
HAL Id: lirmm-00108773
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108773

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Flip-Flops Matching Engine
Solaiman Rahim, Jerome Rampon, Bruno Rouzeyre, Lionel Torres

To cite this version:
Solaiman Rahim, Jerome Rampon, Bruno Rouzeyre, Lionel Torres. An Efficient Flip-Flops Matching
Engine. DDECS’04: 7th IEEE International Workshop on Design and Diagnostics of Electronic
Circuits and System, Apr 2004, Tatranska Lomnica, Slovakia. pp.105-113. �lirmm-00108773�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108773
https://hal.archives-ouvertes.fr

Abstract
Generic algorithms for sequential equivalence
checking are computationally expensive because
they are based on state space traversal. This is
the main reason why commercial tools often use
combinational equivalence checking techniques
to verify sequential designs. This approach
consists in identifying potential equivalent flip-
flops or nets in the two designs under
verification. This is called the matching step. Due
to sequential optimizations performed during
synthesis, which can remove, merge, replicate or
retime flip-flops, this matching step can be very
complex and incomplete. Moreover if the
matching is incomplete, even if a fast and
efficient SAT solver is used during the
combinational equivalence-checking step, this
kind of approach may fail. In this paper, we
present a complete matching engine, which is
able to handle optimized circuit and don’t care
conditions. The efficiency of the proposed engine
is confirmed by experimental results on retimed
and optimized circuits.

1. Introduction

In order to avoid the CPU time explosion due to
state space traversal, a common and practical
verification approach to check the functional
equivalence of two sequential designs is to map
the sequential equivalence-checking problem into
a combinational equivalence one. This is a two
steps approach. The first step consists in finding a
matching between the flip-flops (FFs for short) in
the reference and in the implementation design.
The second step is to verify the equivalence of the
corresponding combinational blocks resulting of
the matching using combinational formal
techniques [1][2][3].

This verification method is efficient and
especially applicable when only combinational
synthesis techniques are used for optimization.
Indeed if sequential optimizations (e.g. retiming,
replication, merge, redundancy removal…) are
performed during synthesis, the number and the
input function of FFs may change. Thus the

matching step can be very complex and may lead
to an incomplete FFs matching as described in
[4]. The used of a fast and efficient SAT solver
for the combinational verification step could be
inefficient for this type of problem. Experiments
with industrial tools based on this method show
that if two combinational blocks are found to be
inequivalent, this is often due to an incomplete
matching rather than a real bug in the circuit
(False negative problem). It is thus very important
to have an efficient matching technique.

The matching techniques in industrial CAD tools
can be divided in two classes:
- the first one is non-functional based methods.
They consist in using name comparison,
simulation or structural similarities. Since,
synthesis transformations may change FFs names
or modify the designs structure, this method may
leave a significant number of FFs unmatched or
produce a wrong matching. Thus it cannot be
used as an automated matching or handle
sequential optimizations.
- the second class of matching techniques are
functional ones. They consist in comparing
Boolean functions at FFs inputs. Various
techniques have been proposed in [5][6][7] based
on induction, ATPG and partitioning techniques.
They are all exact methods and are able,
theoretically, to verify sequential optimized
circuits. But in practice, due to function
representation issues, those methods cannot
match all FFs in the design under verification and
should be completed with non-functional
methods.
Moreover the proposed algorithms cannot handle
all classes of designs. For example, the method
[5] cannot deal with circuits with don’t cares
(often referred as don’t care conditions) or
circuits with stuck at FFs as defined in [8].
Method in [6] considers don’t cares but doesn’t
propose a solution for retimed circuits or circuits
with stuck at FFs [8]. The ATPG approach
presented in [7] is a complete one but may run out
of time for large designs. A method, which
combines both non-functional and functional
based methods, has been proposed in [9]. Its limit
is reached with designs in which there is not a one

An Efficient Flip-Flops Matching Engine

 Solaiman Rahim Jerome Rampon Bruno Rouzeyre Lionel Torres
 rahim@synplicity.com jerome@synplicity.com rouzeyre@lirmm.fr torres@lirmm.fr
 LIRMM – Synplicity Synplicity LIRMM LIRMM
 Montpellier, FR Montpellier, FR Montpellier, FR Montpellier, FR

to one correspondence between the FFs in the
reference and implementation (which may not be
the case for sequential optimized circuits). The
method presented in [15] can also be used to
match FFs using the primary output. The idea is
to find a permutation on the variable of the
support (which could be FFs variables) of the
function of the matched primary output, which
make those functions equivalents.

In this paper, we propose a combined matching
engine. It produces a fast, complete and
automated FFs matching in most of the cases. It is
able to prove complex sequential optimizations
(as merge after retiming or stuck at FFs as defined
in [8]) and avoid false negative problems. Our
experimental results show that the procedure is
able to prove 21/23 optimized industrial circuits
where industrial equivalence checking tool could
only proved 14 of them. The main reasons of the
efficiency of our approach are:
- the use of an incremental approach which is able
to handle merge, replication, don’ t care
conditions, retiming, complex redundancy
removal or any combination of them.
- Experiments shows that the rate of flips-flops
matched with functional part is in average very
important.

This paper is organized as follows. In section 2,
we introduce some notions and definitions. The
section 3 discussed about the overall procedure of
our matching engine. Section 4 described the core
engine of our functional matching algorithm and
show its coupling with our redundancy removal
published in [8]. In section 5, we present a basic
algorithm to get an initial state to perform inverse
matching (e.g. match all FFs equivalent modulo
the inversion). Section 6 explains the non-
functional part of our engine. Section 7 details our
technique for retimed designs. The efficiency of
our engine is presented in section 8 by applying it
on retimed and optimized both industrial and
ISCAS89 benchmarks.

2. Notations

The input of the matching engine is the product
machine of the two designs under verification.

Definition 1:
The input space is noted X, the state space S, the
initial state So ∈ S, the next state function: ∆: S ×
X → S, and the output function: Λ: S × X → B,
where B = {0,1} denotes the set of Boolean
values.

Definition 2:
The number of FFs of the product machine is
noted N.
Definition 3:
Fi and Vi denote respectively the input function
and the output variable of the flip-flop Ri.

Definition 4:
The set of don’ t care variables is noted D =
{Dc1,Dc2,….Dcj). The don’ t care (Dci) variables
are used to specify all unspecified output values
of a function.

Definition 5:
The inclusion operator ⊆ between two functions
f (Xi,Vi) and g(Xi,Vi,Dci) is defined as follow:

f ⊆ g iff ∀(X1,..Xm) ∀(V1,..VN) ∃ (Dc1,..Dcj) /
f = g.

Definition 6:
Let R be the set of all FFs of the product machine
{R1,R2,…RN}. The goal of the matching is to find
in R the sets of all the functionally equivalent Ri
(functional matching) and the sets of all potential
equivalent Ri (non functional matching). Thus,
the matching result can be viewed as a
partitioning of the set of FFs into equivalent
classes, each equivalent class representing a
subset of (functionally or structurally) matched
FFs. Essentially, the matching process is a
merging process, i.e. initially the set R is
partitioned into N classes {C1, C2,…CN) where Ci
= {Ri}. When two FFs match, their classes are
merged. We note MS the matching status. MS
denotes the state of the matching during our
procedure. Initially no FFs have been matched
and the matching status is:

 N

MS = ∪ Ci
 i=0

Definition 7:
If a flip-flop Ri match with a flip-flop Rj, Ci and
Cj are merged into a single class Ci such as Ci ∪
Cj = Ci where Ci = {i,j} and Vi = Vj.

Definition 8:
The equivalence relation Meq (Match equivalent)
is introduced such as Ri Meq Rj

�
 Fi ⊆ Fj. Meq is

used to partitioned R during functional matching.
The number of class created by Meq is noted
Nceq.

Definition 9:
The equivalence relation Mpeq (Match potential-
equivalent) is introduced such as Ri Mpeq Rj

�

Fi is potentially equivalent to Fj. Mpeq is used to
partitioned R during non functional matching.

The number of class created by Mpeq is noted
Ncpeq.

Definition 10:
The number of FFs unmatched is noted Nunm.
All classes with |Ci| = 1 correspond to an
unmatched flip-flop. The number of FFs
redundant is Nred.

Definition 11:
The transitive fanout (TFO) of a signal is the set
of FFs and primary output structurally depending
of this signal.
The transitive fanin (TFI) of a signal is the set of
FFs and primary input present in the support of
the signal.

Definition 12:
A synchronization sequence of a circuit is a
sequence of primary input, which initializes all
the FFs of the circuit. Finding an initial state of a
circuit consists in finding a synchronization
sequence.

3. The overall matching
procedure

The overall matching procedure is presented in
figure 1. The Step 0 of the procedure starts to find
a state So. The state So is needed to be able to
perform inverse matching during the functional
matching (e.g. match all equivalent FFs modulo
the inversion). The general method to compute an
initial state as presented in [13] is very time
consuming for large circuit. A basic heuristic has
been developed to compute quickly an initial
state. It is presented in section 5. The initial state
could be given by the user when the heuristic
failed.

The Step 1 of the procedure consists in running
our functional matching. To be able to find
functional equivalent FFs, we have used and
extended the technique presented in [5]. It has
been extended to handle don’ t care conditions and
improved by decreasing its CPU time
consumption. The matching status is then the
union of the new class created by the functional
matching using the Meq relation (which
represents the matched FFs) and the class with a
single flip-flop (which represents the unmatched
one) and:

 Nceq Nunm

MS = (∪ Ci) ∪ (∪ Cj)

Then the redundancy removal in [8] is applied. If
redundant FFs have been found, functional
matching is run again until no new improvement
has been reached. The redundant FFs are removed
from the set of unmatched one. The matching
status becomes:

 Nceq Nunm - Nred

MS = (∪ Ci) ∪ (∪ Cj)

The Step 2 of the procedure is the non-functional
matching using the Mpeq relation. If new classes
are created (i.e new matching has been found), all
the procedure is launched again until no new
improvements has been detected. Note that all
FFs in the classes created should be proved in a
separate process. The matching status is then the
union of matched (functionally and structurally)
FFs with the unmatched one. MS becomes:

 Non-Functional
 Matching

 Build Subset Circuit(s)

Apply Retiming procedure
 for all subset circuits

Procedure
successful?

 Make list of
Unproved matched
 FFs or outputs

 SAT/BDD Solver

No

No

No

No

Yes

Yes

Yes

Yes

Equivalence or
counter example

Figure 1: Overall procedure

 Automate or User Init

 Functional
 Matching

Redundancy Removal

 Proof possible?

 Stop Matching

Step 0

Step 1

Step 2

Step 3

Step 4

 Nceq Ncpeq Nunm - Nred

MS = (∪ Ci) ∪ (∪ Cj) ∪ (∪ Ck)

Step 3 is used to prove retimed part of the
circuits. The retimed subset part of the circuit is
extracted. Those parts come from the unmatched
FFs. Then methods as [5][10][11][12] are applied
depending on the structure of the subset circuits
(pipelined or not). As the output of the subset
circuits could be FFs, matching those circuits may
lead to new matching. In this case, the overall
procedure is launched again. The retiming method
is presented in section 7

The overall procedure stops when the proof is
possible (Step 4). The proof is possible when all
non-redundant FFs have been matched and all
outputs of the subsets circuits built by the
retiming procedure could be proved. Then all
primary outputs and structurally matched FFs are
proved in a separate process. The combinational
techniques used for this proof is more powerful
than the one used in the functional matching.

4. Functional matching

The goal of the functional matching is to find all
functional equivalent FFs of the product machine.
Then, match them with the equivalence relation
Meq. In this section, we present our partitioning
technique in order to find all functional
equivalent, included or inverted FFs of a design.
It is an extension of the techniques presented in
[5]. It has been extended to handle don’ t care
conditions and improved by decreasing its CPU
time consumption.

First, the technique partitions all Fi in two
partitions regarding the initial state of Ri. Then,
the partitions are split iteratively as follows. The
output variables of each Ri are respectively set to
V and ¬V (regarding the initial state) and their
input functions Fi are computed with those
variables. Then all equal, included or inverted
function Fi are put in a new partition represented
by a new output variable Vk (¬Vk for inverted
functions) and the input functions Fi are re-
computed. Each function, which could not be
computed due to function representation issues, is
put in a different single partition. The process
continues until it reaches a fixpoint i.e. when no
new partitions are created. The theory of this
method has been presented in [5] and is the same
introducing the inclusion checking. At the
fixpoint, all Fi in the same partition are
equivalent, included or inverted. Thus the

corresponding FFs Ri can be easily matched with
the equivalence relation Meq. The matching
status is then:

 Nceq Nunm

MS = (∪ Ci) ∪ (∪ Cj)

The unmatched FFs may come from redundant
FFs as explained in [8]. They can also come from
FFs, whose input function could not be computed
during the process.

The example on figure 2 illustrates the method.
At the beginning no FFs have been matched, MS
is represented in figure 3. The set F =
{F1,F2,F3,F4,F5,F6,F7}. Considering the initial state
(init), F1=F6=F7=0 and F2=F3=F4=F5=1. The set F
is split in two partitions (P0, ¬V) and (P1, V)
(where P0={F1, F6, F7} and P1={F2, F3, F4, F5}).
After iteration1 (iter1) of the process F1 = ¬ F2,
F3 = F4, F4 ⊆ F5 and F6 = F7. The set F is refined in
four partitions (P0, ¬V1), (P1,V1), (P2,V2), (P3,V3)
(where P0={F1}; P1={F2}, P2 ={F3,F4,F5};
P3={F6,F7}. After iteration 2 (iter2), the relation
between the functions remains the same i.e. F1 =
¬ F2, F3 = F4, F4⊆ F5 and F6 = F7. No new
partitions are created. The fixpoint is reached and
the process stops. All the Fi in the same partition
modulo the inversion are equivalent, included or
inverted. Thus, all corresponding FFs Ri can be
matched with the equivalence relation Meq. The
matching status is then the one in figure 4.

Let suppose that the initial state of the product
machine is not known in the example of figure 2.
At the beginning of the process, all the Fi are in
the same partition (P0, V). The first iteration of
the process gives F1 ≠ ¬F2, F3 ≠ F4, F4 ⊄ F5,
F6=F7. The set F is refined in 6 partitions (P0,
V0), (P1, V1), (P2, V2), (P3, V3), (P4, V4), (P5, V5),
(P6, V6), (where P0 = {F1}, P1 = {F2}, P3 = {F3},
P4 = {F4}, P5 = {F5}, P6 = {F6, F7}). The second
iteration gives F1 ≠ ¬F2, F3 ≠ F4, F4 ⊄ F5, F6 ≠ F7.
The set R is refined in 7 partitions (P0, V0), (P1,
V1), (P2, V2), (P3, V3), (P4, V4), (P5, V5), (P6, V6),
(P7, V7 (where P0 = {F1}, P1 = {F2}, P3 = {F3}, P4
= {F4}, P5 = {F5}, P6 = {F6}, P7 = {F7}). At the
next iteration the fixpoint is reached. All the Fi
are in a different partition at the fixpoint. This
implies that no FFs can be matched with Meq.
This shows that to now the initial state of the
product machine is needed.

One way to speed up the process is to notice that
each input function of the FFs doesn’ t need to be
re-computed at each fixpoint iteration. Indeed for
example, the input functions of FFs depending
only on the primary inputs don’ t change.

Moreover when a new class is created, only the
input functions of the FFs presents in the TFO of
the FFs in the new class need to be computed,
other functions remains the same. Another
improvement consists not in starting with only
two classes, but to use random simulation to
create more classes. The experimental results
show that those improvements decrease
drastically the CPU time.

In [8], it is explained why redundant FFs (as
constant or stuck at FFs) should be removed to
improve the functional matching and avoid false
negative problems. The redundancy removal
engine introduced in [8] is combined with the
functional matching in a fixpoint algorithm.
Indeed removing redundant FFs may lead to have
new matching and new matching may lead to have
new redundant FFs. The redundant FFs are
removed from the unmatched one and the
matching status is:

 Nceq Nunm - Nred

MS = (∪ Ci) ∪ (∪ Cj)

For some particular cases, a redundant state
removal has been added in our redundancy
removal engine. Indeed matching with a one to
one correspondence n flip-flop of the reference
design with n FFs of the implementation implies
that the output value of the n FFs can take 2n
values. This can be false if the fsm corresponding
to the n FFs have a one hot encoding. This implies
that there is 2n – n unreachable values for the
output function of the n matched FFs. Let
suppose now that FFs Rref have the n FFs of the
reference in its support and Rimpl the n FFs of the
implementation. Rref and Rimpl may not match
because their input functions differ in the 2n – n
unreachable values.

The problem is illustrated on figure 5. Functional
matching matched R1 with R5, R2 with R6, R3 with
R7 and left unmatched R4 and R8 because F4 ≠ F8.
Match (R1,R2,R3,R5,R6,R7) implies automatically
to suppose there is a full range in the output
function of those FFs (e.g. matching assume that
there is 23 possible output values). This results to
have F4≠F8. Applying our redundant state
removal, it can be seen that the output value of
(R1,R2,R3) can never take the value (1,1,1). This
implies directly that F4 = F8 and F4 is
functionally matched with F8.

Figure 3: Initial matching status

C4

C3R1 R2
R3

R4R5R6
R7

C1 C2

C5C6

C7
MS =

MS=C1∪C2∪C3∪C4∪C5∪C6∪C7

Figure 4: Final matching status

C3

R1 R2
R3

R4
R5R6

R7

C1 C2

C4

MS =

MS = C1 ∪ C2 ∪ C3 ∪ C4

 Figure 2: Example of functional matching

Init: F1=0, F2=1, F3=1, F4=1, F5=1, F6=0, F7=0
Iter1: F1= ¬((V∧¬In2) ∨ (In1 ∧ In2)),
F2= (V∧¬In2) ∨ (In1∧ In2),
F3=V, F4=V, F5=V∧Dc,
F6=V∧In3, F7=V∧In3.
Iter2: F1= ¬((V1∧¬In2) ∨ (In1 ∧ In2)),
F2= (V1∧¬In2) ∨ (In1 ∧ In2),
F3=V1∨¬V3, F4=V1∨¬V3, F5=(V1∨¬V3) ∧Dc,
F6=V2∧In3, F7=V2∧In3

R1

R2

R3

R5

R4

R6

R7

In1

In2

In3

Dc

0
1

1
0

(P2, V2)
(P2,V2)

F3
F2

F4
F5

F6

(P0,¬V)
(P1, V)

F1 F2

F5

F3
F4

F6

F7

(P1, V1) (P0,¬V1)

(P3, V3)

F1 F2

F5

F3 F4

F6

F7

Iter1 Iter2
F1

F7

(P1,V1) (P0,¬V1)

(P3, V3)

5. Initial State

As discuss in section 4, the computation of an
initial state So is needed for functional matching.
General method presented in [13] is based on
state traversal and could be very time consuming.
In this section, a basic heuristic to compute a
synchronization sequences is presented.
Experiments done show clearly that for 90% of
the industrial benchmark tested, the heuristic
could find the right synchronization sequence in
few seconds.
The heuristic consists in unrolling the product
machine as described in [14]. The unrolling
technique consists in computing the product
machine at time frame t, then at time t+1… . The
notion of time frame model of the product
machine is described in [5].
Fi(t) is the function Fi at time frame t, Fi(t+1) at
time t+1… ..such as Fi(t) is a function of (Vi, Xt),
Fi(t+1) a function of (Vi,Xt,Xt+1)…
The time frame at the beginning of the process is
noted t. The heuristic unrolls the product machine
until time frame T. T is the first time frame where
all Fi(T) can be justified separately to a value with
a primary inputs sequence between time t and T
(Xt, Xt+1,… XT). It is not sure that all FFs can be
justified globally at this time frame T. For
instance, at time T, two sequences S1 and S2 are
found that justifies F1(T) (resp F2(T)) but not
F2(T) (resp F1(T)). This is why our method is a
heuristic and not a general method. The product
machine has a synchronization sequence. This
implies that here is at least a time frame Tinit
where all FFs can be globally initialized. This
guarantees to find a time frame T. The weakness
of our method is that we may have Tinit > T. But
if at time T, there is a sequence, which initializes

all FFs (i.e T=Tinit), our procedure guarantees to
find it.
Finally, a pattern input sequence, which initializes
the maximum of Fi(T), is found using TPG
techniques. This input sequence has a length of T-
t. If this input sequence could initialize all the N
FFs, the synchronization sequence has been
found.
The heuristic is illustrated on the design of figure
2. Each flip-flop has a different output variable as
at the beginning of the matching e.g. V1, V2… .
The unrolling of the product machine gives:
At time frame t:
F1(t) = ¬((¬V1∧¬In2t) ∨ (In1t ∧ In2t))
F2(t) = (V2∧¬In2t) ∨ (In1t∧ In2t)
F3(t) = ¬V1 ∨ ¬V6
F4(t) = V2 ∨ ¬V7
F5(t) = (¬V1 ∨ ¬V6) ∧ Dc
F6(t) = V3 ∧ In3t
F7(t) = V4 ∧ In3t
At time frame t, R3, R4, R5 cannot be justified
with the primary inputs, the product machine is
computed at next time frame.
At time frame t+1:
F1(t+1) = ¬((¬F1(t)∧¬In2t+1) ∨ (In1t+1 ∧ In2t+1))
F2(t+1) = (F2(t)∧¬In2t+1) ∨ (In1t+1∧ In2t+1)
F3(t+1) = ¬F1(t) ∨ ¬F6(t) = ((¬V1∧¬In2t) ∨
(In1t ∧ In2t)) ∨ (¬ (V3 ∧ In3t))
F4(t+1) = F2(t) ∨ ¬F7(t) = ((V2∧¬In2t) ∨ (In1t∧
In2t)) ∨ (¬(V4 ∧ In3t))
F5(t+1) = (¬F1(t) ∨ ¬F6(t)) ∧ Dc = ((¬V1∧¬In2t)
∨ (In1t ∧ In2t)) ∨ (¬ (V3 ∧ In3t)) ∧ Dc
F6(t+1) = F3(t) ∧ In3t+1
F7(t+1) = F4(t) ∧ In3t+1
At time frame t+1, all the FFs can be justified
with primary inputs (In1t, In2t, In3t, In1t+1, In2t+1,
In3t+1), we set T = t+1.
At time frame T, using TPG techniques an input
sequences which initialized all the FFs is found.
For example a synchronization sequence can be:
(In1t, In2t, In3t, In1t+1, In2t+1, In3t+1) =
(1,1,0,1,1,0), this implies that an initial state of
the circuit could be:
R1=0, R2=1, R3=1, R4=1, R5=1, R6=0, R7=0.

6. Non-functional matching

As explained in section 4, functional matching
may leave some FFs unmatched due to the
function representation issue. In this case, non-
functional matching should be combined with
functional matching. Indeed matching FFs with
non-functional algorithm may lead to new
functional matching as described in figure 6. Non-
functional techniques are a combination of name

In1
In2
In3

R1

R2

R3

R4

R5

R6

R7

R8

In4

 Figure 5: Example of circuit with
 redundant states

matching simulation, structural matching and
support matching.
On the example of figure 6, the output function of
the pin 31 of the 32x32 multiplier cannot be
computed with BDD techniques. Functional
matching is not able to match R3 with R7 and
automatically R4 is not matched with R8.
Applying non-functional matching, R3 is matched
with R7. Then applying functional matching R4 is
matched with R8.
The matching status after non-functional
matching is:

 Nceq Ncpeq Nunm - Nred

MS = (∪ Ci) ∪ (∪ Cj) ∪ (∪ Ck)

 Ncpeq

The set ∪ Cj, which comes from non-functional
matching, should be proved. Indeed non-
functional matching gives only the assumptions
that FFs are equivalent. Those assumptions
should be proved using more powerful
combinational equivalence checking techniques
than the one used in the functional matching. On
the figure 6, R3 should be proved with R7 to
validate the matching. Combinational technique
as [3] can be used for this purpose.

7. Retiming procedure

Retiming is one major problem for the matching
step. The input function of the retimed FFs is
changed during retiming. Thus, it is not possible
to find any matching for those FFs using
functional or structural matching. Efficient
methods as [5][10][11][12] exist to prove retimed
circuits. The method [5] uses induction to find a
functional nets matching to prove retiming. The
method in [10] uses combinational techniques to
do it. This method reintroduces the input function
of the retimed FFs to the output at next clock
cycle. In this section, we present our retiming

procedure based on [5] and [10]. The difference
with the previous approach is that those methods
are applied in subset circuits and not in all the
circuit. The other difference is that our retiming
procedure chose the best approach regarding the
subset circuit structure. [10] is applied when the
subset circuit is a pipeline one. [5] is applied for
no pipeline one.
The retiming procedure is applied on the last set
of the
 Nunm - Nred

matching status ∪ Ck. This set corresponds to
the unmatched FFs after functional and non-
functional matching and redundancy removal.
To be able to prove complex retiming, the
functional matching described in section 4 is
extended to net (e.g. not only FFs are matched but
also nets).
The construction of the retimed subset circuits
consists in finding all matched FFs, nets, primary
input and primary output present in the TFO and
TFI of all unmatched FFs. The primary inputs of
the subset circuits are the matched FFs, nets and
the primary input present in the TFI. The new
primary outputs are the matched FFs, nets and
primary output present in the TFO. Then if the
subset circuit is a pipeline circuit, technique as
[10] is applied. If the circuit has sequential loops,
technique as [5] is applied. Applying retiming
methods as [5][10] on subset circuits and not on
the product machine make our procedure
efficient.
A retimed design (7.a) and its subset circuit (7.b)
are presented on figure 7. In the original design
(7.a), R5 has been retimed in R11 and R12. Thus,
functional matching is not able to match R6 with
R13. This implies automatically to not match (R3,
R4, R9, R10). However (R1,R2,R7,R8) only depends
of the primary inputs, they are matched. The
retiming procedure builds the subset circuit (7.b)
by replacing all FFs in the TFI of the unmatched
FFs by primary inputs. The circuit created is not
a pipeline one. The method in [5] is applied. This
results to match the net n with R5. This leads to
F6=F13=¬V5 and implies to match R6 with R13.
Then automatically R3 is matched with R9 and R4
with R10. Thus, the outputs of the subset circuit
are proved.

Another example of the retiming procedure is
given figure 8. In the original circuit (8.a), R2 has
been retimed backward then merged with R1. R1,
R4 and the network n are matched together by
functional matching because they have the same
input function. Then the subset circuit is built
(8.b). The method [10] is applied on the pipeline
subset circuit. The input function of the retimed

Figure 6: Example of non-functional
 matching

*
R1

R2

R3 R4

in1

[0:31]

[0:31]

[31]

*
R5

R6

R7 R8

in1

[0:31]

[0:31]

[31]

FFs R2 and R4 is reintroduced to their output at
next clock cycle. This results to match R3 with R6.
Thus, the outputs of the subset circuit are proved.

8. Experimental results

This section reports the experimental results of
our procedure on circuits synthesized and
sequentially optimized using Synplify Pro 7.3 tool
(www.synplicity.com). We use a corporate BDD
package for the functional matching. The FFs
matched with non-functional techniques are
proved using an improved technique of [3]. All
tests are performed using a Dell Precision
833Mhz workstation with a memory limit of 1Gb.
We compare our method with the last VIS version

on ISCAS89 circuits (Table1) and with an
industrial sequential equivalence-checking tool on
some industrial designs (Table2). For all tests, we
have resumed the matching
(complete/incomplete), the rate of matched FFs
by the functional and non-functional part of the
procedure, the cpu time and if the test is proved
or not. The time limit has been set to 1 hour for
the comparison with VIS on the ISACS89
benchmarks. For the comparison with the
industrial tool, the time limit has been set to 3
days. Note that VIS runs out of time for industrial
circuits.
Table 1 shows that our procedure passes quickly
24 tests over 25 where VIS passes only 17 tests.
The benchmarks, which failed in Table1 using
VIS, are due to that the time limit has been
reached. The average rate of FFs matched
functionally is 91% and non-functionally 9%. The
circuit S38584 does not pass with our procedure
because it cannot produce a complete matching
for this circuit. Indeed two subset circuits from
the retiming procedure are not proved due to
function representation issues (BDD blow-up).
Table 2 shows that the proposed matching engine
passes 21 test over 23 industrial circuits where the
industrial tool passes only 14 tests. The average
rate of FFs matched functionally is 69% and non-
functionally 31%. The non-passing tests using the
industrial tool come from the fact the tests are
proved inequivalent due to an incomplete
matching (False negative problem). The circuit
I17 produces a false negative with our procedure
due to an incomplete matching. Our procedure
does not find a FFs replication because of BDD
size limit. The circuit passes if the replication
information is given using the user matching input
of our procedure. The circuit I21 does not pass
with our method because it does not complete
with the time limit of 3 days. This circuit passes
using the industrial tool. Our belief is that the
industrial tool has a better and faster SAT/BDD
solver that ours. This is confirmed with the circuit
I20 where both our procedure and the industrial
tool pass it but the industrial tool passes it twice
faster (2378s) than our method (5288s). It can be
noticed that both industrial tool and our matching
procedure produce false negative with an
incomplete matching. This confirmed the
importance of a complete matching for the
sequential equivalence-checking problem.
Comparison done with [5], [7] and [14] show that
we obtained better performances, but we could
not optimize the circuits using the same tools and
we did not know the exact machine used for the
testing. To give an idea, the circuit S838 is proved
on 55.6s with apparently the same optimizations

 Figure 7: Example of creation of the subset
 circuit

R6

R13

R3

R4
R5 R6

R9

R10

R11
R13

R12

R3

R4
R5

R2

R1

R9

R10

R11

R8

R7

R12

n7.b

7.a

R1
n

R2 R3

R4

R5 R6

R2 R3

R4 R6

8a

8b

Figure 8: Example of creation of the subset
 circuit

(same number of FFs after optimizations) with [5]
on a HP9000/755, our method proved it on 4.5s.
The circuit S1196 is proved in 159.3s with
apparently the same optimizations with [7] on a
Sun machine, our method proved it on 1.5s. The
circuit S35932 with apparently the same
optimizations is proved on 75s with [14] on a
Sun-sparc5 machine, our method proved it on
9.1s.

9. Conclusion

To conclude, the experimental results show a
clear advantage to our procedure. The results
also show that our procedure is more reliable that
an industrial tool (less false negative). These
better results are due to several factors. The first
one is our incremental approach (every time that
new matching is found, all the procedure is run
again). The second one is the use of several
engines (functional matching, non-functional
matching, complex redundancy removal, retiming
procedure), which can produce a complete
matching in most of the cases. The advantage of
our method is also due to our functional matching
which handles 69% of the matched FFs for the
industrial circuit and 91% for the ISCAS89. Thus,
it finds more complex sequential optimizations
and produces a complete and better matching than
the industrial tool. Our SAT/BDD solver could
not handle the circuits, which do not pass with our
method (BDDs become too large). This problem
is related to our SAT/BDD solver, which is not
optimized.

References
[1] D.Brand, “Verification of large synthesized
designs” in IEEE International Conference on
Computer-Aided Design (ICCAD), 1993, pp.534-
537
[2] S.M.Reddy, W.Kunz and D.K. Pradhan,
“Novel verification framework combining
structural and OBDD methods in a synthesis
environment” in Design Automation Conference
(DAC) 1995, pp414-419
[3] A.Kuelmann and F.Krohm, “Equivalence
checking Using Cuts and Heaps” in Design
Automation Conference (DAC) 1997, pp, 263-
268
[4] S.Rahim, B.Rouzeyre, L.Torres, J.Rampon
“Loop problem in sequential equivalence
checking” in SAME 2002, pp 52-58
[5] C.vanEijk: Formal Methods for the
Verification of Digital Circuits, Ph.D. Thesis of

the Eindhoven University of Technology,
Eindhoven, The Netherlands, September 1997
[6] J.R. Burch and V.Singhal, “Robust Latch
Mapping for Combinational Equivalence
Checking” in ICCAD, 1998, pp 563-569
[7] S-Y. Huang, K-T.Cheng, K-C Chen and
U.Glaeser, “An ATPG-Based Framework for
Verifying Sequential Equivalence”, in ITC, 1996,
pp.865-874
[8] S.Rahim, B.Rouzeyre, L.Torres, J.Rampon
“Matching in the presence of don’ t cares and
redundant elements for sequential equivalence
checking” in HLDVT, 2003, pp129-135
[9]] Anastasakis, Damiano, Tony Ma, Stanion,
“A Practical and Efficient Method for Compare-
point Matching” DAC 2002, pp 305-310.
[10] Ranjan, Singhal, Somenzi, Brayton, “Using
Combinational Verification for Sequential
Circuits”, in DATE. 1999, pp. 138 - 143
 [11] S-Y. Huang, K-T.Cheng, K-C Chen, “On
Verifying the Correctness of Retimed Circuits”,
Proce. Great Lakes Symp, on VLSI, pp.277-
281,1996
[12] L.Stok, I.Spillinger, and G.Even, “Improving
Initialization throught Reversed Retiming”, Proc.
ED&TC, pp, 150-154, 1995
[13] Carl Pixley, She-wong Jeong, Gary
D.Hachtel “Exact Calculation of Synchronization
Sequences Based on Binary Decision Diagrams”
in DAC 1992, pp 620-623
[14] Shi-Yu Huang, Kwang-Ting (Tim) Cheng,
“AQUILA: A Local BDD-based Equivalence
Verifier” in Formal Equivalence Checking and
Design Debugging pp90-pp109, Kluwer
Academic Publishers.
[15] Janett Mohnke, Paul Molitor, Sharad Malik,
“Application of BDDs in Boolean matching
techniques for formal logic combinational
verification” in STTT, 2000

 VIS Our procedure Circuit

#FFs
orig./opt Time Pass Time(s) Pass Matching FM (%) NFM (%)

S208 8/12 0.8 Yes 0.9 Yes Complete 100 0
S298 14/29 3.2 Yes 0.9 Yes Complete 100 0
S344 15/27 18 Yes 1.4 Yes Complete 100 0
S382 21/24 24 Yes 0.9 Yes Complete 100 0
S386 6/6 10 Yes 0.9 Yes Complete 100 0
S420 16/20 82 Yes 0.9 Yes Complete 100 0
S444 21/29 15 Yes 1.4 Yes Complete 100 0
S510 6/12 2932 Yes 1.5 Yes Complete 100 0
S526 21/32 76 Yes 1.4 Yes Complete 100 0
S641 19/17 4 Yes 1.4 Yes Complete 100 0
S713 19/17 5 Yes 1.4 Yes Complete 100 0
S832 5/5 236 Yes 1.4 Yes Complete 100 0
S838 32/74 - No 4.5 Yes Complete 88 12
S953 29/62 186 Yes 1.5 Yes Complete 100 0
S1196 18/18 3.8 Yes 1.5 Yes Complete 100 0
S1238 18/18 4.3 Yes 1.75 Yes Complete 92 8
S1423 74/154 - No 27.3 Yes Complete 78 22
S1488 6/6 1.1 Yes 1.4 Yes Complete 100 0
S1494 6/6 0.9 Yes 1.5 Yes Complete 100 0
S5378 179/253 - No 5.2 Yes Complete 78 22
S9234 160/62 - No 2.3 Yes Complete 82 18
S13207 648/431 - No 3.1 Yes Complete 88 12
S15850 563/304 - No 11 Yes Complete 69 31
S35932 1728/1728 - No 9.1 Yes Complete 74 26
S38584 1301/1406 - No 68 No Incomplete 36 64

Industrial tool Our procedure Ii

 Size
 (K)

#FFs
orig./opt Time Pass Matching Time Pass Matching FM NFM

I1 36 255/277 2.2 Yes Complete 2.9 Yes Complete 72 28
I2 38 255/270 1.9 Yes Complete 2.2 Yes Complete 100 0
I3 56 158/206 5.2 No Incomplete 2.3 Yes Complete 18 82
I4 24 17/18 0.9 Yes Complete 1.5 Yes Complete 100 0
I5 612 1437/1437 345 Yes Complete 595 Yes Complete 95 5
I6 68 101/105 1.5 Yes Complete 1.7 Yes Complete 100 0
I7 198 222/211 36 No Incomplete 24 Yes Complete 12 88
I8 98 523/568 11 No Incomplete 7.2 Yes Complete 100 0
I9 88 354/219 6.3 No Incomplete 5.4 Yes Complete 95 5
I10 56 565/537 4.1 Yes Complete 4.6 Yes Complete 100 0
I11 55 381/384 3.4 Yes Complete 3.3 Yes Complete 38 62
I12 278 72/72 18.2 Yes Complete 20.6 Yes Complete 0 100
I13 308 120/162 36.3 No Incomplete 32.5 Yes Complete 34 66
I14 456 996/1251 78.6 No Incomplete 56.4 Yes Complete 100 0
I15 312 524/611 24.5 No Incomplete 19.7 Yes Complete 100 0
I16 54 48/52 3.4 Yes Complete 4.2 Yes Complete 21 79
I17 356 250/246 345 No Incomplete 222 No Incomplete 0 100
I18 76 419/439 12.5 Yes Complete 18.3 Yes Complete 76 24
I19 98 358/369 14.1 Yes Complete 21.2 Yes Complete 82 18
I20 800 357/360 2378 Yes Complete 5288 Yes Complete 42 58
I21 950 347/249 26378 Yes Complete - No Complete 57 43
I22 188 432/444 92.3 No Incomplete 68.1 Yes Complete 76 24
I23 1280 236/237 36200 Yes Complete 172800 Yes Complete 75 25

Table 2. Experimental results on sequential and logically optimized industrial circuits

Table 1. Experimental results on sequential and logically optimized ISCAS89 circuits

