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Abstract
This paper provides a set of necessary conditions for the existence of

credible incentive equilibria. We study the cases of static games and dy-
namic games with open-loop strategies. We conclude that credible incen-
tive equilibria with di�erentiable incentive functions do not exist without
strong conditions on the payo� functions of the players. On the other
hand, for piecewise-di�erentiable incentive functions, an in�nity of solu-
tions is usually possible.

1 Introduction

The topic of this paper is a class of constrained equilibria in games, known as
�Incentive Equilibria�. The principle of incentive equilibria has been developed
for dynamic games by Ehtamo and Hämäläinen [1, 2], inspired from the work of
Osborne [9] about the de�nition of a �quota rule� able to explain the stability
of a Cartel. The concept has since been used for several applications in the
Management of Natural Resources or in Marketing, by Ehtamo and Hämäläinen
[3, 4], in discrete-time as well as in continuous-time, by Jørgensen and Zaccour
in continuous-time games [5, 6, 7], and recently by Martín-Herrán and Zaccour
[8].

The general reason for studying incentives is the wish to construct a game
in which players are induced to cooperate. This is done by de�ning a desired
outcome E∗ (normally, a Pareto solution) upon which all players agree, and a
reaction rule. Each player is assumed to retaliate to a deviation of the opponent,
with respect to the agreed outcome, by applying this rule. This reaction rule
is called the incentive function. If it is well chosen, the optimal behavior for
player i is to play E∗i , if she believes that her opponent implements her incentive
function. This converts E∗ into a (constrained) equilibrium. The issue is then
to provide reasons justifying why a player would indeed chose to play according
to her incentive function, when observing a deviation from the agreed outcome.
A necessary condition for this, called �credibility�, is used in the literature.
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Credibility holds if every player, if faced with a deviation from her opponent,
would prefer to follow the incentive rather than sticking to her equilibrium
value. Credibility is a minimum requirement for one to expect that the incentive
design will be followed by the players. It is not asked that each player's optimal
behavior is to apply the incentive, but just that they do not lose by doing so,
as compared to letting the opponent deviate without doing anything.

The literature on incentive equilibria provides a number of game situations
where incentive equilibria are computed, often on a ad hoc basis. The issue
of credibility is less often discussed in details. The purpose of this paper is to
provide general �rst-order necessary conditions bearing on the payo� functions
and the incentive functions, under which the existence of credible equilibria is
possible, subject to appropriate second-order conditions.

This turns out to be possible, due to the fact that conditions for the existence
of incentive equilibria, and for credibility, can be expressed as optimization
problems. The �rst-order conditions of these problems provide conditions for
the existence of credible incentive equilibria, for static games and for dynamic
games with open-loop strategies.

It turns out that considering di�erentiable and credible incentive functions
implies very strong conditions on pro�t functions. Since they are not usually
met in practice, no such credible equilibria can be constructed. In order to
circumvent this problem, we have considered two possibilities. The �rst one is
to remove the di�erentiability condition [9, 3]. In this case, a multiplicity of
solutions is indeed possible (Corollary 3.1). The second idea is to remove the
requirement that the equilibrium point should be a Pareto optimum. In that
case, in particular, the Nash equilibrium with constant incentive functions is a
(weak) credible incentive equilibrium (Theorem 3.1).

The paper is organized as follows. We begin with the de�nition of incentive
equilibria and credibility, in Section 2. Then we study the case of static games
in Section 3. The results are then generalized to dynamic games with open-loop
strategies, in Section 4. We �nish the paper with an application in Section 5,
and conclusions in Section 6.

2 De�nitions

Consider a two-player game. The strategy of player i will be denoted by Ei.
This strategy belongs to a suitable strategy space Σi. The payo� function of
player i is a mapping:

Ji : Σ1 × Σ2 → R .

De�nition 2.1 (Incentive equilibrium). Consider a Pareto optimum (E∗1 , E∗2 )
of the game. An incentive equilibrium strategy at this optimum is a pair of map-
pings (Ψ1,Ψ2), with Ψ1 : Σ2 → Σ1, Ψ2 : Σ1 → Σ2, and such that:

J1(E1,Ψ2(E1)) ≤ J1(E∗1 ,Ψ2(E∗1 )) ∀E1 ∈ Σ1 (1)

J2(Ψ1(E2), E2) ≤ J2(Ψ1(E∗2 ), E∗2 ) ∀E2 ∈ Σ2 (2)

Ψ1(E∗2 ) = E∗1 Ψ2(E∗1 ) = E∗2 . (3)

De�nition 2.2 (Credible incentive equilibrium). The pair (Ψ1,Ψ2) is a
credible incentive equilibrium at (E∗1 , E∗2 ) if it is an incentive equilibrium, and
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if there exists a subset Σ′1 × Σ′2 of Σ1 × Σ2 such that:

J1(Ψ1(E2), E2) ≥ J1(E∗1 , E2) , (4)

J2(E1,Ψ2(E1)) ≥ J2(E1, E
∗
2 ) , (5)

for all E1 ∈ Σ′1 and E2 ∈ Σ′2.

Observe that this de�nition depends on some subset Σ′ = Σ′1×Σ′2 of strate-
gies. The ideal situation would be that the credibility conditions hold for any
possible deviation. Asking for such a global credibility seems to be a very strong
requirement, and most examples proposed in the literature are consistent with
respect to a subset of all possible deviations. Another possibility would have
been to de�ne a locally credible equilibrium, by requiring that the subset Σ′ be
a neighborhood of the equilibrium, involving all possible �small� deviations from
the equilibrium strategy. This is our approach for the case of static games, in
Section 3. For dynamic games however, we follow the usage of the literature and
we consider deviations of a particular kind, for which the term �neighborhood�
is not appropriate. This way, we obtain a rather weak notion of credibility,
but we avoid the complexity associated with using a topology on the space of
open-loop strategies. In any cases, an interesting problem is to �nd, for some
proposed equilibrium, the largest set of deviations for which this equilibrium is
credible.

We also introduce a weaker notion of credibility, in which the principle of
incentives is conserved, but where Pareto-optimality of the equilibrium is not
required:

De�nition 2.3 (Weak credible incentive equilibrium). A weak credible
incentive equilibrium is a couple of strategies (E∗1 , E∗2 ) and of incentives (Ψ1,Ψ2)
such that there exists a subset Σ′1×Σ′2 of Σ1×Σ2 such that (1)�(5) are satis�ed,
for all E1 ∈ Σ′1 and E2 ∈ Σ′2.

When there is a risk of confusion, we shall call an incentive equilibrium
according to De�nition 2.1 a �strong� incentive equilibrium.

3 The static case

We consider in this section the case of two-person static games, in which the
strategy space of both players is an open subset of R. Our objective is to obtain
necessary conditions for the existence of credible incentive equilibria, in the
sense de�ned in De�nitions 2.2 and 2.3, but with the stronger requirement that
the subset Σ′1 × Σ′2 be a neighborhood of the equilibrium.

For reasons that will become clear at the end of this section (Theorem 3.2),
the proper setting for studying credibility is that of incentive functions with
the following features: they are continuous, piecewise di�erentiable (usually,
only piecewise a�ne functions are considered), but they are not necessarily
di�erentiable at the incentive equilibrium point E∗ = (E∗1 , E∗2 ).

Accordingly, we shall assume that:

Ψi(Ej) =
{

Ψ+
i (Ej) if Ej ≥ E∗j

Ψ−i (Ej) if Ej ≤ E∗j ,
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where Ψ+
i and Ψ−i are functions that are di�erentiable, including at Ej = E∗j .

We shall denote:

a+
i = (Ψ+

i )′(E∗j ) , and a−i = (Ψ−i )′(E∗j ) .

Throughout this section, the payo� functions Ji will be assumed to be di�eren-
tiable, with continuous partial derivatives. We shall denote in addition

Ai = − ∂Ji/∂Ei

∂Ji/∂Ej
(E∗1 , E∗2 ) , (6)

when the denominator is not zero.

3.1 Necessary conditions for equilibria

We �rst begin by considering weak incentive equilibria. We state a lemma
characterizing the possible values of the derivatives a±i of the credible incentive
functions, according to the sign of the partial derivatives ∂Ji/∂Ej . Next, we
specialize this result to the case of (strong) incentive equilibria, that is, when
E∗ is a Pareto optimum (Corollary 3.1). Finally, we discuss the case where
the incentive function is required to be di�erentiable at the equilibrium point
(Corollary 3.2).

Lemma 3.1. Let (E∗1 , E∗2 ) and (Ψ1,Ψ2) be a weak credible incentive equilibrium.
Then it is necessary that one of the following cases hold for a±1 , the left and right
derivatives of Ψ1, evaluated at (E∗1 , E∗2 ), and for A2 de�ned by (6):

a/ Either ∂J1/∂E1 < 0 and ∂J2/∂E1 < 0, or ∂J1/∂E1 > 0 and ∂J2/∂E1 >
0. Then necessarily A2 = 0 and a+

1 = a−1 = 0.

b/ ∂J1/∂E1 < 0 and ∂J2/∂E1 > 0. Then

a+
1 ≤ min(A2, 0) ≤ max(A2, 0) ≤ a−1 .

c/ ∂J1/∂E1 > 0 and ∂J2/∂E1 < 0. Then

a−1 ≤ min(A2, 0) ≤ max(A2, 0) ≤ a+
1 .

d/ ∂J1/∂E1 = 0 and ∂J2/∂E1 < 0. Then

a−1 ≤ A2 ≤ a+
1 .

e/ ∂J1/∂E1 = 0 and ∂J2/∂E1 > 0. Then

a+
1 ≤ A2 ≤ a−1 .

f/ ∂J1/∂E1 > 0 and ∂J2/∂E1 = 0. Then necessarily A2 = 0, and

a−1 ≤ 0 ≤ a+
1 .

g/ ∂J1/∂E1 < 0 and ∂J2/∂E1 = 0. Then necessarily A2 = 0, and

a+
1 ≤ 0 ≤ a−1 .
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h/ ∂J1/∂E1 = ∂J2/∂E1 = 0. Then necessarily A2 = 0, but all values for a+
1

and a−1 are allowed.

A symmetric classi�cation exists for Ψ2.

Proof. First, consider Equation (2) in the form:

J2(Ψ1(E2), E2) − J2(Ψ1(E∗2 ), E∗2 ) ≤ 0 , ∀E2 .

Since equality obtains for E2 = E∗2 (Ψ1 satis�es (3)), this is equivalent to writing:

E∗2 ∈ argmaxE2
{J2(Ψ1(E2), E2) − J2(Ψ1(E∗2 ), E∗2 )} . (7)

Consider the case E2 ≥ E∗2 . The �rst order condition of this constrained maxi-
mization problem is

∂J2

∂E2
(E∗1 , E∗2 ) + a+

1

∂J2

∂E1
(E∗1 , E∗2 ) ≤ 0 . (8)

In other words, the function is necessarily nonincreasing locally for E2 ≥ E∗2 .
Next, consider Inequality (4), the credibility condition for player 1, in the form:

J1(Ψ1(E2), E2) − J1(E∗1 , E2) ≥ 0 ,

for all E2 in a neighborhood of E∗2 . Since equality obtains with E2 = E∗2 , E∗2 is
solution of the associated minimization problem. Assume again E2 ≥ E∗2 . The
�rst order condition of this constrained optimization problem is:

0 ≤ a+
1

∂J1

∂E1
(E∗1 , E∗2 ) +

∂J1

∂E2
(E∗1 , E∗2 ) − ∂J1

∂E2
(E∗1 , E∗2 )

= a+
1

∂J1

∂E1
(E∗1 , E∗2 ) .

Consider for instance case c/. Since ∂J1/∂E1 > 0, this last condition reduces
to: a+

1 ≥ 0. On the other hand, since ∂J2/∂E1 < 0, Condition (8) is equivalent
to a+

1 ≥ A2. Combining the two constraints, we obtain:

a+
1 ≥ max(A2, 0) .

Consider now the case where E2 ≤ E∗2 . The �rst order condition for the opti-
mization problem (7) under this constraint is:

∂J2

∂E2
(E∗1 , E∗2 ) + a−1

∂J2

∂E1
(E∗1 , E∗2 ) ≥ 0 . (9)

Similarly, the credibility condition for E2 ≤ E∗2 becomes:

0 ≥ a−1
∂J1

∂E1
(E∗1 , E∗2 ) .

Still for case c/, these two constraints can be summarized as: a1 ≤ min(A2, 0).
Hence the conclusion for this case. The other cases are easily obtained by
inspection.
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Observe that we have not imposed restrictions a priori on the sign of the
derivatives of the functions Ji in order to be as exhaustive as possible. In usual
applications in Economics, the function Ji will be increasing with respect to Ei,
in which case only cases a/, c/ or perhaps f/ are relevant.

Remark 3.1. The proof of Lemma 3.1 can be adapted to provide a su�cient
condition for a pair of functions Ψi to be an equilibrium: assume that in case c/,
the inequalities constraining a±1 hold in the strict sense. Then the function Ψ1

is a weak incentive equilibrium. Indeed, under this condition, the function to
be maximized in (7) is strictly increasing for E2 ↗ E∗2 , and strictly decreasing
for E2 ↘ E∗2 . This implies that E∗2 is a local maximum. Similarly for the
minimization problem which represents credibility.

The �rst corollary of Lemma 3.1 is a set of necessary conditions for the
existence of a strong credible incentive equilibrium.

Corollary 3.1. Let (E∗1 , E∗2 ) and (Ψ1,Ψ2) be a credible incentive equilibrium.
Then, necessarily, one of the following �ve cases must hold:

a/ ∂J1/∂E1 > 0, ∂J1/∂E2 < 0, ∂J2/∂E1 < 0 and ∂J2/∂E2 > 0. Then

a−1 ≤ 0 ≤ A2 ≤ a+
1 , and a−2 ≤ 0 ≤ A1 ≤ a+

2 .

b/ ∂J1/∂E1 < 0, ∂J1/∂E2 > 0, ∂J2/∂E1 > 0 and ∂J2/∂E2 < 0. Then

a+
1 ≤ 0 ≤ A2 ≤ a−1 , and a+

2 ≤ 0 ≤ A1 ≤ a−2 .

c/ ∂J1/∂E1 > 0, ∂J1/∂E2 > 0, ∂J2/∂E1 < 0 and ∂J2/∂E2 < 0. Then

a−1 ≤ A2 ≤ 0 ≤ a+
1 , and a+

2 ≤ A1 ≤ 0 ≤ a−2 .

d/ ∂J1/∂E1 < 0, ∂J1/∂E2 < 0, ∂J2/∂E1 > 0 and ∂J2/∂E2 > 0. Then

a+
1 ≤ A2 ≤ 0 ≤ a−1 , and a−2 ≤ A1 ≤ 0 ≤ a+

2 .

e/ ∂J1/∂E1 = ∂J1/∂E2 = ∂J2/∂E1 = ∂J2/∂E2 = 0. Then all values for a±i
are allowed.

Proof. Consider the maximization problem for a Pareto optimum of the game:
for some α ∈ (0, 1),

(E∗1 , E∗2 ) = argmax(E1,E2){αJ1(E1, E2) + (1− α)J2(E1, E2)} .

The �rst order conditions for this optimum are:

α
∂Ji

∂Ei
(E∗1 , E∗2 ) + (1− α)

∂Jj

∂Ei
(E∗1 , E∗2 ) = 0, i = 1, 2, j 6= i . (10)

Assume �rst that none of the four partial derivatives ∂Ji/∂Ej is zero. The
conditions above is equivalent to:

∂J1/∂E1

∂J2/∂E1
=

∂J2/∂E1

∂J2/∂E2
=

α− 1
α

.
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This in turn implies that:

A1A2 =
∂J1/∂E1

∂J1/∂E2

∂J2/∂E2

∂J2/∂E1
=

∂J1/∂E1

∂J2/∂E1

∂J2/∂E2

∂J1/∂E2
=

α− 1
α

α

α− 1
= 1 .

(11)
These two equalities impose sign constraints on the partial derivatives so that
only the four combinations listed in cases a/ to d/ are possible. For each of them,
the constraints on a±i and Aj are obtained from Lemma 3.1. For instance, case
b/ is the combination of cases b/ of this Lemma, for both players 1 and 2.

Next, suppose that one of the four derivatives, say ∂J1/∂E1, is zero. Then,
because of (10), ∂J2/∂E1 is null as well. According to Lemma 3.1, cases f/, g/
or h/, then A2 = 0 necessarily, that is: ∂J2/∂E2 = 0. Still because of (10), the
fourth partial derivative ∂J2/∂E1 is zero. It follows, that the relevant case of
Lemma 3.1 is case h/: all values of a±i are possible. The conclusion holds if any
other ∂Ji/∂Ej is assumed to be zero initially.

Remark 3.2. In all the cases listed in Corollary 3.1, there exists an in�nity of
possibilities for a±i . Consider for instance case a/. According to Remark 3.1, if
the a±i are chosen such that inequalities are strict: a−1 < 0, A2 < a+

1 , a−2 < 0
and A1 < a+

2 , then the equilibrium indeed credible, whatever the exact form of
the functions Ψi, provided that their derivatives at E∗ are a±i . Similarly for the
other cases.

On the other hand, all examples in the cited literature select the particular
values a+

i = Aj or a−i = Aj , according to the situation. This choice has the
interesting consequence that

ai aj = 1,

which derives from the identity (11). However, there is no guarantee that this
choice will ensure credibility, without additional assumptions on payo� func-
tions.

The second corollary of Lemma 3.1 is a set of necessary conditions for the
existence of a weak incentive equilibrium with di�erentiable incentive functions.

Corollary 3.2. Let (E∗1 , E∗2 ) and (Ψ1,Ψ2) be a weak credible incentive equi-
librium, with incentive functions that are di�erentiable. Then, denoting ai =
(Ψ′i)(E

∗
j ), we have:

a/ if a1 = 0 and a2 = 0, then necessarily

∂Ji

∂Ei
(E∗1 , E∗2 ) = 0 , i = 1, 2 ;

b/ if a1 6= 0 and a2 6= 0, then necessarily

∂Ji

∂Ej
(E∗1 , E∗2 ) = 0 , i, j = 1, 2 ;

c/ if a1 = 0 and a2 6= 0, then necessarily

∂J2

∂E2
(E∗1 , E∗2 ) = 0 ,

∂J1

∂E1
(E∗1 , E∗2 ) + a2

∂J1

∂E2
(E∗1 , E∗2 ) = 0 ;
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d/ if a1 6= 0 and a2 = 0, then necessarily

∂J1

∂E1
(E∗1 , E∗2 ) = 0 ,

∂J2

∂E1
(E∗1 , E∗2 ) a1 +

∂J2

∂E2
(E∗1 , E∗2 ) = 0 .

Proof. If the incentive function is di�erentiable, then a+
i = a−i = ai. Imposing

this condition to the di�erent cases of Lemma 3.1 gives the result.

3.2 Applications

3.2.1 Nash equilibria

One recognizes in case a/ of Corollary 3.2 the �rst-order condition for a Nash
equilibrium. In this case, the derivatives of both incentive functions at the
equilibrium vanish. This suggests that among candidate weak credible incentive
equilibria, one �nds Nash equilibria with constant incentives. Indeed, we have:

Theorem 3.1. A Nash equilibrium (E∗1 , E∗2 ) is a weak credible incentive equi-
librium for the (constant) incentive functions: Ψi(Ej) = E∗i .

Proof. A Nash equilibrium (E∗1 , E∗2 ) is de�ned by Equations (1) and (2) with
Ψi(Ej) replaced by E∗i . The constant incentives Ψi(Ej) = E∗i , evidently satisfy
Equations (3). According to the previous lemma, the credibility conditions are
also satis�ed.

3.2.2 Di�erentiable incentive equilibria

We now state the result that the existence of a credible incentive equilibrium,
with di�erentiable functions, requires strong properties on the payo� functions.

Theorem 3.2. Let (Ψ1,Ψ2) be a credible incentive equilibrium at a Pareto
optimum, where the incentive functions Ψi are di�erentiable. Then, necessarily:

∂Ji

∂Ej
(E∗1 , E∗2 ) = 0 , i, j = 1, 2 .

Proof. If (E∗1 , E∗2 ) is a Pareto optimum of the game, then Conditions (10) hold.
Joining these conditions to either of the four cases of Corollary 3.2 yields the
result.

Remark 3.3. The condition stated in Theorem 3.2 is equivalent to saying that
E∗ is the simultaneous critical points of both payo� functions. Conversely, if a
simultaneous maximum exists, then it is an incentive equilibrium, for any incen-
tive functions Ψi. Indeed, for any pair of functions Ψi which satisfy Equation
(3), then Inequalities (1) and (2) hold.

For credibility however, although Corollary 3.1 does not impose any condi-
tion on the derivatives of Ψi, all incentive functions are not credible. Consider
for instance the payo� function J1(E1, E2) = −(E1 + E2)2 − E2

1 . Obviously,
E∗ = (0, 0) is the unique global maximum. Assume player 1 has the incentive
function Ψ1. Then the credibility condition (4) writes as:

0 ≤ − (Ψ1(E2) + E2)2 −Ψ1(E2) + E2
2 = − 2Ψ1(E2)(Ψ1(E2) + E2) .

Therefore, only incentive functions such that 0 ≤ Ψ1(E2) ≤ −E2 or −E2 ≤
Ψ1(E2) ≤ 0 are credible.
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The practical consequence of Theorem 3.2 is that no credible incentive equi-
libria with di�erentiable functions can exist, unless both payo� functions have
the (rare) feature to possess a common global maximum. In that case, a second-
order analysis is necessary to determine which incentive functions are credible.

3.2.3 Osborne's example

The example developed in [9] is that of a static oligopoly. In this case, the
strategies Ei are the level of production of the �rms, and Ji(·) are their pro�t
functions. They have the property that ∂Ji/∂Ei > 0 and ∂Ji/∂Ej < 0. The
incentive function1 proposed by Osborne is:

Ψi(Ej) = max

{
E∗i , E∗i +

E∗i
E∗j

(Ej − E∗j )

}
, (12)

where (E∗1 , . . . , E∗n) is a particular Pareto outcome of the oligopoly, the �Cartel
point�. This point is assumed to have the property that, for all i and j,

E∗i
∂Jj

∂Ei
(E∗) = E∗j

∂Ji

∂Ej
(E∗) .

Restricting the analysis to a duopoly, the necessary condition for being the
maximum of the joint pro�t imposes (see (10)):

∂Ji

∂Ei
(E∗) +

∂Jj

∂Ei
(E∗) = 0 ,

for i, j = 1, 2. Accordingly, the quantities Ai de�ned in (6) are: Ai = E∗j /E∗i ,
and are positive, since the E∗j are positive. Applying Corollary 3.1, we see that
case a/ is the only relevant one given the assumptions on J i, and we conclude
that the incentive may be credible only if:

a−i ≤ 0 ≤ E∗i
E∗j

≤ a+
i .

The incentive function Ψi de�ned in (12) is such that: a−i = 0 and a+
i = E∗i /E∗j .

This equilibrium is indeed credible, in the local sense of De�nition 2.2, under
suitable concavity assumptions on Ji. Osborne observes that this credibility is
usually not global: for large deviations with respect to E∗, Condition (4) is not
satis�ed anymore.

4 The case of Nash Open Loop equilibria

Assume now that the game played is dynamic, and that players have open-loop
strategies. Accordingly, the strategy space Σi of player i is the set of measurable
functions from R+ to some open set Ei of R. The state of the system is denoted
by x(t), and evolves according to the di�erential equation

ẋ(t) = f(E1(t), E2(t), x(t)) , x(0) = x0 , (13)

1The topic of Osborne's paper is the stability of a Cartel. In this context, the �incentive�
function is actually a threat function, with which members of the Cartel would retaliate to
potential cheaters.
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where Ei(t) is the action of player i at time t according to his strategy Ei. The
payo� of player i is given by:

Ji(E1, E2;x0) =
∫ T

0

e−ρtFi(E1(t), E2(t), x(t)) dt , (14)

with a time horizon T < +∞ and a discount factor ρ ≥ 0.
According to De�nition 2.1, an incentive function Ψi in this context should

be a function mapping any measurable functions from R to Ej to a measurable
function from R to Ei. A simpler form of incentives results from the idea that a
static incentive equilibrium is required at each instant in time. We shall restrict
here our discussion to a�ne incentive equilibria, de�ned as follows:

De�nition 4.1 (A�ne incentive equilibrium). An incentive equilibrium
(Ψ1,Ψ2) at (E∗1 , E∗2 ) is said to be a�ne if Ψ1 and Ψ2 are of the form:

Ψ1(E2)(t) = E∗1 (t) + v1(t)(E2(t)− E∗2 (t)) ,

Ψ2(E1)(t) = E∗2 (t) + v2(t)(E1(t)− E∗1 (t)) ,

for some scalar functions v1(t) and v2(t).

In this section, we shall establish su�cient conditions for an a�ne equilib-
rium to be a credible incentive equilibrium, in the weak or the strong sense.
We focus the analysis on a�ne incentive functions which we are di�erentiable.
It will turn out that the analysis of the open-loop case is very similar to that
of the static case. The extension of the results of Section 3 to piecewise a�ne
incentive equilibria is actually straightforward (see Remark 4.3).

We begin with a basic result, in which the problem of �nding a credible a�ne
incentive equilibrium is seen as a dynamic optimization problem.

Lemma 4.1. A credible a�ne incentive equilibrium at a Pareto optimum is a
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solution of the following system of equations, for some α1 > 0 and α2 > 0:
0 = α1

∂F1

∂Ei
+ α2

∂F2

∂Ei
+ λ∗

∂f

∂Ei
i = 1, 2

λ̇∗ = −α1
∂F1

∂x
− α2

∂F2

∂x
− λ∗

∂f

∂x
+ ρλ∗ ; λ∗(T ) = 0

ẋ∗ = f ; x(0) = x0

(15)



0 =
∂F1

∂E1
+ v2

∂F1

∂E2
+ λ1

(
∂f

∂E1
+ v2

∂f

∂E2

)
λ̇1 = −∂F1

∂x
− λ1 ∂f

∂x
+ ρλ1 ; λ1(T ) = 0

0 = v1
∂F2

∂E1
+

∂F2

∂E2
+ λ2

(
v1

∂f

∂E1
+

∂f

∂E2

)
λ̇2 = −∂F2

∂x
− λ2 ∂f

∂x
+ ρλ2 ; λ2(T ) = 0

(16)



0 = −v1
∂F1

∂E1
+ λ1 ∂f

∂E2
+ λ1c

(
v1

∂f

∂E1
+

∂f

∂E2

)
λ̇1c =

∂F1

∂x
− λ1c ∂f

∂x
+ ρλ1c ; λ1c(T ) = 0

0 = −v2
∂F2

∂E2
+ λ2 ∂f

∂E1
+ λ2c

(
∂f

∂E1
+ v2

∂f

∂E2

)
λ̇2c =

∂F2

∂x
− λ2c ∂f

∂x
+ ρλ2c ; λ2c(T ) = 0 ,

(17)

all functions being evaluated at (E∗1 , E∗2 , x∗). The unknowns are

• the cooperative solution E∗1 and E∗2 ;

• the incentive coe�cients v1(t) and v2(t);

• the state variable x∗(t);

• the adjoint variables λ∗(t), λ1(t), λ2(t), λ1c(t) and λ2c(t).

Proof. First, E∗i is required to be the solution for the cooperative problem.
Equations (15) correspond to the �rst order necessary conditions to the opti-
mization problem which de�nes the cooperative solution for the joint payo�:

max
E1,E2

[J1(E1, E2, x0) + J2(E1, E2, x0)] = max
E1,E2

2∑
i=1

αi

∫ T

0

e−ρtFi(E1(t), E2(t), x(t)) dt ,

such that
ẋ(t) = f(E1(t), E2(t), x(t)), x(0) = x0.

In fact, the Hamiltonian for this problem is

H∗(E1, E2, x, λ∗) = α1F1(E1, E2, x) + α2F2(E1, E2, x) + λ∗f(E1, E2, x)

and we easily recognize (15) as the �rst order necessary conditions for the opti-
mization of the Hamiltonian.

11



Second, (Ψ1,Ψ2) must be an incentive equilibrium at (E∗1 , E∗2 ). So vi(t),
i = 1, 2, must be the solution of the following optimization problems:

max
E1

J1(E1,Ψ2(E1), x0) = max
E1

∫ T

0

e−ρtF1(E1(t),Ψ2(E1), x1(t)) dt ,

such that
ẋ1(t) = f(E1(t),Ψ2(E1)(t), x1(t)), x1(0) = x0.

and

max
E2

J2(Ψ1(E2), E2, x0) = max
E2

∫ T

0

e−ρtF2(Ψ1(E2), E2, x
2(t)) dt ,

such that
ẋ2(t) = f(Ψ1(E2)(t), E2(t), x2(t)), x2(0) = x0.

For this problems the corresponding Hamiltonians are:

H1(E1, x, λ1) = F1(E1,Ψ2(E1), x) + λ1f(E1,Ψ2(E1), x)
H2(E2, x, λ2) = F2(Ψ1(E2), E2, x) + λ2f(Ψ1(E2), E2, x) .

and (16) gives the necessary conditions for optimization. Since the solution of
both optimization problems must be E∗1 and E∗2 , the optimal trajectory for the
state is

ẋi(t) = f(E∗1 (t), E∗2 (t), xi(t)), xi(0) = x0 ,

which coincides with the di�erential equation de�ning x∗ in (15). By uniqueness
of the solution of this equation, we have x1 ≡ x2 ≡ x∗.

Finally (17) corresponds to the credibility problem. Consider the point of
view of player 1. Following the argument in the proof of Lemma 3.1, the fol-
lowing conditions must hold:

D1(E2)
∆= J1(E∗1 , E2;x0) − J1(Ψ1(E2), E2;x0) ≤ 0 ,

for E2 in the neighborhood of E∗2 , where

J1(Ψ1(E2), E2;x0) =
∫ T

0

e−ρtF1(Ψ1(E2), E2, x
1a) dt ,

ẋ1a(t) = f(Ψ1(E2), E2, x
1a(t)), x1a(0) = x0 ,

and

J1(E∗1 , E2, x0) =
∫ T

0

e−ρtF1(E∗1 , E2, x
1c(t)) dt ,

ẋ1c(t) = f(E∗1 , E2, x
1c(t)), x1c(0) = x0.

Since D1(E∗2 ) = 0, credibility is equivalent to the optimization problem:

max
E2

D1(E2) = 0 .

For this problem the Hamiltonian H1c is:

H1c(E2, x
1a, x1c, λ1a, λ1c) = F1(E∗1 , E2, x

1c)− F1(Ψ1(E2), E2, x
1a)

+λ1cf(E∗1 , E2, x
1c) + λ1af(Ψ1(E2), E2, x

1a) .
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Conditions ∂H1c/∂E2 = 0 and λ̇1c = −∂H1c/∂x1c give the two �rst equations
of (17). Finally, the condition for the adjoint variable λ1a reads as:

λ̇1a = − ∂H1c

∂x1a
= − ∂F1

∂x
− λ1a ∂f

∂x
,

evaluated at (E∗1 , E∗2 , x∗). This equation coincides with that of λ1 in (16), so
that by uniqueness of the solution, λ1a ≡ λ1. A symmetric reasoning applies
for player 2, �nally yielding (17).

We conclude from this analysis that �nding a credible incentive equilibrium
with two players requires the solution of 12 equations with 10 unknowns. As in
the static case, the problem is therefore overconstrained, and is likely to have
solutions only if special conditions on the payo� functions are met.

On the other hand, removing the condition that the objective strategy be
a solution of the joint optimization problems removes 4 equations and two un-
knowns (the state variable x∗ and the adjoint variable λ∗). This results in a
system of 8 equations and 8 unknowns which may be easier to solve.

Remark 4.1. Observe that if cost functions are independent of the state, that
is, Fi(E1, E2, x) ≡ Fi(E1, E2), then all adjoint variables are zero. The remaining
system of equations has no solution unless ∂Fi/∂Ej = 0 for all i, j. This result
is Theorem 3.2.

We continue with a technical step towards the solution of the system of
equations (15)� (17).

Lemma 4.2. A credible a�ne incentive equilibrium at a Pareto optimum is a
solution of the system of equations (15), (16) and

0 = v1

(
∂F1

∂E1
+ λ1 ∂f

∂E1

)
0 = v2

(
∂F2

∂E2
+ λ2 ∂f

∂E2

) (18)

Proof. Considering the di�erential equations for λ1(t) and λ1c(t) in Equations
(16) and (17), one gets that

d

dt
(λ1 + λ1c) = (λ1 + λ1c)(t)

∂f

∂x
; (λ1 + λ1c)(T ) = 0 .

The solution of this di�erential equation is unique and identically zero. There-
fore, λ1(t) = −λ1c(t) for all t. A symmetric situation holds for λ2c. Replacing
in Equations (17) and simplifying yields (18).

We can now state the principal result, analogous to Corollary 3.2.

Theorem 4.1. A weak credible a�ne incentive equilibrium at E∗ may hold only
if one of the four following conditions is met at each time instant t:

i/ v1(t) = v2(t) = 0 and

∂Fi

∂Ei
+ λi ∂f

∂Ei
= 0 , i = 1, 2 .
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ii/ v1(t) 6= 0 and v2(t) 6= 0 and

∂Fi

∂Ej
+ λi ∂f

∂Ej
= 0 , i, j = 1, 2 .

iii/ v1(t) = 0 and v2(t) 6= 0 and

0 =
∂F2

∂E2
+ λ2 ∂f

∂E2

0 =
∂F1

∂E1
+ v2

∂F1

∂E2
+ λ1

(
∂f

∂E1
+ v2

∂f

∂E2

)
iv/ v1(t) 6= 0 and v2(t) = 0 and

0 =
∂F1

∂E1
+ λ1 ∂f

∂E1

0 =
∂F2

∂E2
+ v1

∂F2

∂E1
+ λ2

(
∂f

∂E2
+ v1

∂f

∂E1

)
.

Proof. To simplify the notation, let:

Cij =
∂Fi

∂Ej
+ λi ∂f

∂Ej
.

The equations necessarily satis�ed by a weak credible incentive equilibrium are:

C11 + v2C12 = 0 , C22 + v1C21 = 0 ,

v1C11 = 0 , v2C22 = 0 .

If v1 = v2 = 0, then the last equations hold, and the two �rst imply C11 =
C22 = 0. Hence i/.

If v1 6= 0 and v2 6= 0, the last equations imply C11 = C22 = 0. The two �rst
ones then imply C12 = C21 = 0. Hence ii/.

Finally, if v1 = 0 and v2 6= 0, then C22 = 0. This implies that the second
equation holds. Hence iii/. A symmetric argument holds in case iv/.

Corollary 4.1. A credible a�ne incentive equilibrium at a Pareto optimum E∗

may hold only if, at all time instants,

∂Fi

∂Ej
(E∗1 , E∗2 ) + λi ∂f

∂Ej
(E∗1 , E∗2 , x∗) = 0 , i, j = 1, 2 ,

where λi is solution of the di�erential equation:

λ̇i = − ∂Fi

∂x
− λi ∂f

∂x
+ ρλi , (19)

with λi(T ) = 0.

Proof. The conditions for Pareto optimality write, with the notation of the
previous proof, as:

α1C11 + α2C21 = 0 , α2C22 + α1C12 = 0 ,

where the αi are nonnegative. Combining these constraints with any of the four
cases in Theorem 4.1 results in Cij = 0 for all i and j.
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We have therefore a conclusion extending that of the static case. The neces-
sary conditions stated in Corollary 4.1 are that of a simultaneous maximum for
both payo� functions Ji. Therefore, the existence of a credible a�ne incentive
equilibrium is possible only if this very strong property holds.

We conclude this analysis with notes on extensions of the results stated.

Remark 4.2. The analysis can be extended to incentive functions Ψi of the
form:

Ψi(Ej)(t) = E∗i (t) + Vi(t, Ej(t)) , with Vi(t, E∗j (t)) ≡ 0 ,

of which the A�ne incentive functions of De�nition 4.1 are a special case. In
that case, Lemma 4.1 and Lemma 4.2 apply with

vi(t) =
∂Vi

∂Ej
(t, E∗j (t)) .

Remark 4.3. Lemma 4.1 corresponds, for the dynamic case, to Corollary
3.2 of the static case. It is straightforward to establish results corresponding
to Lemma 3.1 and Corollary 3.1 for piecewise-di�erentiable incentive functions.
Assuming the general form of Remark 4.2, we de�ne: Vi(t, Ej(t)) = V +

i (t, Ej(t))
if Ej(t) ≥ E∗j (t) and Vi(t, Ej(t)) = V −i (t, Ej(t)) if Ej(t) ≤ E∗j (t). The left and
right-derivatives are denoted as: v±i (t) = ∂V ±i /∂Ej(t, E∗j (t)).

The transposition of the results of Section 3 consists in replacing �∂Ji/∂Ej�
by �∂Fi/∂Ej +λi∂f/∂Ej�, where λi is solution of the di�erential equation (19),
and a±i by v±i (t).

Remark 4.4. The analysis can be extended to the in�nite-horizon case, by
substituting the transversality condition

lim
T→∞

e−ρT λ(T ) = 0

to �λ(T ) = 0� whenever relevant.

5 Case study

We apply in this section the previous result to a model borrowed to Martín-
Herrán and Zaccour [8]. We apply the results of Sections 3 and 4 to this case,
and identify the possible (locally) credible incentive equilibria. Next, taking
advantage of the existence of closed formulas, we investigate the extent of the
credibility: what are the maximal deviations allowed in order to preserve cred-
ibility.

The model is described by the following elements:

Ji(E1(·), E2(·);x0) =
∫ ∞

0

e−ρt (log(Ei(t))− φix(t)) dt , (20)

ẋ(t) = E1(t) + E2(t)− δx(t), x(0) = x0 .

Using the calculations reported in [8], it is easy to establish that the Pareto
solution corresponding to the maximization of

∑
i αiJi, is:

E∗i =
αi(δ + ρ)

α1φ1 + α2φ2
. (21)
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The Pareto-optimal control therefore does not depend on time2, a fact which
prompts the study of time-invariant strategies. We shall therefore successively
consider credible incentives restricted to such strategies, then the general case.

5.1 Static credibility

In this section, we consider only time-invariant strategies. The game is then
reduced to a two-player static game, and we can apply to it the results of
Section 3.

For two given real values e1 and e2, the total payo� of player i is given by:

Ji(e1, e2;x0) =
1
ρ

log(ei) −
φi

ρ(ρ + δ)
(e1 + e2) −

φix0

ρ + δ
.

Given two values for αi, the Pareto optimum is given by Equation (21). Com-
puting the derivatives of Ji, evaluated at this Pareto outcome, we obtain:

∂Ji

∂ei
=

1
ρe∗i

− φi

ρ(ρ + δ)
=

αj

αi

φj

ρ(ρ + δ)
,

∂Ji

∂ej
= − φi

ρ(ρ + δ)
,

so that the value of Ai de�ned by Equation (6) is:

Ai =
αjφj

αiφi
.

Applying Corollary 3.1, we �nd that we are in case a/, and we conclude that
an incentive function Ψi is credible if and only if, with a−i and a+

i the left and
right-derivatives of Ψi evaluated at ej = e∗j :

a−i ≤ 0 ≤ αiφi

αjφj
≤ a+

i . (22)

The case α1 = α2 has been studied in [8], where it is proved that φi/φj is indeed
the slope of a credible incentive function.

The conditions provided by Corollary 3.1 being only su�cient, we now inves-
tigate whether incentive functions with left and right-slopes constrained by (22)
are credible, locally or for any deviation. To that end, we select the piecewise
a�ne function:

Ψi(ej) = max
{

e∗i , e
∗
i +

αiφi

αjφj
(ej − e∗j )

}
.

For Player 1, the credibility condition (4) becomes: for e2 ≥ e∗2:

0 ≤ log
e∗1 + α1φ1/α2φ2(e2 − e∗2)

e∗1
− φ1

α1φ1

α2φ2
(e2 − e∗2) .

The right-hand side of this inequality is a function of e2, say h(e2), which
vanishes at e2 = e∗2, has a positive derivative at this point, and tends to −∞
when e2 grows. Consequently, there exists an interval [e∗2, ē2] where the condition
is satis�ed. In order to compute a closed-form lower bound for ē2, we use two

2It is shown in [8] that this is a feature common to all linear-state di�erential games.
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methods. The �rst one is to �nd the maximal interval over which the function
h2 is increasing, therefore positive. The second one consists in using the bound
log(1 + x) ≥ x− x2/2. After straightforward calculations, one �nds:

ē2 ≥ e∗2 max

{
1 +

α2

α1

(
φ2

φ1

)2

, 1 +
2α2(φ2)2

φ1(α1φ1 + α2φ2)

}
.

5.2 Dynamic credibility

We now turn to the dynamic case, and establish what are the credible a�ne
incentive functions. According to Remark 4.3, we can �nd credibility conditions
on the derivatives of the functions Ψi. These turn out to be the same as in the
static case: see Condition (22).

Next, in order to check the extent of the credibility, we restrict the computa-
tions to the case α1 = α2 = 1. This implies that e∗1 = e∗2 = e∗ = (δ+ρ)/(φ1+φ2).
We select the incentive function:

Ψi(Ej)(t) = e∗ + max
{

φi

φj
(Ej(t)− e∗), 0

}
.

According to Condition (4), credibility for player 1 holds if and only if, for any
strategy E2(·) of player 2 in some vicinity of e∗,∫ +∞

0

[
log(Ψ1(E2(t)))− φ1x

Ψ(t)− log(e∗) + φ1x
∗(t)

]
e−ρt dt ≥ 0 , (23)

where the two trajectories xΨ(·) and x∗(·) are the respective solutions of

ẋ = e∗ +
φ1

φ2
max(0, E2(t)− e∗) + E2(t)− δx(t) ,

ẋ = e∗ + E2(t)− δx(t) ,

with initial condition x(0) = x0. Assume that there exists a constant M ≥ 1
such that for all t,

E2(t) ≤ M e∗ . (24)

Integrating the di�erential equations, we have:

xΨ(t)− x∗(t) =
∫ t

0

φ1

φ2
max(E2(t)− e∗, 0)eδ(u−t) dt

≤ φ1

φ2
(M − 1)

1− eδt

δ
.

Denote by H the integral in Condition (23). Using the inequality above, and
the bound log(1 + max(x, 0)) ≥ x− x2/2, we have:

H ≥
∫ +∞

0

[
φ1

φ2
(
E2(t)

e∗
− 1)− φ2

1

2φ2
2

(
E2(t)

e∗
− 1)2 − φ1

φ2
(M − 1)

1− eδt

δ

]
e−ρt dt

≥
∫ +∞

0

[
φ1

φ2
+

2φ2
1

φ2
2

]
E2(t)

e∗
e−ρtdt +

1
ρ

[
−φ2

1

φ2
2

M2 − φ1

φ2
+

φ2
1

φ2
2

− φ2
1

φ2
2

M − 1
ρ + δ

e∗
]

.
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A su�cient condition for credibility is therefore that the strategy E2(·) satis�es
simultaneously: (24) and∫ +∞

0

[
φ1

φ2
+

2φ2
1

φ2
2

]
E2(t)

e∗
e−ρtdt ≥ 1

ρ

[
φ2

1

φ2
2

(M2 − 1) +
φ1

φ2
+

φ2
1

φ2
2

M − 1
ρ + δ

e∗
]

,

for some constant M .
For instance, it can be checked that the equilibrium is credible with respect

to strategies of the form

E2(t) = eN + (e∗ − eN )e−αt , or E2(t) = e∗ + (eN − e∗)e−αt ,

where eN = (ρ + δ)/2 is the Nash equilibrium of the game (a time-invariant
strategy as well).

6 Conclusion

The principal conclusions we have reached is that:

• Credibility is di�cult to obtain in static and continuous-time games: at
a Pareto solution as well as elsewhere (weak credibility), if the incen-
tive function is required to be di�erentiable. Strong and credible incentive
equilibria may happen only at critical points of both payo� functions si-
multaneously. Weak credible incentive equilibria may happen at outcomes
(E∗1 , E∗2 ) for which at least one E∗i is a Nash-best-response to E∗j .

• On the other hand, with piecewise-di�erentiable incentive functions, (lo-
cal) credibility is rather easy to obtain, and many slopes are generally
allowed for these incentive functions. The actual challenge is to �nd in-
centive functions that provide a �domain of credibility� as large as possible.

As logical continuations of this work, we mention:

• Study whether credibility of open-loop strategies may hold in a neighbor-
hood of the equilibrium, not only in a particular subset of deviations.

• Extend the analysis to discrete-time problems such as the one studied in
[4].

• Investigate incentives de�ned on Nash-Feedback strategies.
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