A Cutting Guide Positioner Robot to Improve Bone-Cutting Precision in Knee Osteotomy
Bertin Nahum, Lucien Blondel, E. Tassel, Etienne Dombre, Philippe Poignet,
Pierre Maillet, P. Maury

To cite this version:

HAL Id: lirmm-00108655
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108655
Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A cutting guide positioner robot to improve bone-cutting precision in knee osteotomy

B. Nahum1, P. Maury2, E. Dombre3, P. Poignet1, L. Blondel1, E. Tassel1, P. Maillet1,3

1MedTech SA, Site EERIE – Parc Georges Besse, Nîmes, France
2Montpellier University Hospital, Lapeyronie Hospital, Orthopaedics I, 371 Avenue du Doyen Gaston Giraud, Montpellier, France
3Montpellier Laboratory of Computer Science, Robotics and Microelectronics (LIRMM), 161 rue Ada, Montpellier, France

BRIGIT (Bone Resection Instrument Guidance by Intelligent Telemanipulator), is a surgical robot used for optimal positioning of a guide providing mechanical support for a saw or a drill. BRIGIT is a compact 6 degree-of-freedom robot mounted onto a wheeled trolley, together with its control software. Adequate position of the guide is derived from three-dimensional calculations performed from desired surgical planning parameters and spatial position of anatomical landmarks. Pinpoint collection of anatomical landmarks is carried out with BRIGIT surgical robot and its pointing end effector device.

The study presented is carried out with dry bones and a prototype version of BRIGIT.

Steps of the BRIGIT HTO technique

The first step consists in locating a series of anatomical landmarks to determine the anatomical axis of the tibia and the level of the upper resection. In order to achieve this, BRIGIT robot is used in a « cooperative mode » with its pointing device.

Then, the surgeon can input the desired correction angle thanks to a user-friendly graphic interface.

The cutting guide now replaces the pointing device. BRIGIT surgical robot precisely positions this cutting guide where the upper resection should be done.

Once the saw cutting is completed, BRIGIT now moves the cutting guide to the position where the second resection should be done.

The bone wedge is removed, measured and compared with the desired correction input to the system.

Results

Optimal precision in angle of correction
No plane-oblique effect
No per-op X-ray irradiation due to cut positioning
Short and predictable procedure duration
Easy and intuitive technique without navigation required