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Theoretical Foundation of the Balanced Minimum Evolution
Method of Phylogenetic Inference and Its Relationship to
Weighted Least-Squares Tree Fitting

Richard Desper*1 and Olivier Gascuel�1

*National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland;
and �Equipes Méthodes et Algorithmes pour la Bioinformatique, LIRMM, Montpellier, France

Due to its speed, the distance approach remains the best hope for building phylogenies on very large sets of taxa. Recently
(R. Desper and O. Gascuel, J. Comp. Biol. 9:687–705, 2002), we introduced a new ‘‘balanced’’ minimum evolution
(BME) principle, based on a branch length estimation scheme of Y. Pauplin (J. Mol. Evol. 51:41–47, 2000). Initial
simulations suggested that FASTME, our program implementing the BME principle, was more accurate than or equivalent
to all other distance methods we tested, with running time significantly faster than Neighbor-Joining (NJ). This article
further explores the properties of the BME principle, and it explains and illustrates its impressive topological accuracy. We
prove that the BME principle is a special case of the weighted least-squares approach, with biologically meaningful
variances of the distance estimates. We show that the BME principle is statistically consistent. We demonstrate that
FASTME only produces trees with positive branch lengths, a feature that separates this approach from NJ (and related
methods) that may produce trees with branches with biologically meaningless negative lengths. Finally, we consider
a large simulated data set, with 5,000 100-taxon trees generated by the Aldous beta-splitting distribution encompassing
a range of distributions from Yule-Harding to uniform, and using a covarion-like model of sequence evolution. FASTME
produces trees faster than NJ, and much faster than WEIGHBOR and the weighted least-squares implementation of
PAUP*. Moreover, FASTME trees are consistently more accurate at all settings, ranging from Yule-Harding to uniform
distributions, and all ranges of maximum pairwise divergence and departure from molecular clock. Interestingly, the
covarion parameter has little effect on the tree quality for any of the algorithms. FASTME is freely available on the web.

Introduction

Distance-based methods for phylogeny reconstruction
represent the best hope for accurately building phylogenies
on very large sets of taxa. Distance methods have been
shown to be statistically consistent in all settings, as
opposed to parsimony methods, and have a huge speed
advantage over parsimony and likelihood methods. This
advantage in speed allows the user to build larger trees
and/or use bootstrapping methods. For many years, the
gold standards in this subdiscipline of phylogeny estima-
tion have been, for speed, Neighbor-Joining (Saitou and
Nei 1987) and its offshoots BIONJ (Gascuel 1997a) and
WEIGHBOR (Bruno, Socci, and Halpern 2000); and, for
accuracy, the Fitch-Margoliash weighted least-squares
algorithm (Fitch and Margoliash 1967), as implemented
by Felsenstein (1997). Recently, we introduced a heuristic
implementation of a new ‘‘balanced’’ minimum evolution
approach to phylogeny estimation (Desper and Gascuel
2002), based on a branch length estimation scheme of
Pauplin (2000). Initial simulations on a 2,000-tree data set
suggested that our program, FASTME, was at least as
accurate as the Fitch-Margoliash approach to tree fitting,
and we proved that FASTME uses an algorithm whose
running time was significantly better than Neighbor-
Joining (NJ).

The current work is divided into two parts: an
investigation of the theoretical underpinnings of the

balanced minimum evolution (BME) approach, and a dis-
cussion of extensive simulations comparing the BME
approach to three popular distance methods. First, we
demonstrate that the balanced minimum evolution branch
lengths represent, in fact, a special type of weighted least-
squares tree fitting, where the variances for each leaf-to-
leaf distance estimate are assumed to be exponentially
related to the topological distance in the tree between the
pair of leaves. Next, we demonstrate that this approach is
consistent: as distance estimates converge to true evolu-
tionary distances, the FASTME tree converges to the true
tree. Our proof is modeled on the proof of Rzhetsky and
Nei (1993) that demonstrated consistency for a minimum
evolution approach when branch lengths were assigned by
ordinary least-squares fitting. Next, we also note a feature
of FASTME trees: whereas many distance algorithms
produce branches with confusing negative branch lengths,
FASTME only produces positive branch lengths.

The second major section of the paper is an expanded
simulation over a generalized model of tree topology
selection, branch length assignment, and DNA evolution.
We used the Aldous (1996) model for random tree topol-
ogy selection, a generalization of the two most common
random distributions on tree topologies: the uniform
distribution and the biologically relevant Yule-Harding
(Yule 1925; Harding 1971) distribution. We created a
departure from the molecular clock using another random
factor, and evolved 600 base-pair DNA sequences for each
tree topology, using a covarion model analogous to Galtier
(2001) to determine the evolutionary rate changes of the
sites. The resulting 5,000 data sets cover a wide variety
of tree topologies, model parameters, and evolutionary
conditions. We used FASTME, NJ, WEIGHBOR, and
PAUP’s heuristic weighted least-squares topology search
to determine a tree for each data set. Our simulations
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demonstrate the superiority of FASTME at estimating the
original topology, as measured by counting the number of
branches in the output tree that correspond to branches of
the model tree.

Theoretical Foundation of the BME Approach
Notation and Background

Let dij be the estimate of the evolutionary distance
between taxa i and j, obtained from sequences or any other
data, and � ¼ (d( ij)) be a vector containing all the dij
estimates, with (ij) denoting the index of the pair (i, j). Let
T be the tree being studied, dij the distance induced by T
between taxa i and j (i.e., dij is equal to the length of the
path connecting i to j in T ), and D ¼ (d( ij)) a vector con-
taining all of the inter-taxa distances dij. Using matrix
notation, the branch lengths of T can be represented by
a vector L ¼ (lk), with lk denoting the length of branch k,
while the topology (shape) of T can be represented by a
0–1 matrix S ¼ (s(ij)k), such that s(ij)k is equal to 1 if the
branch k lies on the path connecting i and j, and s(ij)k equals
0 otherwise.

Using this notation, we observe that D¼ SL, and the
branch lengths are estimated by minimizing the difference
between the observation � and D. The ordinary least-
squares (OLS) approach involves selecting branch lengths
L̂L minimizing the squared Euclidean fit between � and D,
i.e., (D � �)t(D � �). This yields L̂L ¼ (StS)�1St�. How-
ever, this approach implicitly assumes that each estimate
dij has the same variance and is independent, a supposition
not generally true because large distances are much more
variable than short distances, and because the sequences in
question share a common evolutionary history. To address
this problem, Fitch and Margoliash (1967), Felsenstein
(1997), and others have proposed using a weighted least-
squares approach—i.e., minimizing (D��)tV�1(D��),
where V is the diagonal matrix containing the variances of
the dij estimates. This approach yields L̂L ¼ (StV�1S)�1

StV�1�. The weighted least-squares (WLS) approach ac-
counts for the variable variances of the distance estimates,
but not for their dependencies. The generalized least-
squares approach (Bulmer 1991; Susko 2003) uses the full
variance-covariance matrix V, and then accounts for
dependencies, but it is rarely used because the covariances
of the distance estimates are usually poorly known, and
because this approach requires a lot of computing time.

In the minimum-evolution framework, we select the
topology with the shortest estimated length. The tree
length of T is equal to the sum of its branch lengths, and it
may be written as l(T ) ¼ 1tL, where 1 is a vector of 1’s.
The standard WLS tree length estimate is then equal to:

l̂lðTÞ ¼ 1tðStV�1SÞ�1
StV�1�: ð1Þ

However, computing this formula in its matrix form is
expensive, and faster methods have been proposed. In the
OLS framework, Vach (1989), Rzhetsky and Nei (1993),
Gascuel (1997b), and others, have exhibited analytical
formulae for branch length estimates that considerably
accelerate the computations. In the WLS case, Bryant and
Waddell (1998) have shown that calculations can be
simplified thanks to the special form of the matrices, and
their solution is implemented in version 4.0 of PAUP*
(Swofford 1996).

Pauplin (2000) followed another approach, modifying
the OLS analytical formulae. Consider the two possible
branch configurations in figure 1.

When e is internal (fig. 1a), we have:

l̂lðeÞ ¼ 1

4
ðdTAC þ dTBD þ dTAD þ dTBCÞ �

1

2
ðdTAB þ dTCDÞ; ð2Þ

and when e is external (fig. 1b):

l̂lðeÞ ¼ 1

2
ðdTiA þ dTiB � dTABÞ: ð3Þ

In these formulae, dTAB represents the weighted or ‘‘bal-
anced’’ average distance between the taxa of A and B. If A
and B each contain only one taxon, denoted as a and b,
respectively, then dTAB ¼ dab, while if one of the two, say
B, is made of two subtrees denoted as B1 and B2, then dTAB¼
(dTAB1

þ dTAB2
)/2. Note that in this scheme the distance

between A and B depends not only on distances between
pairs of taxa contained in A and B, but also on the topology
of T. In Appendix 1, we demonstrate that these formulae
consistently estimate the branch lengths; i.e., if � exactly
corresponds to a tree T, then the estimated length of e is
equal to its real length in T. Also, Pauplin (2000) showed
that in this framework, the tree length itself can be expressed
analytically by the simple and elegant following formula:

l̂lðTÞ ¼
X
i; j

21�pijdij; ð4Þ

where pij denotes the topological distance between i and j,
i.e., the number of branches in the path from i to j in T. The
consistency of the tree length estimate (eq. 4) has been
shown by Semple and Steel (2003), and its minimization
forms the basis of the balanced minimum evolution
principle (BME).

Finally, we demonstrated (Desper and Gascuel 2002)
that in the BME framework, computing the tree length, as
expressed by equations 2, 3, and 4, is unnecessary for tree
inference. Indeed, our tree building and swapping algo-
rithms only exploit the difference in tree length corre-
sponding to a ‘‘nearest neighbor interchange’’ (NNI).
Assume that T is the tree of figure 1a, and that T9 is
obtained from T by exchanging subtrees B and C. We then
have:

l̂lðTÞ � l̂lðT9Þ ¼ 1

4
½ðdTAB þ dTCDÞ � ðdTAC þ dTBDÞ�: ð5Þ

The speed of our algorithms is explained by the simplicity
of this equation, notably regarding equation (1). Moreover,

FIG. 1.—a, Internal branch; b, external branch.
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we observed in simulations that BME is at least as accurate
as the traditional WLS approaches, and it is much more
accurate than OLS, a fact that was unexplained and is the
subject of the following sections.

From Balanced Tree Length to Minimum Variance
Tree Length Estimation

Fitch and Margoliash (1967) assumed that the
variances of the dij estimates are proportional to d2

ij, the
default option in both the FITCH (Felsenstein 1997)
and PAUP* (Swofford 1996) programs. Another common
approximation (e.g., Gascuel 1997b) is simply to set the
variance of dij to be proportional to dij. Better approxi-
mations have been found (Nei, Stephens, and Saitou 1985;
Nei and Jin 1989; Bulmer 1991), basically indicating that
the variance grows exponentially as a function of dij.
WEIGHBOR (Bruno, Socci, and Halpern 2000), for
example, uses this latter approximation.

We assume here that the variance of dij is propor-
tional to 2pij , where pij is the topological distance between
i and j. In other words, we have:

VarðdijÞ ¼ k2pij ; ð6Þ
where k is a constant and should be thought of as in-
corporating the inverse of the sequence length that is
contained in all variance formulae (Sasko 2003). Even
when topological and evolutionary distances differ, they
are strongly correlated, especially when the taxa are homo-
geneously sampled. Our approximation (eq. 6) is then
likely capturing most of the exponential approximations
by Bulmer (1991) and others. Under these assumptions,
we show that there exists a strong relationship between
balanced tree length and the weighted least-squares frame-
work, as expressed by the following theorem.

Theorem 1: Let T be the tree being studied and use
the notation above defined. Assuming that the variances
of the dij estimates are defined by equation 6, and assum-
ing the WLS framework (the covariances are null), the
balanced tree length estimation of T in equation 4 is then:
(1) the minimum variance tree length estimator of T; (2)
identical to the length defined by equation (1).

The proof of Theorem 1 is given in Appendix 2. The
first part of this theorem implies that, assuming equation 6,
the tree length given by BME is as reliable as possible.
Because we select the shortest tree, reliability in tree length
estimation is of great importance and tends to minimize the
probability of selecting a wrong tree. Moreover, it is well
known in statistics that rough variance values such as our
approximation (eq. 6) are usually sufficient. We thus
expect that BME computations will provide quite reliable
branch and tree length estimates.

The second part of Theorem 1 indicates that
FASTME should be close to FITCH and PAUP*, which
use equation 1 to define the tree length, and, to a lesser
extent, to WEIGHBOR, which is based on a different tree-
building strategy but is also a WLS approach. However,
because not all these programs use the same approxima-
tions for the variances nor the same criteria and algorithms,
some differences between them can still be expected.

Consistency of the BME Principle of
Phylogenetic Inference

Statistical consistency is a central issue in phyloge-
netic inference. In the case of distance-based methods, it is
defined as follows: Let T be the correct tree, D the as-
sociated tree distance matrix, and � the matrix of esti-
mated distances. Assuming that � is a consistent estimate
of D, the more data we have (e.g., the longer the sequences
used to estimate the pairwise distances), the closer � is to
D. Statistical consistency of tree inference then means that
T is obtained with certainty as soon as � is sufficiently
close to D. In other words, assuming that the model used to
estimate the pairwise distance matrix is satisfied, the more
data we have, the higher the probability to recover the
correct tree. This property is essential and has been dis-
cussed at length in the past (e.g., Felsenstein 1978). Con-
sistent methods contrast with inconsistent ones (e.g.,
parsimony in some cases), which may converge toward
a wrong tree when the amount of data increases.

The ordinary least-squares version of the minimum
evolution principle was shown to be consistent by
Rzhetsky and Nei (1993), a result generalized by Denis
and Gascuel (2003). However, as explained in the previous
section, BME is a weighted least-squares version of the
minimum evolution principle, and it was demonstrated
(Gascuel, Bryant, and Denis 2001) that in some cases,
depending on the variance matrix, this version might be
inconsistent. So our aim in this section is to verify the
consistency of BME.

A direct consequence of statistical consistency is that
when � ¼ D the correct tree T has the shortest length
among all possible tree topologies. This shortest length
property is necessary for consistency, but also sufficient.
Indeed, the length associated with a tree topology relative
to a distance matrix is a continuous function of this matrix.
Therefore, when � is sufficiently close to D, the estimated
tree lengths relative to � and to D become close, and T
becomes the shortest tree for � as it already is for D.
When this occurs, T is then inferred with certainty from �.
To this end, we prove the following theorem:

Theorem 2: Let T be the correct tree and D the
corresponding distance matrix, and assume that the matrix
� of distance estimates is equal to D. Let W be any tree
topology, and define its length estimate l̂l(W) by equation 4
or, equivalently, by combining equations 1 and 6. Then,
l̂l(W) . l̂l(T) ¼ l(T), whenever W 6¼ T.

Theorem 2 demonstrates the consistency of BME. The
equality l̂l(T) ¼ l(T) simply results from the consistency of
equation 1 or equation 4 in estimating the tree length. The
rest of the proof (̂ll(W) . l(T)) is given in Appendix 3, and it
follows a line similar to Rzhetsky and Nei’s (1993) for the
OLS version of ME. A difference between the two proofs is
that ours is very closely tied to our balanced nearest-
neighbor interchange (BNNI) algorithm: we show that
when W 6¼ T we can apply to W a nearest-neighbor inter-
change (NNI) that makes its length shorter. This seems to
indicate that our simple BNNI algorithm is itself consistent,
as confirmed by numerous computer simulations (not
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shown), but a complete formal proof remains to be done.
See Appendix 3 for more details and technical comments.

Branch Length Positivity

Neighbor-Joining (Saitou and Nei 1987) and related
algorithms often output trees with negative branch length
estimates, which are biologically meaningless (Swofford
1996) and have to be interpreted as irresolutions (in the case
of internal branches). In contrast, the FITCH and PAUP*
weighted least-squares algorithms impose positivity (as the
default option), but this constraint often yields branches
with zero length, which also correspond to irresolutions.
Moreover, when the positivity constraint is removed, the
topological accuracy of these algorithms tends to be lower
(Kuhner and Felsenstein 1994).

Our BNNI algorithm is used in FASTME software to
improve a starting tree by performing NNIs, based on
equation 5, until no more NNI decreases the length of the
current tree. The following theorem indicates that, after
running BNNI, all branches in the output tree have positive
length. Thus BNNI trees tend to be better resolved than NJ or
FITCH trees, and this fact partially explains the good
performance of FASTME, as we shall see in the simulation
section.

Theorem 3: Let � be any evolutionary distance
matrix, and suppose T is a tree that is a local minimum for
a BNNI topology search. Moreover, assume that the branch
lengths in T are obtained from equation 2 or 3. Then, the
length estimate of every branch in T is positive.

The proof is in Appendix 4. We have assumed that �
is a distance; i.e., it satisfies the triangle inequality. This
should be the case for any practical data set, except when
some sites are unknown for some of the sequences, or
correspond to gaps. Then, depending on the distance
computation options, the matrix � might (slightly) violate
the triangle inequality and FASTME might output trees
with negative external branches. In any case the internal
branches are always positive.

Simulation Results

In Desper and Gascuel (2002) we considered simu-
lated data with trees generated by a Yule-Harding (Yule
1925; Harding 1971) process, with random variation of
branch lengths and random perturbation from a molecular
clock. In the current work, we consider a broader
simulation using a more general model of tree topology
generation and branch length assignment, and also
using a covarion-like model of sequence evolution.
Because distance methods mostly address the recon-
struction of large data sets, we used trees with 100 taxa.
Moreover, the parameters defining the generation pro-
cess were chosen from the study of numerous recently
published phylogenies and should cover most prac-
tical situations. These data sets, as well as FASTME,
can be downloaded from http://www.ncbi.nlm.nih.gov/
CBBresearch/Desper/FastME.html or from http://www.
lirmm.fr/w3ifa/MAAS/. We first describe the tree and
sequence generation processes, then the topological error

measures we used to compare the inferred and true
trees, and, lastly, we discuss the performances of various
distance methods with respect to these error measures.

Random Tree Generation

The Yule-Harding branching process (Yule 1925;
Harding 1971) is a standard, biologically relevant method
for generating phylogenetic trees. However, the uniform
distribution on phylogenies is another natural approach for
generating topologies when comparing tree inference
methods. It has been argued (Gascuel 2000, Nakhleh et al.
2001) that method performance could vary depending on
the tree-generation scheme. We thus chose the Aldous
(1996) beta-splitting model, which generalizes both of the
aforementioned distributions. In this model, topology gen-
eration is directed by a parameter denoted as b: b ¼ �1.5
corresponds to the uniform distribution, whereas b ¼
0 defines the Yule-Harding distribution. In our experi-
ments b was uniformly drawn from the interval [�1.5, 0]
for each new tree, which was then generated using this
value. One advantage of this approach is that it provides
a much larger variety of trees than solely using either
a Yule-Harding or a uniform distribution, as the Yule-
Harding distribution diverges strongly from the uniform
distribution when considering trees with 100 taxa (Gascuel
2000). Notably, Yule-Harding trees have a moderate topo-
logical diameter (about 22 branches in average), while
uniform tree diameter is much larger (about 38 branches in
average).

After topology generation each branch was assigned
a length. We first used the standard coalescent model
(Kuhner and Felsenstein 1994) to assign branch lengths,
yielding a molecular clock on the tree. We then perturbed
this molecular clock by multiplying every branch length
(independently) by (1 þ X ), where X was an exponential
variable with parameter k. The factor (1þX ) was used (as
opposed to, say, X ) to avoid an excessive number of very
small branches. The parameter k was identical within each
tree, but it varied from tree to tree. It was selected as k¼
0.3/(0.01 þ U), where U was uniformly drawn from the
interval [0, 1]. If U ¼ 0, k becomes very large and then
X ’ 0; i.e., the tree remains close to the molecular clock.
If U ¼ 1, the variance of X is large, and the tree tends to
clearly depart from a molecular clock. The observed de-
parture from the molecular clock, as measured by the ratio
between the longest and shortest root-to-leaf lineages, was
in the range [1.4, 6.0] (fig. 4), with a median value of 3.1
(where 1.0 represents the perfect molecular clock). Finally,
trees were rescaled so that their total length would be
uniform between 0.5 and 8.0. The maximum pairwise
divergence was then in the range [0.1, 1.1] (fig. 5), with
a median value of 0.55.

Sequence Evolution Model

Covarion-like models have been advocated by several
authors (Fitch 1971; Galtier 2001; Lopez, Casane, and
Philippe 2002; Huelsenbeck 2002) to accurately represent
sequence evolution. In these models, evolutionary rates
differ from site to site, and the rate of a given site can
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change along the course of evolution. Some sites are
slow in some parts of the tree but fast in the other parts,
to account for structural or functional changes of the se-
quences being studied in certain clades.

We used nucleotide sequences with 600 sites, evolv-
ing under a model analogous to Galtier’s (2001). Four
evolutionary rates were considered, defined by a discrete
gamma distribution (Yang 1994) with parameter 1.0, which
corresponds to moderate rate heterogeneity. The rate of
each site was drawn at the root of each tree with equal
probability, and then changed at each new speciation event
(independently) with probability n as one proceeded from
root to each leaf. When a rate changed, it changed to each
of the other three rates with equal probability. The param-
eter n was identical within each tree, but it differed from
one tree to another. Its value was uniformly drawn from the
interval [0, 1/98], where the number 98 was chosen to
correspond to the number of speciation events (other than
the root) in a tree with 100 taxa. When n ¼ 0, the data set
corresponds to the standard four-rate model of Yang
(1994), with a gamma parameter equal to 1.0. When n ¼
1/98, the expected number of rate changes per site is equal
to 1.0; this means that some sites would witness no rate
changes, while other sites (among the 600 in the simula-
tion) could witness up to 5–6 rate changes in the whole tree.

Once site rates have been determined as explained
above, making branches shorter or longer depending on
the site considered, every site evolved under the standard
Kimura (1981) two-parameter model with a transition/
transversion ratio of 2.0. The number of substitutions that
effectively occurred along every branch was stored; we
obtained this way the ‘‘observed’’ tree, whose topology
was identical to that of the true tree, but whose branch
lengths equaled the actual number of substitutions along
each branch, divided by the sequence length.

Finally, a distance matrix was computed from the
sequences using the Nei and Jin (1989) estimate for gamma
distributed rates with parameter 1.0. When n ¼ 0 this
estimate is almost unbiased (we only neglect the sparseness
of rates); but when n 6¼ 0, the covarion effect is not taken
into account by the distance estimation (and no distance
correction allows for this). Thus, we can measure the
robustness of each method to model violation: as the value
of n grows, the violation of the model grows worse, leading
to increasing problems with distance estimation, and (we
expect) less accuracy with any tree-reconstruction method.

Topological Error Measures

To quantify the topological gap between the inferred
tree and the correct tree, and also to compare tree inference
methods, most authors use the Robinson and Foulds
(1981) topological distance (RF). Let T be the observed
tree, T̂T the inferred tree, S (X, d) the set of internal branches
of tree X whose lengths are greater than or equal to d, n the
number of taxa, and s the sequence length. In the context
of comparing tree topologies, the Type I error is the
number of inferred branches that do not belong to
the correct tree, and the Type II error is the number of
branches in the correct tree that are missing from the
inferred tree. The standard RF distance between T and T̂T is

the sum of the Type I and Type II errors, which are
denoted and computed as follows:

E1ðT̂T; T; dÞ ¼ jSðT̂T; dÞ � SðT; dÞ j;
E2ðT̂T; T; dÞ ¼ jSðT; dÞ � SðT̂T; dÞ j;

where, for the RF distance, d¼ 0.
However, branches that are not supported by any

substitution in observed tree T cannot be recovered except
by chance. We define the irresolution of T, I(T), to be the
number of such branches. We should then have approx-
imately:

E2ðT̂T; T; 0Þ ’ E2ðT̂T; T; dÞ þ IðTÞ
when 0 , d � 1/s, e.g., d¼ 1/2s. E2(T̂T, T, 1/2s) represents
the true Type II error of T̂T (Kumar 1996). Moreover,
E2(T̂T, T, 0) is always less that the sum of the two right-
hand terms.

Consider an internal branch e in T̂T. If the length
estimate of e is small or negative, T̂T does not indicate any
substitution on e, and e should then be considered to be an
irresolution. The difference with T is that branch lengths in
T̂T are not restricted to sparse values of the form m/s, where
m is an integer. So, we have to fix a threshold and the
simplest choice, analogous to interval estimation in statis-
tics, is to decide that branches with length less than 1/2s
are not supported by any substitution, whereas longer
branches are likely to have undergone one or more sub-
stitutions. The irresolution of T̂T, I(T̂T), is defined to be the
number of non-supported branches. We cannot exclude the
possibility that branches with length less than 1/2s are true
branches (any threshold is imperfect), but we should still
have, to some extent, an approximation of the form:

E1ðT̂T;T; 0Þ ’ E1ðT̂T; T; 1=2sÞ þ IðT̂TÞ:
E1(T̂T, T, 1/2s) and E2(T̂T, T, 1/2s) are clearly more

appropriate than E1(T̂T, T, 0) and E2(T̂T, T, 0) to evalu-
ate the performance of T̂T in estimating the topology of T.
Moreover, the above equations indicate that the standard
topological error (RF) can be approximately decomposed
into the sum of the true Type I and Type II errors plus the
irresolution of the true and estimated trees. Figure 2
provides an illustration of these error functions for NJ and
FASTME trees when using the data sets described above.
It can be seen that, with low divergence, inferred and ob-
served trees are poorly resolved and most of the RF error is
due to irresolution. With higher divergence, the trees are
much better resolved, but the fundamental errors of the
inference methods become higher because of saturation,
and thus the RF distance is also high. The best results are
obtained with moderate divergence. Finally, it appears
that for any divergence rate and error measure, and also
regarding the resolution of the inferred tree, BME is vastly
superior to NJ. We detail this observation in the next
section.

Results

Our simulations yielded 5,000 data sets generated as
described above, each with 100 sequences of 600 sites, and
we used the PHYLIP program DNADIST to calculate

Balanced Minimum Evolution 591

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/21/3/587/1079580 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 15 June 2021



the Nei and Jin (1989) distance estimates. Four distance
methods were compared:

� NJ (Saitou and Nei 1987) which was taken from PAUP*
(Swofford 1996).

� WEIGHBOR version 1.2, available at http://www.
t10.lanl.gov/billb/weighbor/.

� PAUP*’s hsearch command (WLS in the following),
which was used to find a locally optimal topology,
starting by iteratively adding taxa to partial trees, and
then using tree bisection-reconnection (TBR) trans-
formations to optimize the weighted least-squares
criterion, with a positivity constraint on branch lengths
imposed. TBR topology searches separate a tree into
two parts, and they try every pair of branches as pos-
sible reconnection points. Variances were assumed to
be proportional to the square of the observed distances.
We allowed 60 s of searching for each iteration of
hsearch, as this appeared to be enough to produce a
solution that was a local optimum with regard to TBR
topology searching.

� FASTME with default settings, which involves calcu-
lating an initial tree using a greedy minimum evolution
algorithm, and using BNNI postprocessing to improve
this initial tree in the sense of the BME criterion.

Table 1 summarizes the results for the entire data set
of 5,000 trees, using the error measures defined above.
The irresolution of the observed tree, I(T), which
corresponds to the number of branches not supported
by any substitution, is quite high (25.15) and explains
almost half of the RF topological error. The Type I error
(E1) is always more than the Type II error (E2),
indicating that a more severe threshold could be used
to discard branches in the inferred tree. This phenomenon
is particularly sensitive for FASTME (E1 ¼ 18.64, E2 ¼
9.25), which is explained by the fact that this program
provides trees better resolved than other methods we
considered. However, regarding all error measures
FASTME is best. Although the WEIGHBOR trees are
approximately as good as the FASTME trees when
comparing by E1, FASTME has a clear advantage over
all other algorithms with respect to E2.

We also considered this data set with regard to four
variables:

� The Aldous b shape parameter used while generating
the initial topology.

� The observed departure from the molecular clock,
measured by the ratio between the longest and shortest
root-to-leaf lineages.

� The maximum pairwise divergence measured on the
true tree.

� The covarion parameter, corresponding to the expected
number of rate changes per site.

The first three parameters control the topology and the
branch lengths of the tree, and the fourth controls the
substitution process. We sorted the 5,000 data sets with
respect to each of the four variables. We used this sorted
list to create nine subsets of the data set for each parameter:
For i ¼ 0, . . . , 8, we considered the subset of the data
defined by those data sets whose parameter values lay
ordinally in the interval of the form [500iþ 500iþ 1,000].

FIG. 2.—Topological error measures versus maximum pairwise divergence. NoTE.—E1 and E2 are the true Type I and Type II errors, respectively;
I(T) and I(Talg) are the fundamental irresolution of the observed and inferred trees, respectively; RF is equal to half (for the sake of readability) of the
standard topological error.

Table 1
Summary Statistics

Algorithm RF E1 E2 I(T̂T) I(T)

FASTME 58.06 17.65 9.25 16.75 25.15
WEIGHBOR 61.50 18.10 11.59 18.64 25.15
WLS 62.08 18.91 11.28 17.52 25.15
NJ 64.99 20.09 14.49 19.56 25.15

NOTE.—RF is the standard topological error; E1 and E2 correspond to the true

Type I and Type II errors, respectively, using d ¼ 1/2s; I(T̂T) and I(T) are the

irresolutions of the inferred and observed trees, respectively, using the same d
threshold. All these measures are expressed in number of missing branches: RF is in

the range [0, 2 3 97 ¼ 194], while other measures are within [0, 97], where 97

corresponds to the number of internal branches in a 100-taxon tree.
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Figures 3–6 show the error rates E1 and E2 for each
algorithm over each data subset.

In figure 3, we see that all tree topologies are easier to
recover as the tree distribution moves from a uniform
distribution (b ¼�1.5) to a Yule-Harding distribution
(b ¼ 0). This is very likely explained by the fact that, with
the uniform distribution, trees have, on average, much
larger topological diameters, and thus larger maximum
pairwise divergences, than with the Yule-Harding distri-
bution (see also figure 5).

In figure 4, we see the relationship between the
departure from the molecular clock and the error measures.
As the data sets diverge from a molecular clock, re-
construction of the observed tree becomes more difficult.
However the difference remains slight, at about 3.0
branches for E1 and 1.5 branches for E2 between two
extreme subintervals for all methods.

Figure 5 shows the relationship between the topolog-
ical error measures and the maximum pairwise di-
vergence. Unsurprisingly, the error increases with
divergence, because of saturation. This parameter is very
sensitive, the difference between extreme subintervals
being about 10 for all methods, considering both E1

and E2.
Figure 6 shows the values of the error measures for

each interval when the data sets are sorted according to the
parameter of the covarion model. Quite surprisingly, the
presence of a high covarion effect (the expected number of
rate changes per site is equal to 1.0) has almost no
influence on topological accuracy. The difference between
extreme subintervals is below 1.5 branches for all methods
and for both E1 and E2, even when the general tendency is,
as expected, that the trees with a large covarion effect are
(slightly) more difficult to recover than those without such
an effect. This finding is quite reassuring given the fact
that (DNA, RNA, or protein) sites were certainly subjected
to different evolutionary pressures in different parts of the
Tree of Life, and thus observed changes in the substitution

rate during the course of evolution. According to our
results, distance-based reconstructions then seem to be
robust regarding this phenomenon.

In all of figures 3–6, we see that the BME algorithm
outperforms the WLS approach, which outperforms the NJ
algorithm. This ordering is true for all of the intervals
looked at, over all of the parameters selected, and for both
types of error. The WEIGHBOR algorithm is superior to
WLS by E1, and in some intervals it approaches FASTME;
but with respect to E2, WEIGHBOR is worse than WLS
and FASTME.

It must be underscored that the good topological
accuracy of FASTME does not correspond to an increase
in computing times relative to the other algorithms, but
rather a decrease. Indeed, the decrease is quite sharp in
comparison to all of the other algorithms except for NJ.
Using a two-way 2.2 GHz DELL PE2650 running Linux
2.4 to handle 1,000 (as commonly used in bootstrap
studies) data sets with 100 taxa and 600 sites (as those
above described), FASTME requires 34.2 s, NJ requires 2
min, WEIGHBOR requires 451 min, and (PAUP*) WLS
requires 560 min. DNADIST from the PHYLIP package
(Felsenstein 1989) requires 44 min to compute the distance
matrices. (For more comparisons, see Desper and Gascuel
2002.)

Discussion

Speed and accuracy are the goals of any distance
algorithm for phylogeny reconstruction or estimation. The
need for accuracy is self-evident, whereas the need for
speed is caused by the increase in the size of data sets,
which leads to an explosion in the number of possible
topologies and often renders difficult or infeasible other,
slower phylogenetic estimation approaches, such as
maximum parsimony and maximum likelihood. Consis-
tency is also a necessity for any distance algorithm, as we
wish to know that better estimates of evolutionary

FIG. 3.—Type I and Type II error versus Aldous b shape parameter. NoTE.—Type I error: E1; Type II error: E2; b ¼ �1.5 corresponds to uniform
distribution on phylogenies, whereas b ¼ 0 corresponds to Yule-Harding distribution.
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distances can provide a more accurate picture of the actual
evolutionary history for any set of species. Also, it is
desirable that a distance algorithm provide an output tree
free of internal branches with meaningless negative
lengths.

The trees produced by the FASTME program, using
BNNI postprocessing, make strides towards all of these
goals. Earlier work has demonstrated that the running time
for FASTME far outstrips that of the leading traditional
algorithms, even those of the NJ family. The current
simulations show that BME trees are more accurate than
even traditional WLS trees. The finding that the BME
principle is actually a novel form of the WLS approach,
with biologically realistic weights, may explain this
advantage. It is unsurprising that the FASTME approach
to tree reconstruction is consistent, but the discovery that
FASTME will never output negative branch lengths re-
presents another advantage over popular and fast methods
such as NJ, BIONJ, and WEIGHBOR.

Appendix 1

Assume that the matrix � exactly corresponds to the
tree T. We demonstrate that equations 2 and 3 of Pauplin
(2000) are consistent in estimating branch lengths—i.e.,
that the estimated length of any branch using � is equal to
its true length in T. The balanced average distances be-
tween subtrees are calculated using relatively less weight
on pairs of taxa that are separated by numerous branches.
Let A and B be two non-intersecting subtrees of T whose
roots are separated by rAB branches. It is easily seen that
the following equations hold:

dTAB ¼
X
a;b

2rAB�pabdab;
X
a;b

2rAB�pab ¼ 1; ð7Þ

where a and b are any taxa from A and B, respectively.
Equation 2 can then be rewritten as:

l̂lðeÞ ¼
X
a;b;c;d

24�pab�pcd

3
1

4
ðdac þ dbd þ dad þ dbcÞ �

1

2
ðdab þ dcdÞ

� �
;

where c and d also are any taxa from C and D, respec-
tively. In this expression the inner bracket is equal to l(e)
for any values of a, b, c, and d (e.g., Rzhetsky and Nei
1993), whereas the sum of the weights is equal to 1, as can
be seen from equation 7. In the same way, equation 3 can
be rewritten as:

l̂lðeÞ ¼
X
a;b

24�pia�pib
1

2
ðdia þ dib � dabÞ

� �
; ð8Þ

where the inner bracket is also equal to l(e), and the sum of
the weights is again 1. Thus, the result holds for external
branches as well as for internal branches.

Appendix 2

We first demonstrate part (1) of Theorem 1. Any linear
tree length estimator can be written as Ft�, where F¼ ( f(ij))
is a vector of f( ij) coefficients. For F to be a consistent
estimator of l(T), we must have FtD¼FtSL¼ 1tL. Because
this property must hold for any L, this implies:

StF ¼ 1 ð9Þ
and, clearly, this property is not only necessary but also
sufficient to ensure the consistency of F. Within the WLS
framework, the variance of any linear estimator F satisfies:

VarðFt�Þ ¼
X
i; j

vijf
2
ij ; ð10Þ

where the notation fij¼ f( ij) and vij¼Var(dij) is used for the
sake of simplicity. Combining equations 9 and 10, we see
that finding the minimum variance tree length estimator of
T is equivalent to solving:

FIG. 4.—Type I and Type II error versus departure from molecular clock. NoTE.—See note to figure 3. The departure from molecular clock is
measured by the ratio between the longest and shortest root-to-leaf lineages, the perfect molecular clock then corresponding to 1.
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Minimize :
X
i; j

vij f
2
ij ; ð11Þ

subject to: StF ¼ 1.
Each row of St corresponds to a branch of T. Letting e

be any branch of T and [i, j] be the path from i to j in T, the
constraints may then be written as:

8 e 2 T :
X

i;j: e2½i; j�
fij ¼ 1:

Because the constraints are linear and the cost function is
quadratic, the minimization problem (11) admits a unique
solution. Letting le be the Lagrange multiplier associated
with e, this solution is defined by the following linear
system:

8 i; j : 2vij fij ¼
X
e2½i; j�

le; 8 e 2 T :
X

i; j: e2½i; j�
fij ¼ 1: ð12Þ

The balanced tree length estimation of T is defined by
fij¼ 21�pij , and it has been demonstrated (Semple and Steel
2003) that this formula consistently estimates the length of
T. Using the property of equation 9, this implies that the fijs
so defined satisfy the second set of constraints. Now,
assuming equation 6, we have 2vij fij¼ 4k, and the first set
of equations becomes:

8 i; j :
X
e2½i; j�

le ¼ 4k: ð13Þ

This system (equation 13) corresponds to fitting the branch
lengths of T so that the distance between any taxon pair is
equal to 4k; the unique solution is le ¼ 2k when e is an
external branch, and le¼ 0 otherwise. In other words, we
have found the solution of equation 12 and fij ¼ 21�pij

defines the minimum variance tree length estimator of T,
thus finishing the proof of part (1) of the theorem.

Let us now turn our attention to part (2). We demon-
strate that coefficients from equation (1) also satisfy the

linear system (equation 12) and are then identical to
BME coefficients. First, it is well known that equation 1
consistently estimates the tree length; corresponding co-
efficients then satisfy the second set of constraints, as
expressed by:

FtS ¼ ð1tðStV�1SÞ�1StV�1ÞS ¼ 1t:

Second, the first set of equations can be rewritten as VF ¼
SM, where M is a vector containing the Lagrange multi-
pliers. We then have:

VF ¼ Vð1tðStV�1SÞ�1
StV�1Þt;

¼ SðStV�1SÞ�11

and then:

M ¼ ðStV�1SÞ�11:

In other words, we have found the values of the Lagrange
multipliers. This concludes the proof of part (2).

Given part (1), part (2) of Theorem 1 seems natural.
Indeed, equation 1 defines the minimum variance branch
length estimators. But those estimators are non-indepen-
dent, and it is not trivial that the minimum tree length
variance estimator is equal to the sum of minimum variance
branch length estimators. Moreover, it is easily seen from
above equations that this result extends to any diagonal V
matrix.

Appendix 3

In this appendix, we prove Theorem 2. The line of
reasoning is similar to Rzhetsky and Nei’s (1993) for the
OLS version of ME, but, to provide an independent proof,
we include all of the relevant details.

We first introduce some more notation and defini-
tions. Removing any branch in T induces a split (or
bipartition) of the taxon set, which is denoted as X j Y,
where X and Y are the two induced subsets. The set of

FIG. 5.—Type I and Type II error versus maximum pairwise divergence. NoTE.—See note to figure 3. The maximum pairwise divergence is measured
on the true tree in expected number of substitutions per site.
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splits induced by T is denoted as S(T). Letting X j Y be any
split, we define the split metric DX j Y ¼ (d

X j Y
ij ) by: d

X j Y
ij ¼ 1

when i 6¼ j and j fi, jg \ Xj ¼ 1, and d
X j Y
ij

¼ 0 otherwise. DX jY is the metric that is obtained from
T by having all branch lengths equal to zero, except for
the branch corresponding to X j Y, which has length 1. Let
D be the metric corresponding to T and l(X j Y) be the
length in T of the branch inducing X j Y. It is easily seen
(Bandelt and Dress 1992) that:

D ¼
X

X j Y2SðTÞ
lðX j YÞDX j Y: ð14Þ

Balanced tree length is a linear function of D (see equation
1). Let l̂l(W, D) denote the estimated length of any tree
topology W when �¼D. We then have from equation 14:

l̂lðW;DÞ ¼
X

X j Y2SðTÞ
lðX j YÞ̂llðW;DX j YÞ:

To demonstrate l̂l(W, D) . l̂l(T, D) it is sufficient to
demonstrate that this inequality holds for any split
metric of T. If X j Y is in both S(T) and S(W), one sees
from equations 2 and 3 that l̂l(W, DX j Y) ¼ l̂l(T, DX jY) ¼ 1.
Because W and T are different, at least one split of T is not
in W. Let us suppose X j Y belongs to S(T) but not S(W). In
this case, we will demonstrate:

l̂lðW;DX j YÞ . l̂lðT;DX j YÞ ¼ 1: ð15Þ

We color the leaves of W according to X j Y: let X be
colored white and Y be colored black. Following the
proof of Rzhetsky and Nei, we shall change the tree
topology W to a tree topology W9 that splits X from Y via
a series of topological transformations, W ¼ W0 ! W1

!� � �Wt ¼ W9. Each transformation Wi !Wiþ1 (1) merges
two disjoint monochromatic clusters into one (or four into

two), and (2) decreases the estimated length of the
corresponding tree. Because of (1), the number of clusters
decreases until we have one branch with all the black
leaves on one side and all the white ones on the other side;
i.e., the corresponding topology splits X from Y and has
length 1 (see above). Because of (2), we have a guarantee
that the estimated length of W is larger than 1.

There are two types of transformations that we shall use
as we move from W to W9. For consistency with Rzhetsky
and Nei (1993), we shall refer to them as transformations of
Type I (fig. 7) and Type II (fig. 8), respectively. It is easily
seen that any black-and-white leaf coloring of any binary
tree either splits the black-and-white leaves with one branch,
or contains a Type I or Type II configuration.

Consider the Type I transformation, with A1, A2, B,
and C as in figure 7. We use equation 5, which expresses
the change in the tree length as a result of an NNI:

l̂lðwiÞ � l̂lðwiþ1Þ ¼
1

4
ðdWi

A1B
þ dWi

A2C
� dWi

BC � dWi

A1A2
Þ

¼ 1

4
ð1 þ dWi

A2C
� dWi

BC � 0Þ . 0 ð16Þ

The inequality follows from the assumption that C is not
monochromatically white, and thus dWi

BC , 1.
Now consider the Type II transformation. Because

the second step corresponds to two Type I transformation
(swapping B1 and A2, and then C and A2), we need only to
show that the first step detailed in figure 8 decreases tree
size. Without loss of generality, we assume that C is not
monochromatically black (otherwise, we could perform
a Type I transformation at this juncture). Let pC be the
distance from C to either of the white subtrees; i.e., pC ¼
dWi

A1C
¼ dWi

A2C
. Because C is not monochromatically black,

we note that pC , 1. Consider Wi and W�
i (fig. 8) and apply

equation 5 to the swap between B1 and C. We obtain:

FIG. 6.—Type I and Type II error versus covarion parameter. NoTE.—See note to figure 3. The covarion parameter is the expected number of rate
changes per site in the whole tree; 0.0 corresponds to the standard discrete gamma distribution of rates.
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l̂lðWiÞ � l̂lðW�

i Þ ¼
1

4
ðdWi

A1B1
þ dWi

ðA2B2ÞC � dWi

A1C
� dWi

B1ðA2B2ÞÞ

¼ 1

4
1 þ 1

2
pC þ

1

2
dWi

B2C
� pC �

1

2

� �

¼ 1

8
ð1 þ dWi

B2C
� pCÞ . 0;

ð17Þ
where the inequality follows from our assumption.

Equations 16 and 17 demonstrate that the lengths of
the trees Wi are monotonically decreasing as i ¼ 0, . . . ,
t, and thus l̂l(W) . l̂l(W9). The split X j Y was chosen
arbitrarily from S(T)�S(W), and thus Inequality (15) holds
for all of the splits in this set. This concludes the proof of
Theorem 2. It has to be noted that only NNIs are used in
this proof; thus, we have also demonstrated the consis-
tency of our BNNI algorithm when restricted to split
metrics.

Appendix 4

In this appendix, we prove Theorem 3. Consider a tree
T that is a local minimum under the BNNI topology
search. We first demonstrate that every internal branch e
has positive length estimate. Consider figure 1 and
equation 5: Because T is a local minimum, swapping
subtrees B and C increases the tree length, and therefore:

dTAB þ dTCD , dTAC þ dTBD:

A similar argument regarding the swap of B and D
proves that:

dTAB þ dTCD , dTAD þ dTBC:

It follows from the two above inequalities and from
equation 2 that l̂l(e) is positive for any internal branch. Now
let e be an external branch and consider equation 8. The
inner bracket is positive as long as � satisfies the triangle
inequality, i.e., is a distance. This concludes the proof of
Theorem 3.
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