplication Trees. We review the main recurrence for rooted duplication trees. To obtain
this recurrence, the authors introduce the notion of an (l, i) duplication where i is the order and l
the number of copies located after the last copy involved in the duplication. So, an (l, i) duplication
duplicates i copies sn−l−i+1 . . . sn−l, where i and l satisfy 1 ≤ i ≤ n, and 0 ≤ l ≤ n−2i. Given a rooted
duplication tree R, an (l, i) duplication is said to be visible if none of the 2i copies it created has been
further duplicated in R. Let P (n, l) be the subset of RDT(n) whose leftmost visible duplication is an
(l, i) duplication for some i such that 1 ≤ i ≤ (n − l)/2. Let p(n, l) be the cardinality of P (n, l). By
definition, for l > n − 2, P (n, l) = ∅, p(n, l) = 0 and p(2, 0) = 1.

Theorem 1. Let n > 2 and 0 ≤ l ≤ (n− 2). P (n, l) and ∪l+1
j=0P (n− 1, j) are in one-to-one correspon-

dence.

Proof. Let us denote the substring of 2i copies created by an (l, i) duplication in the present sequence
by sn−l−2i+1 . . . sn−l−isn−l−i+1 . . . sn−l. For all 1 ≤ f ≤ i, sn−l−i+f is the twin of sn−l−2i+f , i.e., they
are offspring of the same father copy. Let T ∈ P (n, l); deleting sn−l−i, the left child of the rightmost
copy duplicated by the (l, i) duplication, in T maps T to T ′. If i = 1 then the leftmost visible duplication
in T ′ is at the right of s′n−1−l and thus, T ′ is in P (n − 1, j) for some j in 0 ≤ j ≤ l. If i > 1 the (l, i)
duplication in T becomes the leftmost visible duplication in T ′ and is an (l + 1, i − 1) duplication; so
T ′ belongs to P (n − 1, l + 1). As the transformation is reversible the mapping is a bijection. ut

As all trees have a leftmost visible duplication, if we denote the cardinality of RDT(n) by rdt(n), we

have rdt(n) =
∑n−2

l=0 p(n, l). Combined with the recurrence of Theorem 1 it provides a way to compute
rdt(n).

Although the root of a duplication tree is necessarily located on the path between the left- and
right-most copies ([Fit77]), not all edges on this path are possible root locations. First, the root cannot
be below some duplication of order strictly greater than 1. Second, it comes out that in average only
two locations are possible. Hence, the surprising result that the number of unrooted duplication trees
with n leaves equals rdt(n)/2. Asymptotically, this cardinality behaves like ( 27

4 )
n

when n tends towards
infinity.

An O(n) Recognition Algorithm. The concept of visible duplication allows to improve the recogni-
tion algorithm described in Section 2.3. It proceeds by iteratively agglomerating leaves of a duplication
(such leaves belong necessarily to a visible duplication). The improvement consists in choosing the
leftmost visible duplication at each step; an amortized analysis shows that all steps take O(n) time
alltogether. For this, the scan for a duplication proceeds from left to right and the endpoints of already
encountered blocks are memorized.

Open questions:

– In the case of fixed boundaries, study the number of amplification trees when amplifications of
variable arity are allowed.

2.5 Complexity, Approximability and Other Results

In [JKHM02], Jaitly et al. consider the FBMP-TRH, with a maximum arity 2, with the Levenshtein
distance between strings d := dL, and no cost for amplifications. They proved that this restriction of
FBMP-TRH is NP-hard by reducing it to the Max-Cut problem. They exhibit a PTAS that uses the
lifting technique to partition the topology and exact optimization by dynamic programming to compute
optimal labels for subtrees of constant size. A detailed sketch of the proof is given in [JKHM02] and
it relies on previous difficult approximation results for the Phylogenetic Multiple Alignment

problem by Wang and coworkers [WJL96,WG97,WJG01]. As in [BD99], the authors notice the relation
of FBMP-TRH with the Ordered Leaves Steiner Tree problem. They show their algorithm also
is a PTAS for the latter.



Zhang et al. [ZMW02] describes a O(n) algorithm for the Recognition problem from rooted
phylogenies (with duplications of variable order, the distance used over Σ∗ is not given). Assume
the leaves of the phylogeny are numbered in order from 1 to n. Their method identifies for all leaf
j := 1, . . . , n the internal nodes belonging to duplications of order ≥ 2 (to blocks in the terminology of
Tang et al.) that allow leaves j and j + 1 to be put next to each other in the duplication model. For
this, they associate to each node v the pair (l(v), r(v)) where l(v), r(v) denote resp. the smallest and
largest leaf numbers in the subtree of v. Fast identification of block’s nodes is achieved by comparing
pairs (l(v), r(v)) of nodes on the path to leaf j to those of nodes at the same level on the path to
leaf j + 1. Given an unrooted phylogeny, the search for a duplication model has to be performed for
all O(n) possible root locations because in practice one infers unrooted phylogeny. Thus, although in
linear time, their algorithm is less effective than the one of Gascuel et al. [GHJMM03] that deals with
both case of rooted and unrooted phylogenies.

Zhang and coworkers also proposed a greedy search strategy for the FBMP-TRH. It infers a
phylogeny with a traditional reconstruction method, checks if it is associated to a duplication model,
and if not attempts a transformation of the topology (like a Nearest Neighbor Interchange). The two
last steps are iterated until a duplication model is found. Such a strategy was first developed in the
field of phylogeny reconstruction. The authors report it performs better than Benson and Dong’s greedy
algorithm or Tang et al.’s Window method on three real data cases.

Open questions:

– Does the MP-TRH with variable boundaries admit a PTAS?
– For some parameters, are these problems fixed parameter tractable in the sense of Fellows and

Downey’s theory of parameterized complexity [DF99]?
– Improve the Zhang et al.’s greedy strategy by inferring directly a duplication model and invent a

transformation operation that allows to visit each possible duplication model on n leaves.

2.6 Minimum Evolution Approaches

As mentioned above, the criterion of Minimum Evolution borrowed from Phylogeny leads to a formal-
ization of the problem that differs from MP-TRH. The data is a matrix D giving the pairwise distance
between any pair of copies in T and the ordered list of copy numbers. The output is a duplication
tree whose sum of the branch lengths is minimum. We call this problem the Minimum Evolution

Tandem Repeat History.
This formalization implicitly considers fixed boundaries since the history is represented by a tree.

It is thus not as general as MP-TRH. Moreover, as the input is a distance matrix, the sequences are
disregarded in the remaining of the algorithms. The link with combinatorics and algorithmics on words
resides only in the computation of the input pairwise distances. Nevertheless, we include a section on
these methods for the sake of completeness and because such approaches were shown to be reliable in
practice [EG02].

The two methods presented here, DTScore from [EG02] and Window from [TWY02], optimize a
local criterion on the tree and are based on the same algorithmic scheme. A current list of leaves in the
tree is maintained and initialized to the original list of copies. The methods iterate an agglomeration
step that replaces a subset of 2i adjacent leaves resulting from an order i duplication by new leaves
representing their parent copies. Such a subset of 2i leaves is called a window in [TWY02]. Entries of
the distance matrix corresponding to the deleted copies are removed and entries for the parent copies
are inserted. Entries for the parent copies are the average of their children distances. The algorithms
proceed until 2 or 3 leaves are left. The window is chosen to maximize a score function. DTScore and
Window differ in the choice of this function. Window considers the average of the Hamming distances
between twin copies j and j + i for all possible j. This is known to produce the correct tree if the data
respect the Molecular Clock hypothesis, i.e., if evolution proceeded at the same pace in each branch
of the tree. In practice, it is not often the case. In DTScore, the score of a pair (j, j + i) is the number
of times j and j + i are next to each other in every possible quartet of leaves (j, j + i, l, m) according
to the Four-Point Condition ([Bun74]). The score of a window is the minimum of the scores of its



pairs; the window with the maximum score is selected. This scheme works even if the Molecular Clock
is not respected.

Empirical tests on pseudo-randomly generated trees and sequences confirm DTScore’s improved
ability to recover the correct tree compared to Window and to maximum parsimony approaches (cf.
[EG02]). For both programs, the time complexities is O(n4). Elemento and Gascuel [EG03] consider
the ME-TRH under the global criterion of the ordinary least square errors. They propose an exact
algorithm in O(n3) time and O(n2) space when the duplication order is restrained to 1.

Open questions:

– Find an algorithm to optimize ordinary least square errors when the order is variable.

2.7 Biological Validations

Most of the literature referenced for the Tandem Repeat History problems includes tests on real
data sets, mainly on clusters of tandemly repeated human genes. For instance, Zinc Finger genes in
[TWY02,ZMW02], genes for Olfactory Receptors and the internal tandem repeat of a mucin gene MUC5
in [ZMW02], as well as two immunological gene loci, TRGV and IGLC, in [EGL02]. In all cases, the
authors found the computed histories were consistent with what is known about the evolution of the
gene family and most histories include mainly order 1 duplications.

The most detailed discussion on biological validation is in [EGL02]. The mechanism for gene du-
plication is hypothesized to be unequal recombination. In the case of the TRGV locus where n := 9,
the history reconstructed with DTExplore is also found by DNAPENNY, an exact phylogenetic recon-
struction method ([HP82]), although the probability of finding a duplication model when exploring the
space of phylogenies is already low for n = 9 (see Section 2.4). Moreover, the most recent duplica-
tion in the tree has order 2 and corresponds to a polymorphism observed in some human populations.
Indeed, the two additional gene copies are missing in individuals of the Tunisian, Lebanese, French,
Black-African and Chinese populations. These two evidences combined with a bootstrap test constitute
a strong validation of the model with respect to the mechanism of duplication.

With the availability of complete genomes, numerous tandem gene clusters are discovered and
represent potential data for such analysis. We believe biologists will investigate tandem duplication
history once the methods described here have been advertised more widely.

3 Allele Alignment

Among polymorphic tandem repeats, hypervariable minisatellites cumulate variations in their number
of copies, as well as in the sequence of the repeats. They belong to the most polymorphic markers: at
a single locus, one encounters much more alleles than for other loci. Hence, the numerous differences
between alleles provide us with detailed information on the evolutionary processes at work. To under-
stand variation in the sequences of a tandem repeat locus, we need to be able at least to compare alleles
in a pairwise manner. If one can measure the dissimilarity by a metric, it becomes possible to infer
evolutionary relationships of a set of alleles using distance-based phylogenetic methods. Even better
would be to simultaneously align several alleles and then use Maximum Parsimony phylogenetic recon-
struction to compute a tree with ancestral alleles and to count mutations along the branches. In this
section, we consider the problem of Pairwise Allele Alignment. At present, Multiple Allele

Alignment remains an interesting future work.

Bérard and Rivals [BR02,BR03] introduced this problem and noted that the events are not com-
mutative, which introduces a major difficulty compared to classical Sequence Alignment [SK99]. In
the case of amplifications and contractions of order 1 and arity 2, they describe an exact algorithm in
O(max(m, n)4) time, where n, m denote the sequences lengths. The alignment distance is a metric and
can serve as input for distance-based phylogenetic reconstruction. In [BR03], the method is applied to
a set of alleles from the MSY1 locus, a minisatellite on the human Y chromosome. These biological



experiments demonstrate that the approach enables recovering allele relationships. It is shown for in-
stance that phylogenetic alleles having a common origin are segregated according to the population of
their bearer. The approach used to compare minisatellite alleles is also valid for other types of markers.

In the remaining of this Section, we present the notion of minisatellite maps and the hypothesized
evolutionary model, we formally define the problem, and show that the non-commutativity forces us to
consider the order in which events occur to find an optimal alignment. We then describe the solution that
combines dynamic programming and computations of maximum independent sets in overlap graphs.
We conclude with biological validations.

3.1 Minisatellites Maps and the Evolutionary Model

Along the tandem array of a minisatellite, the repeated unit varies in sequence. For a fixed phase, the
different adjacent substrings are called variants of the repeated unit. In 1991, Jeffreys and colleagues
design a reaction to obtain the sequence of variants of the array. This specific Polymerase Chain Reaction
(PCR) is called the Minisatellite Variant Repeat reaction or MVR-PCR for short [JMT+91]. It
yields a sequence in which each variant/substring is encoded by a symbol. Such sequences are called
minisatellite maps. This technology permitted investigations of minisatellites instability processes.
Here we consider that alignment is performed on allele maps and not on their DNA sequence. From
the computational view-point, maps are still sequences over a finite alphabet, which is not the DNA
alphabet. In the sequel, we use the terms string, sequence or map without distinction. It also means
that boundaries of the variants are fixed by this technology.

The evolutionary model defines the set of events a map can undergo and associate a real cost with
each event. Here, we consider point-mutations, amplifications and contractions of order 1 and arity 2 as
defined in Section 1.3. Note that events operate on variants instead of on DNA bases; e.g., a mutation
changes a variant into another, a deletion removes a complete variant from the map, etc. To each event
is associated a fixed real cost that we denote: A, C, D, I, M for resp. amplification, contraction, deletion,
insertion and mutation. We assume our model is symmetrical: dual events have equal costs (A = C,
D = I). To stick to biological conditions, we assume A, C < M, D, I . Note that if I > A + M then an
amplification followed by a mutation is always preferred to an insertion. Without loss of generality, we
make this hypothesis on costs.

Individual 1

Event Sequence

a a a a a
mutation a e a a a

Individual 2

Event Sequence

a a a a a
mutation a a a b a
5*amplification a a a b b b b b b a
mutation a a a b b c b b b a
mutation a a a b b c b d b a
amplification a a a b b c b d d b a

Fig. 7. Example of evolution of a minisatellite in two individuals.

3.2 A Dynamic Programming Approach Combined With Graph Algorithms

From now on, let r, s be two maps resp. of length n and m over the alphabet Σ. Let − be an additional
symbol that does not belong to Σ and will denote an inserted or deleted position in an alignment. An
edit script between r and s is a sequence of events that transform r into s. An alignment of r and s is a
representation of an edit script that respects the order of the positions in r and s. The alignment cost
is the sum of its operation costs where aligning two identical variants costs zero. It is shown that the
alignment cost is a distance metric [BR03]. An example of evolution of different alleles from the same
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Fig. 8. Alignment of the maps r := aeaaa and s := aaabbcbddba. The arch bbcbddb and its inner-arches are drawn
by curved lines under s. In the middle line, ‘|’, ‘]’, ‘\’, ‘(’ denote resp. a match, a mismatch, an amplification,
and an amplification+mutation.

ancestor allele is given in Figure 7 and an optimal alignment for the two resulting maps is shown are
Figure 8.

Definition 4 (Allele Alignment). Given two maps r and s respectively of length n, m over an al-
phabet Σ and a alignment scoring scheme, find the alignment between r and s that has minimum cost.

In Figure 7, the substring of s from position 4 to 10, bbcbddb, shows that the final variant at each
position does not appear in the order of the sequence: at some stage, position 8 has still the ancestor
state b and not its final state d, while position 10 is already a b. The minimal cost series of events
to create such a substring is order-dependent. If one computes incrementally alignment for longer and
longer prefixes, we cannot find the optimal order of events. This happens when aligning a position in r
with a substring of s having identical first and last characters. Such a substring is called an arch. The
first position of the arch in s is aligned to the position in r, and all other arch’s characters are generated
in s from the first position. The authors prove that at least in an optimal generation of the arch, the
last character is obtained by an amplification of the first when the positions are adjacent, and then all
other positions in between are generated afterwards. Thus, one needs to consider the arch as whole, and
not in order of increasing prefixes. Such an arch generation avoids a mutation per arch. An arch may
include other inner-arches, but an alignment cannot include all possible arches. Because of the optimal
order of generation, two arches cannot belong to the same alignment if they are incompatible with
each other, i.e., if they overlap each other by more than one variant (here overlap means that strict
inclusions are allowed). It follows that an optimal arch generation should contain the largest number of
pairwise compatible arches. The symmetrical situation, when the arch in r is aligned to a single symbol
in s, is called an arch compression.

Arches represent intervals of a map and incompatibility defines an overlap relationship between these
intervals (not an overlap+containment relationship). Consider the graph G whose nodes are arches and
whose edges link two nodes if their arches are incompatible. G is an overlap graph. It is shown that
computing the maximum subset of compatible arches is equivalent to finding a maximum independent
set in G.

A preprocessing procedure will take as input a map t and compute for each possible interval the
cost of the corresponding arch generation or compression (if any) using an adaptation of Apostolico
and coworkers’s algorithm [AAH92]. This procedure is applied to s and to r and results are stored in
two matrices that require quadratic space.

The problem is solved by filling a dynamic programming matrix A whose entry A(i, j) is the
optimal alignment cost between the prefixes of s and r of length i and j resp. Five dependencies
between A(i, j) and its direct neighbors account for the five possible evolutionary events: amplification,
amplification+mutation (AM ), mutation/match, contraction, and mutation+contraction (MC). (Note
that there are no insertion, nor deletion because of our hypothesis on costs.) Moreover, up to i, resp.
j, dependencies with non adjacent entries on the same line, resp. on the same column, account for
arch generations, resp. compressions. These costs are denoted Gl′ and Kl. These dependencies can be
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Fig. 9. Dependencies in the dynamic programming matrix. To compute cell A(i, j), we need at most all cells in
the striped patch but not the ones in the dark patch. Dependencies are shown by arrows. For arch generations
and compression the arrows are indexed by the beginning position of the arch to show that there are multiple
dependencies.

evaluated in O(1) time thanks to the preprocessing. The dynamic programming recurrence is illustrated
in Figure 9. The algorithm requires O(max(m, n)4) time and O(max(m, n)3) space.

Open questions:

– What is the complexity class of Pairwise Allele Alignment when higher order amplifications
and contractions are allowed? Find a practical solution.

– An algorithm for Multiple Allele Alignment under any of the assumptions mentioned above.

3.3 Biological Validations

The algorithm was implemented in a program named MS ALIGN and applied to alleles of the human
minisatellite MSY1 [JBT98]. MSY1 is a hypervariable minisatellite locus on the human Y chromosome.
Its repeat unit is 25 base pairs long and five different variants, which differ from each other by at most 3
substitutions, have been observed. Amplifications and contractions of order 1 and arity 2 were shown to
be the most probable events experimentally [ALO02]. This is in agreement with the model. The data set
comprises 609 alleles from all over the world, with the corresponding map, as well as the population of
origin and the Y-chromosomal genetic group (the technical term is haplogroup) if known. All pairwise
distances between alleles were computed. The experiments consisted in reconstructing phylogenetic trees
with a distance-based method for all or a subset of the alleles using the corresponding distance matrix.
The resulting trees are confronted to other experimental data.

First, an evolutionary tree of the haplogroups was obtained from MSY1 with average distances
and found to resemble strongly the tree reconstructed from other less polymorphic markers. However,
the MSY1 tree gives a higher resolution. Second, the authors looked at the trees of all alleles from
a given haplogroup. In many such trees, alleles are grouped by populations of origin when these are
geographically distant. This is consistent with the already observed geographical specificity of the Y
chromosome [JBT98]. An example of tree for the fourth haplogroup is given in Figure 10. In there, the
Japanese population is perfectly separated from the Tibetan and Mongolian alleles in this haplogroup.



PSfrag replacements

JW85 [Tibetan] 4

JW89 [Tibetan] 4

m219 [Mongolian] 4

JW84 [Tibetan] 4

OK5 [Japanese] 4

MS71 [Japanese] 4

HR50 [Japanese] 4

MS110 [Japanese] 4

OK76 [Japanese] 4

OK65 [Japanese] 4

MS42 [Japanese] 4

MS119 [Japanese] 4

OK24 [Japanese] 4

MS54 [Japanese] 4

Fig. 10. Phylogenetic tree of haplogroup 4 built from a distance matrix produced by MS ALIGN. Each indi-
vidual is represented by its code, its population origin and its haplogroup.

4 Conclusion

Organisms have the possibility to locally duplicate, triplicate, etc. a segment of their genome, and also
to remove one or more copies among adjacent identical segments. This creates repeats with varying
numbers of copy units, called tandem repeats. As point mutations also alter the copy units, tandem
repeats display variation in copy sequence and in length. It follows that a tandem repeat has a history
and that any two individuals may have different tandem repeat sequences, alleles, at the same genomic
location. For many reasons, biologists are interested in tracing back the history of a tandem repeat and
to compare different alleles of a tandem repeat. In this paper, we surveyed these two problems, Tandem

Repeat History and Tandem Repeat Allele Alignment, which are related to the evolution of
tandem repeats. We gave an overview of algorithmic and combinatorial results on these topics, as well
as detailed biological motivations. We provided a unified framework for their formalization. Among the
algorithms mentioned in this survey, some have been implemented and are available on the Internet at
http://degas.lirmm.fr/REPSEQ: DTScore and MS ALIGN.

Surely, the solutions for Tandem Repeat History would improve in biological significance, if the
algorithms could consider both amplifications and contractions. In order to avoid considering infinite
histories, a relevant constraint would be to limit the number of contractions: not all copies created by
an amplification can later be removed by a contraction. The Tandem Repeat Allele Alignment

problem is exactly solved when amplifications and contractions are limited to order 1. Relaxing these
constraints represents future lines of research. Combinatorial properties of tandem repeat histories
also require more investigations and could lead to algorithmic improvements. Although probabilistic
approaches based on Maximum Likelihood are recognized as the most reliable methods in phylogeny,
they were neglected until now for Tandem Repeat History. The design probabilistic methods for
this problem also seems a promising direction of research.
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[BR02] Sèverine Bérard and Eric Rivals. Comparison of Minisatellites. In G. Myers, S. Hannenhalli, S. Is-

trail, P. Pevzner, and M. Waterman, editors, Proc. of the Sixth Annual International Conference
on Computational Molecular Biology, pages 67–76, Washington DC, USA, 2002. ACM Press.
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I would like to thank François Nicolas, Sèverine Bérard, Denis Bertrand, Sylvie Pinloche and Olivier
Gascuel for their help and suggestions on the manuscript. This work is supported by: the French Inter-
EPST program for Bioinformatics, the Génopole of Montpellier, the Specific Actions “Algorithms in
Biology” and “Algorithms and Sequences” of the STIC section of CNRS.


