
HAL Id: lirmm-00108770
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108770

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully-Dynamic Recognition Algorithm and Certificate
for Directed Cographs

Christophe Crespelle, Christophe Paul

To cite this version:
Christophe Crespelle, Christophe Paul. Fully-Dynamic Recognition Algorithm and Certificate for Di-
rected Cographs. WG 2004 - 30th International Workshop on Graph-Theoretic Concepts in Computer
Science, Jun 2004, Bad Honnef, Germany. pp.93-104. �lirmm-00108770�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108770
https://hal.archives-ouvertes.fr

Fully-dynamic recognition algorithm and

certificate for directed cographs

Christophe Crespelle and Christophe Paul

CNRS - LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France,
{crespell,paul}@lirmm.fr

Abstract. This paper presents an optimal fully-dynamic recognition al-
gorithm for directed cographs. Given the modular decomposition tree of
a directed cograph G, the algorithm supports arc and vertex modifica-
tion (insertion or deletion) in O(d) time where d is the number of arcs
involved in the operation. Moreover, if the modified graph remains a di-
rected cograph, the modular tree decomposition is updated; otherwise,
a certificate is returned within the same complexity.

1 Introduction

Directed cographs is the family of digraphs recursively defined from the single
vertex under the closure of the operations of disjoint union, series and order.
Let G1, . . . , Gk be a set of k disjoint digraphs. The disjoint union (or parallel
composition) of the Gi’s is the digraph whose connected components are precisely
the Gi’s. The series composition of the Gi’s is the union of these k graphs plus
all possible arcs between vertices of different Gi’s. The order composition of the
Gi’s is the union of these k graphs plus all possible arcs from Gi towards Gj ,
with 1 6 i < j 6 k. These operations define a unique tree representation of
the directed cograph referred which corresponds to its modular decomposition
tree [12]. The leaves are mapped to the vertices of the graph and the inner nodes
are labeled by the different composition operations (see Figure 1). Notice that by
definition of the composition operations, the complement of a directed cograph is
a directed cograph. Indeed, the term cograph [3] stands for complement reducible
graph. Moreover the directed cograph family is hereditary: any induced subgraph
of a directed cograph is also a directed cograph. It should also be noticed that
directed cographs can be characterized by forbidden subgraphs (see Theorem 2
and Figure 2).

Restricted to posets, directed cographs are the series-parallel orders [11] for
which the recognition problem has been solved in linear time [14]. In the case of
undirected graphs, the series composition and the order composition are equiv-
alent. The family of undirected graphs defined from the single vertex graph by
the closure of the series and the disjoint composition is the cographs. The mod-
ular decomposition tree of a cograph is called a cotree. A number of linear time
cograph recognition algorithms is now known: the first one was presented in [4]
and the most recent one in [1].

2 C. Crespelle and C. Paul

a

Series

Series

Parallel

OrderParallel

a b c

d e

f

g h

c

d e

f

g h

b

Fig. 1. A directed cograph and its modular decomposition tree. Since set {a, b} is in
series composition with the rest of the vertices, for any x 6∈ {a, b} and y ∈ {a, b}, both
arcs xy and yx exist.

The dynamic recognition and representation problem for a family F of graphs
aims to maintain a characteristic representation of dynamically changing graphs
as long as the modified graph belongs to F . The input of the problem is a graph
G ∈ F with its representation and a series of modifications. Any modification is
of the following: adding a vertex (along with the arcs incident to it), deleting a
vertex (and its incident arcs), adding or deleting an arc or two symmetric arcs
(notice that the insertion/deletion of only one of these arcs may not result in a
graph of F , while the insertion/deletion of both would). Moreover, as pointed
out by [10], if the property of belonging to F is no longer satisfied, providing
a certificate would be highly desirable in practice (eg. for debugging features).
This paper considers that problem for the family of directed cographs. The
representation we maintain is the modular decomposition tree.

Related works Several authors have considered the dynamic recognition and
representation problem for various graphs families. [9] devised a fully dynamic
recognition algorithm for chordal graphs which handles edge operations in O(n)
time. For proper interval graphs [8], each update can be supported in O(d +
log n) where d is the number of edges involved in the operation. Concerning
cographs, a constant time algorithm for edge modification (insertion or deletion)
has been designed in [13]. The undirected cograph recognition algorithm of [4]
is incremental: given a cograph G, its cotree T and a vertex x, it modifies T iff
G + x is a cograph. Merging the results of [4] and [13] provides a fully dynamic
recognition algorithm for cographs with O(d) worst case time complexity per
operation. Pushing further Algorithm of [4], if G + x is not a cograph, it is
possible, within the same complexity, to extract a certificate (namely a P4, an
induced path of 4 vertices).

The work of [4] has recently been extended for bipartite graphs. A new de-
composition dedicated to bipartite graphs has been proposed in [6] and the family
of bipartite graphs totally decomposable, as are the cographs for the modular
decomposition, are defined: the weak-bisplit graphs. In [7], a linear time recog-
nition algorithm of weak-bisplit graphs is given. It turns out that the incidence
bipartite graph of a directed cograph is a weak-bisplit graph. As for cographs,
the decomposition tree is built by adding the vertices one by one. But unfortu-

Fully dynamic recognition of directed cographs 3

nately, to get linear time complexity, the vertices have to be ordered with respect
to their degree. It follows that the incremental aspect cannot be guaranteed.

Our results We present an optimal algorithm for the dynamic recognition
and representation problem for the family of directed cographs. If needed, our
algorithm is also able to find a certificate. Therefore, it extends the algorithms
of [4, 13]. Moreover, unlike the algorithm of [7] restricted to directed cographs,
our algorithm supports arc modification and the dynamical aspect is guaranteed
(that is the updates can be handled in arbitrary order).

Theorem 1. The dynamic recognition and representation problem for directed
cographs is solvable in O(d) worst case time per update, where d is the number of
edges involved in the updating operation. Moreover, if needed, a certificate that
the modified graph is not a directed cograph, is provided within the same time
complexity.

Note that the results of [4] and [13] for undirected cographs cannot solve
the directed case since there is no way, to our knowledge, to determine if an
orientation of an undirected cograph is a directed cograph or not.

2 Preliminaries

Any graph G = (V, E) considered here will be finite, loopless and directed, with
n = |V | and m = |E|. The complement of a graph G is denoted by G. If X is
a subset of vertices, then G[X] is the subgraph of G induced by X . Since the
graphs are directed, the arc xy differs from yx. Let x be a vertex, then N+(x) =
{z ∈ V, xz ∈ E}, N−(x) = {y ∈ V, yx ∈ E} and N(x) = N−(x) ∪ N+(x)
stand respectively for the out-neighborhood of x, its in-neighborhood and its
neighborhood. The non-neighborhood of x will be designed by N(x). The degree
d(x) of a vertex x is the sum of its in-degree, d−(x) = |N−(x)|, and its out-
degree, d+(x) = |N+(x)|. Let G = (V, E) be a digraph, x 6∈ V be a vertex and
N−(x) ⊆ V , N+(x) ⊆ V be its in and out-neighorhoods. Then G + x denotes
the digraph G′ = (V ∪ {x}, E ∪ {xz, z ∈ N+(x)} ∪ {yx, y ∈ N−(x)}). If xy ∈ E,
G − xy will be the digraph G′ = (V, E \ {xy}). G − x and G + xy are similarly
defined.

As for the cographs family, directed cographs can be characterized by for-
bidden subgraphs. Unfortunately, such a characterization does not help for an
efficient recognition algorithm (even for a non-dynamical one). Nevertheless,
these subgraphs will be useful to provide a certificate if the referred graph is not
a directed cograph. This characterization can be retrieved from a result of [5].

Theorem 2. A digraph is a directed cograph iff it does not contain any graph
of Figure 2 as induced subgraph.

A module M is a set of vertices such that for any x 6∈ M and y ∈ M ,
xy ∈ E iff ∀z ∈ M , xz ∈ E and yx ∈ E iff ∀z ∈ M , zx ∈ E. The modules

4 C. Crespelle and C. Paul

Fig. 2. The set of forbidden subgraphs for the directed cographs family. Notice that
this set is closed under complementation.

of a graph are a potentially exponential-sized family. However, the sub-family
of strong modules, the modules that overlap1 no other module, has size O(n).
The inclusion order of this family defines the modular decomposition tree, which
is enough to store the module family of a graph [12]. The root of this tree is
the trivial module V and its n leaves are the trivial modules {x}, x ∈ V . In
the case of directed cographs, the internal nodes are labeled by one of the three
composition operations: parallel (disjoint union), series or order (see Figure 1).
Let us call the modular decomposition tree of a directed cograph, the di-cotree.

Any node p of the di-cotree corresponds to a set of vertices M(p). To shorten
the notations, the set M(p) will be denoted by P . A set S ⊆ V of vertices is
uniform wrt. x 6∈ S in G if S is a module of the graph G[S ∪ {x}]. If S is not
uniform, then it is mixed. We say that p is uniform (resp. mixed) wrt. x if P
is. Finally, a set S of vertices (resp. a node p of the di-cotree) is linked to a
vertex x 6∈ S in G, if there exists y ∈ S (resp. y ∈ P) st. xy ∈ E or yx ∈ E. In
the following, if no confusion is possible, we will omit to mention the graph in
which the above notions are applied. The subtree of the di-cotree T rooted at a
node q will be denoted by Tq. The path between any node p and the root r of T
will be denoted by P r

q . Finally, Mxy stands for the minimum (wrt. the inclusion
order) module that contains vertices x and y. Since Mxy is not necessarily strong,
it is a subset of M(pxy) where pxy is the least common ancestor of the leaves
corresponding to x and y. A factorizing permutation [2] τ is a permutation of the
vertices such that any strong module M is a factor of τ (the vertices of M occur
consecutively). A DFS of the modular decomposition tree orders the leaves as a
factorizing permutation. Maintaining factorizing permutation is helpful to find
a certificate.

3 Dynamic vertex operations

This section deals with Theorem 1 in the case of vertex modification (insertion
or deletion). Vertex deletion is first considered. Then a theorem characterizes
the cases where the insertion of a vertex is possible. This theorem is the basis
of an insertion algorithm that either updates the di-cotree or finds a certificate
that G is not a directed cograph. For sake of simplicity, the certificate consists
in a set of 4 vertices that induces a subgraph containing a forbidden subgraph.
Pushing further the algorithm, an exact forbidden subgraph can be found.

1 A overlaps B if A ∩B 6= ∅, A \ B 6= ∅ and B \ A 6= ∅

Fully dynamic recognition of directed cographs 5

3.1 Deleting a vertex

As already noticed, the family of directed cographs is hereditary. It follows that
deleting a vertex of a directed cograph G only requires to update its di-cotree
T . It can be done in O(d(x)) as follows (see [13] for a similar algorithm). The
case where x is the only vertex is trivial. Otherwise, let q be the parent node of
x in T .

1. If x has at least 2 siblings, then x is removed from T .
2. Otherwise, let p be the sibling of x.

(a) If q is the root of T or the label of parent(q) = q̃ is different from the
one of p, x is removed from T and q replaced by p.

(b) If label(q̃) = label(p), nodes x, q and p are removed from T and q is
replaced by the children of p, respecting their relative order if p is an
order node.

For complexity issues, the case where p, q̃ have the same label, has to be handled
carefully: only nodes containing neighbors of x can be touched. If q is a parallel
node, its siblings are disconnected from q̃ and reconnected as new children of
p (at their right place if q̃ is an order node). Finally p replaces q̃. If q is not a
parallel node, the children of p can be moved similarly.

3.2 Adding a vertex

The main difficulty consists in maintaining a di-cotree under vertex insertion.
Theorem 3 characterizes the cases where given a directed cograph G, a vertex x
and its neighborhoods, the augmented graph G + x remains a directed cograph.
As in [4], the algorithm first proceeds a marking step of the di-cotree T of G.
Then it tests whether the marks satisfy Theorem 3. In the positive, the di-cotree
is updated; otherwise a certificate that G + x is not a directed cograph is given.

Theorem 3. Let G = (V, E) be a directed cograph and T be its di-cotree. Let
x /∈ V be a vertex and N−(x), N+(x) be its in and out-neighborhoods. G′ = G+x
is a directed cograph iff for any node p of T one of the following conditions holds:

1. P is uniform wrt. x;
2. P is mixed and has a unique mixed child f such that F ∪ {x} is a module of

G′[P ∪ {x}];
3. P is mixed, has no mixed child and either

(a) there exists a unique non-empty set S ⊂ C(p) of children of p such that
S =

⋃

k∈S

K is uniform wrt. x and S ∪ {x} is a module of G′[P ∪ {x}],

(b) or there exists a non-empty set S ⊂ C(p) of children of p such that
S ∪ {x}, (P \ S) ∪ {x} are both modules of G′[P ∪ {x}].

Corollary 1 shows that the mixed nodes cannot be spread anywhere in T .

Corollary 1. Assume G + x is a directed cograph. The set of mixed nodes in-
duces a path between the root and a certain node p of the di-cotree. Node p is the
only mixed node without mixed child.

6 C. Crespelle and C. Paul

Before describing the marking process, let us rephrase Theorem 3. Hereafter
the only mixed node without mixed child will be called the terminal mixed node
of T . A single mixed node will be a node satisfying condition 2 of Theorem 3. As
illustrated by Figure 3, it is worth to notice that case 3.a and 3.b of Theorem 3
are exclusive. Indeed, in case 3.a, x is not a maximal (wrt. inclusion order)
strong module of G[P ∪ {x}]: therefore x will be inserted as a grand-child of
the terminal mixed node p. While in case 3.b, x is a maximal strong module of
G[P ∪ {x}] and should be inserted as a child of p. Moreover in the last case, p is
an order node.

x

p

S

p

S P\S
p

x

S P\S

Case 3.a Case 3.b

p

q

S

Fig. 3. Modifications of the modular decomposition tree according to cases 3 of The-
orem 3. In case 3.b, the node p is an order node. In case 3.a, depending on the
cardinality of S , the label of the nodes of S and their adjacency with x, intermediate
nodes may be inserted between q and S (see Subsection Inserting a vertex).

The marking process The first step of our algorithm colors nodes of the
modular decomposition tree T according to the neighborhood of the vertex to
be inserted. This preliminary step can be seen as an extension of the marking
process of [4].

Initially each leaf l = {y}, such that y ∈ N(x), is colored red. Depending
on the adjacency relationship between y and x, these leaves are given a type:
type(l) = InOut if xy ∈ E and yx ∈ E; type(l) = In if yx ∈ E; or type(l) = Out
if xy ∈ E. The process is a bottom-up search: each red node p forwards its type
to its parent node q and depending on the different types received by q, a color
is given to q. The first time a node receives a forwarded type from one of its
children, it is colored black. A node q becomes red if all its children are of the
same type (ie. the corresponding set of vertices Q is uniformly linked to x). A
red node receives the type of its children. Once a red node has been processed
it becomes grey. In order to prepare the possible insertion of x, a list of the grey
children is maintained for each node.

For sake of simplicity, let us say that the default color is white. Also notice
that the absence of type can be considered as a non-adjacency type, we will
use the notation type(p) = None. However, the marking algorithm will never
manage neither the white nodes nor the None type.

Each node stores the list of its grey children and a few counters: eg. #child(q)
indicates the number of children of q, #type(q, In) the number of children of q
whose type is In. It is straightforward to see that the running time of Routine
Type is O(d(x)). Let T c be the resulting colored di-cotree. The number of grey
nodes and of black nodes are both bounded by O(d(x)).

Fully dynamic recognition of directed cographs 7

Type(G, T , R a set of typed red leaves)
1. While some red node p exists Do

2. color(p)← grey

3. If p is not the root of T Then

4. Let q be the parent node of p

5. Add p to the list greyChild(q)
6. Increase #type(q, type(p)) by one
7. If #type(q, type(p)) = #child(q) Then

8. color(q)← red and type(q)← type(p)
9. Else color(q)← black

10. End of while

Fig. 4. Marking process.

Lemma 1. If there exists a black node q such that:

1. any black node belongs to P r
q ,

2. any black node of P r
parent(q) is series or order and

3. any white node of P r
parent(q) is parallel,

then the white nodes of P r
q are single mixed nodes.

The set of black nodes will be denoted B. By definition, a black node is a
mixed node. A white node p can be mixed if Tp contains a black node, otherwise
it is uniform. Lemma 1 implies that the set of white mixed nodes is exactly the
set W of white nodes of the path P r

q mentioned in Lemma 1. Therefore W ∪ B
is the set of mixed nodes of T c.

Testing the insertion Assume the following conditions are satisfied: there
exists a terminal mixed node q ∈ B such that any node of B belongs to P r

q and
any nodes of P r

parent(q) is a single mixed node. Then by Lemma 1, any node
of T satisfies the hypothesis of Theorem 3. It implies that x can be inserted.
Therefore Routine Check (see Figure 5) only has to test these conditions. If one
of them is not satisfied, then a call to Routine Find-Certificate enables us to
find a set Z of 3 vertices such that G′[Z ∪ {x}], with G′ = G + x, contains one
of the forbidden subgraphs of Figure 2. The insertion of vertex x, if possible, is
handled by Routine Insert.

Let p be the current node in Routine Check. If p has already been visited
(test Line 6), then by Corollary 1 G′ is not a directed cograph. The tests of
Line 7 and 8 check whether p is a single mixed node. As shown by Lemma 2,
depending on their color, the label of single mixed nodes are constrained.

Lemma 2. Let p be a single mixed node of T c. If p is black, then p is either a
series or an order node. Otherwise it is a white parallel node.

8 C. Crespelle and C. Paul

Check(G, T c, B, x)
1. bottom← r, where r is the root of T

2. While some node q in B exists Do

3. p← q and remove q from B
4. While p 6= bottom Do

5. p← parent(p)
6. If p has been visited Then Find-Certificate(p)
7. If p is a white non-parallel node Then Find-Certificate(p)
8. If p ∈ B is not a single mixed node Then Find-Certificate(p)
9. If p ∈ B Then Remove p from B
10. Mark p as visited
11. End of while

12. bottom← q

13. End of while

14. If q is a terminal mixed node Then Insert(x, q, T)
15. Else Find-Certificate(q)

Fig. 5. Testing the insertion.

Let p be a black (series or order) node. For p to be a single mixed node, all
but one of its children have to be colored grey. If p is a series node, the children
distinct from the only non-grey child q should be typed InOut. If p is an order
node, the children that occur before (resp. after) q have to be typed In (resp.
Out).

Finally let q be the last node considered by routine Check (bottom). There
is no constraint on the label of q. By Theorem 3, it has to be terminal mixed,
which can be tested as follows:

– if q is a parallel node: check that #type(In) = #grey or #type(Out) =
#grey or #type(InOut) = #grey (since in that case, any node of S is a
grey node);

– if q is a series node: check that #type(In) + #type(InOut) = |C(q)| or
#type(Out) + #type(InOut) = |C(q)| or #type(In) = #type(Out) = 0;

– if q is an order node: first, test if either #type(InOut) + #type(In) +
#type(Out) = |C(q)| or #type(InOut) = 0. Then check whether the first
(wrt. the relative order of q) #type(In) children of q are typed In and the
last #type(Out) are typed Out.

If each node p of the di-cotree stores its number of children |C|, these tests
can be done by a simple search in the grey children. Since the number of grey
nodes and black nodes is O(d(x)), Routine Check runs in O(d(x)) time.

Inserting a vertex As illustrated by Figure 3, the modification occurs in the
di-cotree Tq where q is the only terminal mixed node (the bottom node in Routine
Check). We know that any child of q is uniform and since q is mixed, it has at

Fully dynamic recognition of directed cographs 9

least two children of different types (remind that the absence of type can be
considered as a non-adjacency type).

Assume q is a series node (the case where q is parallel is similar). As already
noticed, since q is not an order node, x has to be inserted as a grand-child of q.
By theorem 3, a set S of children such that S =

⋃

k∈S

K is uniform wrt. x and

S ∪ {x} is a module of G′[Q∪ {x}], where G′ = G + x, exists. Since q is a series
node, a child p belongs to S iff type(p) 6= InOut. Remark that the uniformity
of S implies that the nodes belonging to S all have the same type. To update
the di-cotree, three cases should be considered. First, if S = {p} and the label of
node p coincides with its type, type(p), then x is added as a leaf of p. Otherwise,
a new node p′, labeled by the composition operation corresponding to the type
of nodes of S, is inserted as a child of q instead of nodes of S. If S = {p}, then
p is made a child of this new node p′. If |S| ≥ 2, a node q′, whose children are
the nodes of S, is made a child of p. q′ get the same label than q (ie. series). In
both cases, x is added as a leaf of p′.

Assume q is an order node. The difference with the previous cases, is that
three subsets of C(q) can be identified: SIn (resp. SOut) the children with type
In (resp. Out) and S the other children. The nodes of SIn appears before those
of S that appears before those of SOut in the order defined by q. Notice that one
of these three sets could be empty. If S = ∅, x is inserted as a child of q between
SIn and SOut. Otherwise, a new child p of q has to be inserted between q and
S, and x is made a child of p.

As done for the vertex deletion, to update the di-cotree, we have to carefully
handle the moving of non-neighborhood of x. Any insertion costs O(d(x)) time.

Finding a certificate Routine Find-Certificate(p) looks for one of the for-
bidden induced subgraphs of Figure 2. Assume this routine is also given the
parameters P r

bottom and P p
q where bottom and q are the nodes respectively de-

fined at Line 12 and 2 of Routine Check. Thanks to the lists of grey children
for each node of T c and the factorizing permutation, the search is processed in
O(d(x)) time. The call to Find-Certificate at Line 6 occurs if the current
node p has already been visited before. At Lines 7 and 8, node p should have
been a single mixed node but is not. At Line 15, the last visited node q is not
terminal mixed. In each case, a subgraph of Figure 2 can be found in O(d(x))
time. Though Routine Find-Certificate returns the exact subgraph, for sake
of simplicity, we just give some hints of the following:

Lemma 3. If G′ = G + x is not a directed cograph, a set Z of 3 vertices can
be found in O(d(x)) time such that G′[Z ∪ {x}] contains one of the graphs of
Figure 2.

Let us detail the former call of Line 6. Notice that p has to be a parallel
node (otherwise, Check would have found out that p is not a single mixed node).
Indeed, p has at least 2 black mixed children: namely h, the child of p on the path
P r

bottom, and h′, the child of p on the path P p
q . Since h and h′ are black, they both

received a type from a grey child, say k and k′ respectively. Let a be a vertex of

10 C. Crespelle and C. Paul

K = M(k) and b be a vertex of K ′ = M(k′). Finally, since h′ is mixed and k′

is uniform, a vertex c ∈ H ′ \ K ′ (with H ′ = M(h′)) such that type(c) 6= type(b)
exists. A simple case by case analysis of the different possible types for nodes
k, k′ and vertices a, b, c proves that G′[{a, b, c, x}], with G′ = G + x, contains
a certificate (one of the graphs of Figure 2). Figure 6 illustrates two different
cases.

parallel

a b c a b c

x x

k k’ k k’

h h’ series h h’ series

parallelpp

Fig. 6. Since p is a parallel node, h′ is either a series or an order node. Assume that
h′ is a series nodes, therefore bc and cb exist. In the first example, the certificate is
induced by {b, c, x}, in the second by {a, b, c, x}.

4 Dynamic arc operations

This section deals with Theorem 1 in the case of arc modification. For lack of
space, we only present how to handle arc deletion. Since the family of directed
cographs is closed under complementation, the graph G+xy is a directed cograph
iff the graph G − xy is. Similarly, a certificate that G − xy is not a directed
cograph, is a certificate for G + xy. As remarked by [13], since the di-cotree
of the complement of a directed cograph G can easily be deduced from the di-
cotree of G a recognition algorithm that supports edge deletion can be extended
to support edge insertion within the same complexity. Finally, we shall assume
that if an arc deletion query is asked for, then the arc involved exists.

Deleting an arc Two types of arc based modifications should be distinguished.
The first one concerns the simultaneous removal of two symmetric arcs, say xy
and yx. This modification can be compared to the deletion of an edge in an
undirected cograph, see [13]. The proof of [13] can be generalized to the case of
directed cographs. Let qx (resp. qy) be the child of pxy containing x (resp. y). 2

Theorem 4. [13] The graph G′ = G−{xy, yx} is a directed cograph iff |Qx| = 1
and Qy \ {y} ⊆ N(y) or |Qy| = 1 and Qx \ {x} ⊆ N(x).

Theorem 5 extends Theorem 4 so that any valid arc modification of a directed
cograph can be characterized.

Theorem 5. The graph G′ = G − xy is a directed cograph iff

2 pxy is the lca of x and y in T

Fully dynamic recognition of directed cographs 11

1. pxy is an order node, Mxy = Qx ∪ Qy and: 3

(a) either |Qx| = 1 and Qy \ {y} ⊆ N(y),
(b) or |Qy| = 1 and Qx \ {x} ⊆ N(x).

2. pxy is a series node and:
(a) either |Qx| = 1 and Qy \ {y} ⊆ N+(y) \ N−(y),
(b) or |Qy| = 1 and Qx \ {x} ⊆ N−(x) \ N+(x).

It is straightforward from Theorem 4 and 5 that the deletion test can be
done in O(1). Indeed, x and y has to be the child and the grand-child of pxy.
Wlog. assume x is the child. Then, it suffices to check the label of pxy and of its
child q which is the parent of y. If the deletion is possible, the modifications of
the di-cotree are carried out in constant time. The different cases are depicted
in Figure 7.

Order

y

Q \{y}y

Q \{y}y Q \{y}y

Q \{y}y Q \{y}y

Series

parallel

y

x

Case a.

Series

parallel

y Series

x parallel

Order

x parallel

y

Case b.

Order

parallel

y

x Order

y

Series

Case c.

Series

x

Series

Order

yOrder

x parallel

Q \{y}

Fig. 7. Case a. illustrates the modification implied by the simultaneous removal of
two symmetric arcs (see Theorem 4); cases b. and c. illustrate the removal of the arc
xy described in Theorem 5. Depending on the number of siblings of y, the resulting
di-cotrees may contain less node than above.

Finding a certificate Assume the test of the xy deletion fails. As done for the
vertex certificate, our algorithm returns a small subgraph containing one of the
graphs of Figure 2. Thanks to the factorizing permutation, the vertices of this
subgraph can be found in constant time. If an exact certificate is wished, it can
be found in O(min(d(x), d(y))).

Lemma 4. If G′ = G − xy is not a directed cograph, a set Z of at most 4
vertices can be found in O(1) such that G′[Z ∪{x, y}] contains one of the graphs
of Fig. 2.

Let us describe how the set Z is defined. Let px (resp. py) be the parent of
x (resp. y) in T . If px 6= r (resp. py 6= r), let qx (resp. qy) be the parent of px

3 Mxy is defined as the minimum module containing x and y. Therefore Mxy ⊆ Pxy.

12 C. Crespelle and C. Paul

(resp. py) in T . If qx 6= r (resp. qy 6= r), let kx (resp. ky) be the parent of qx

(resp. qy) in T . Let us define 6 vertices, namely ax, bx, cx and ay, by, cy. Vertex
ax belongs to Px \ {x} and if px is an order node and Px ∩ N+(x) 6= ∅, then
choose for ax an out-neighbor of x. Vertices bx and cx belongs respectively to
Qx \Px and Kx \Qx if these sets exist. The last 3 vertices ay, by, cy are similarly
defined wrt. y. If possible, ay should be picked in N−(y). Note that, even if they
exist, these vertices may not be all distinct. Finally a case by case analysis of
the labels of parents and grand-parents of x and y enables us to select at most
4 vertices among ax, ay, bx, by, cx, cy.

References

1. A. Bretscher, D.G. Corneil, M. Habib, and C. Paul. A simple linear time lexbfs
cograph recognition algorithm. In H. Bodlaender, editor, 29th International Work-
shop on Graph Theoretical Concepts in Computer Science (WG’03), number 2880
in Lecture Notes in Computer Science, pages 119–130, 2003.

2. C. Capelle and M. Habib. Graph decompositions and factorizing permutations. In
Fifth Israel Symposium on the Theory of Computing Systems (ISTCS’97), IEEE
Computer Society, pages 132–143, 1997.

3. D.G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible
graphs. Discrete Applied Mathematics, 3(1):163–174, 1981.

4. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear time recognition algorithm for
cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

5. A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures. The-
oretical Computer Science, 70(3):343–359, 1990.

6. J.-L. Fouquet, V. Giakoumakis, and J.-M. Vanherpe. Bipartite graphs totally
decomposable by canonical decomposition. International Journal of Foundation of
Computer Science, 10(4):513–533, 1999.

7. V. Giakoumakis and J.-M. Vanherpe. Linear time recognition and optimizations
for weak-bisplit graphs, bi-cographs and bipartite p6-free graphs. International
Journal of Foundation of Computer Science, 14(1):107–136, 2003.

8. P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and
representing proper interval graphs. SIAM Journal on Computing, 31(1):289–305,
2002.

9. L. Ibarra. Fully dynamic algorithms for chordal graphs. In 10th ACM-SIAM
Annual Symposium on Discrete Algorithm (SODA’03), pages 923–924, 1999.

10. D. Kratsch, R.M. McConnell, K. Mehlhorn, and J.P. Spinrad. Certifying algorithm
for recognition of interval graphs and permutation graphs. In 14th ACM-SIAM
Annual Symposium on Discrete Algorithm (SODA’03), pages 153–167, 2003.

11. E.L. Lawler. Graphical algorithm and their complexity. Mathematical center tracts,
81:3–32, 1976.

12. R.H. Möhring and F. J. Radermacher. Substitution decomposition for discrete
structures and connections with combinatorial optimization. Annals of Discrete
Mathematics, 19:257–356, 1984.

13. R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition
and representation of cographs. Discrete Applied Mathematics, 136(2-3):329–340,
2004.

14. J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs.
SIAM Journal on Computing, 11:298–313, 1982.

