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Abstract 
Generic algorithms for sequential equivalence 
checking are computationally expensive because 
they are based on state space traversal.  This is 
the main reason why commercial tools often use 
combinational equivalence checking techniques 
to verify sequential designs. This approach 
consists in identifying potential equivalent flip-
flops or nets in the two designs under 
verification. This is called the matching step. Due 
to sequential optimizations performed during 
synthesis, which can remove, merge, replicate or 
retime flip-flops, this matching step can be very 
complex and incomplete.  Moreover if the 
matching is incomplete, even if a fast and 
efficient SAT solver is used during the 
combinational equivalence-checking step, this 
kind of approach may fail. In this paper, we 
present a complete matching engine, which is 
able to handle optimized circuit and don’t care 
conditions. The efficiency of the proposed engine 
is confirmed by experimental results on retimed 
and optimized circuits.      
 
 

1. Introduction 
 
In order to avoid the CPU time explosion due to 
state space traversal, a common and practical 
verification approach to check the functional 
equivalence of two sequential designs is to map 
the sequential equivalence-checking problem into 
a combinational equivalence one.  This is a two 
steps approach. The first step consists in finding a 
matching between the flip-flops (FFs for short) in 
the reference and in the implementation design. 
The second step is to verify the equivalence of the 
corresponding combinational blocks resulting of 
the matching using combinational formal 
techniques [1][2][3]. 
 
This verification method is efficient and 
especially applicable when only combinational 
synthesis techniques are used for optimization. 
Indeed if sequential optimizations (e.g. retiming, 
replication, merge, redundancy removal…) are 
performed during synthesis, the number and the 
input function of FFs may change. Thus the  

 
matching step can be very complex and may lead 
to an incomplete FFs matching as described in 
[4]. The used of a fast and efficient SAT solver 
for the combinational verification step could be 
inefficient for this type of problem. Experiments 
with industrial tools based on this method show 
that if two combinational blocks are found to be 
inequivalent, this is often due to an incomplete 
matching rather than a real bug in the circuit 
(False negative problem). It is thus very important 
to have an efficient matching technique. 
 
The matching techniques in industrial CAD tools 
can be divided in two classes: 
- the first one is non-functional based methods. 
They consist in using name comparison, 
simulation or structural similarities. Since, 
synthesis transformations may change FFs names 
or modify the designs structure, this method may 
leave a significant number of FFs unmatched or 
produce a wrong matching. Thus it cannot be 
used as an automated matching or handle 
sequential optimizations.   
- the second class of matching techniques are 
functional ones. They consist in comparing 
Boolean functions at FFs inputs. Various 
techniques have been proposed in [5][6][7] based 
on induction, ATPG and partitioning techniques. 
They are all exact methods and are able, 
theoretically, to verify sequential optimized 
circuits. But in practice, due to function 
representation issues, those methods cannot 
match all FFs in the design under verification and 
should be completed with non-functional 
methods. 
Moreover the proposed algorithms cannot handle 
all classes of designs. For example, the method 
[5] cannot deal with circuits with don’t cares 
(often referred as don’t care conditions) or 
circuits with stuck at FFs as defined in [8]. 
Method in [6] considers don’t cares but doesn’t 
propose a solution for retimed circuits or circuits 
with stuck at FFs [8]. The ATPG approach 
presented in [7] is a complete one but may run out 
of time for large designs. A method, which 
combines both non-functional and functional 
based methods, has been proposed in [9]. Its limit 
is reached with designs in which there is not a one 
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to one correspondence between the FFs in the 
reference and implementation (which may not be 
the case for sequential optimized circuits). The 
method presented in [15] can also be used to 
match FFs using the primary output. The idea is 
to find a permutation on the variable of the 
support (which could be FFs variables) of the 
function of the matched primary output, which 
make those functions equivalents.   
 
In this paper, we propose a combined matching 
engine. It produces a fast, complete and 
automated FFs matching in most of the cases. It is 
able to prove complex sequential optimizations 
(as merge after retiming or stuck at FFs as defined 
in [8]) and avoid false negative problems. Our 
experimental results show that the procedure is 
able to prove 21/23 optimized industrial circuits 
where industrial equivalence checking tool could 
only proved 14 of them. The main reasons of the 
efficiency of our approach are: 
- the use of an incremental approach which is able 
to handle merge, replication, don’ t care 
conditions, retiming, complex redundancy 
removal or any combination of them.  
- Experiments shows that the rate of flips-flops 
matched with functional part is in average very 
important.    
 
This paper is organized as follows. In section 2, 
we introduce some notions and definitions. The 
section 3 discussed about the overall procedure of 
our matching engine. Section 4 described the core 
engine of our functional matching algorithm and 
show its coupling with our redundancy removal 
published in [8]. In section 5, we present a basic 
algorithm to get an initial state to perform inverse 
matching (e.g. match all FFs equivalent modulo 
the inversion). Section 6 explains the non-
functional part of our engine. Section 7 details our 
technique for retimed designs. The efficiency of 
our engine is presented in section 8 by applying it 
on retimed and optimized both industrial and 
ISCAS89 benchmarks.      
 
 
 

2. Notations 
 
The input of the matching engine is the product 
machine of the two designs under verification. 
 
Definition 1: 
The input space is noted X, the state space S, the 
initial state So ∈ S, the next state function: ∆: S × 
X → S, and the output function: Λ: S × X → B, 
where B = {0,1} denotes the set of Boolean 
values.  

Definition 2: 
The number of FFs of the product machine is 
noted N. 
Definition 3: 
Fi and Vi denote respectively the input function 
and the output variable of the flip-flop Ri. 
 
Definition 4: 
The set of don’ t care variables is noted D = 
{Dc1,Dc2,….Dcj). The don’ t care (Dci) variables 
are used to specify all unspecified output values 
of a function.  
 
Definition 5: 
The inclusion operator ⊆ between two functions  
f (Xi,Vi) and g(Xi,Vi,Dci) is defined as follow: 

f ⊆ g iff  ∀(X1,..Xm) ∀(V1,..VN) ∃ (Dc1,..Dcj) /  
f = g. 

 
Definition 6: 
Let R be the set of all FFs of the product machine  
{R1,R2,…RN}. The goal of the matching is to find 
in R the sets of all the functionally equivalent Ri 
(functional matching) and the sets of all potential 
equivalent Ri (non functional matching). Thus, 
the matching result can be viewed as a 
partitioning of the set of FFs into equivalent 
classes, each equivalent class representing a 
subset of (functionally or structurally) matched 
FFs. Essentially, the matching process is a 
merging process, i.e. initially the set R is 
partitioned into N classes {C1, C2,…CN) where Ci 
= {Ri}. When two FFs match, their classes are 
merged. We note MS the matching status. MS 
denotes the state of the matching during our 
procedure. Initially no FFs have been matched 
and the matching status is: 

     N 

MS = ∪ Ci 
      i=0 

Definition 7: 
If a flip-flop Ri match with a flip-flop Rj, Ci and 
Cj are merged into a single class Ci such as Ci ∪ 
Cj = Ci where Ci = {i,j} and Vi = Vj.     
 
Definition 8: 
The equivalence relation Meq (Match equivalent) 
is introduced such as Ri Meq Rj 

�
 Fi ⊆ Fj. Meq is 

used to partitioned R during functional matching. 
The number of class created by Meq is noted 
Nceq. 
 
Definition 9: 
The equivalence relation Mpeq (Match potential-
equivalent) is introduced such as Ri Mpeq Rj 

�
 

Fi is potentially equivalent to Fj. Mpeq is used to 
partitioned R during non functional matching. 



The number of class created by Mpeq is noted 
Ncpeq. 
 
Definition 10: 
The number of FFs unmatched is noted Nunm. 
All classes with |Ci| = 1 correspond to an 
unmatched flip-flop. The number of FFs 
redundant is Nred.  
 
Definition 11: 
The transitive fanout (TFO) of a signal is the set 
of FFs and primary output structurally depending 
of this signal. 
The transitive fanin (TFI) of a signal is the set of 
FFs and primary input present in the support of 
the signal. 
 
Definition 12: 
A synchronization sequence of a circuit is a 
sequence of primary input, which initializes all 
the FFs of the circuit. Finding an initial state of a 
circuit consists in finding a synchronization 
sequence. 
  
 

3. The overall matching 
procedure  
 
The overall matching procedure is presented in 
figure 1. The Step 0 of the procedure starts to find 
a state So. The state So is needed to be able to 
perform inverse matching during the functional 
matching (e.g. match all equivalent FFs modulo 
the inversion). The general method to compute an 
initial state as presented in [13] is very time 
consuming for large circuit. A basic heuristic has 
been developed to compute quickly an initial 
state. It is presented in section 5. The initial state 
could be given by the user when the heuristic 
failed. 
 
The Step 1 of the procedure consists in running 
our functional matching. To be able to find 
functional equivalent FFs, we have used and 
extended the technique presented in [5]. It has 
been extended to handle don’ t care conditions and 
improved by decreasing its CPU time 
consumption. The matching status is then the 
union of the new class created by the functional 
matching using the Meq relation (which 
represents the matched FFs) and the class with a 
single flip-flop (which represents the unmatched 
one) and: 
 

          Nceq                 Nunm 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) 
              

Then the redundancy removal in [8] is applied. If 
redundant FFs have been found, functional 
matching is run again until no new improvement 
has been reached. The redundant FFs are removed 
from the set of unmatched one. The matching 
status becomes: 
 

                                    Nceq               Nunm - Nred 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Step 2 of the procedure is the non-functional 
matching using the Mpeq relation. If new classes 
are created (i.e new matching has been found), all 
the procedure is launched again until no new 
improvements has been detected. Note that all 
FFs in the classes created should be proved in a 
separate process. The matching status is then the 
union of matched (functionally and structurally) 
FFs with the unmatched one. MS becomes: 
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                        Nceq                 Ncpeq             Nunm - Nred 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) ∪ ( ∪ Ck ) 
 
Step 3 is used to prove retimed part of the 
circuits.  The retimed subset part of the circuit is 
extracted.  Those parts come from the unmatched 
FFs. Then methods as [5][10][11][12] are applied 
depending on the structure of the subset circuits 
(pipelined or not). As the output of the subset 
circuits could be FFs, matching those circuits may 
lead to new matching. In this case, the overall 
procedure is launched again. The retiming method 
is presented in section 7 
 
The overall procedure stops when the proof is 
possible (Step 4). The proof is possible when all 
non-redundant FFs have been matched and all 
outputs of the subsets circuits built by the 
retiming procedure could be proved. Then all 
primary outputs and structurally matched FFs are 
proved in a separate process. The combinational 
techniques used for this proof is more powerful 
than the one used in the functional matching. 
 
 
4. Functional matching 
 
The goal of the functional matching is to find all 
functional equivalent FFs of the product machine. 
Then, match them with the equivalence relation 
Meq. In this section, we present our partitioning 
technique in order to find all functional 
equivalent, included or inverted FFs of a design.  
It is an extension of the techniques presented in 
[5]. It has been extended to handle don’ t care 
conditions and improved by decreasing its CPU 
time consumption.  
 
First, the technique partitions all Fi in two 
partitions regarding the initial state of Ri. Then, 
the partitions are split iteratively as follows. The 
output variables of each Ri are respectively set to 
V and ¬V (regarding the initial state) and their 
input functions Fi are computed with those 
variables. Then all equal, included or inverted 
function Fi are put in a new partition represented 
by a new output variable Vk (¬Vk for inverted 
functions) and the input functions Fi are re-
computed. Each function, which could not be 
computed due to function representation issues, is 
put in a different single partition. The process 
continues until it reaches a fixpoint i.e. when no 
new partitions are created. The theory of this 
method has been presented in [5] and is the same 
introducing the inclusion checking. At the 
fixpoint, all Fi in the same partition are 
equivalent, included or inverted. Thus the 

corresponding FFs Ri can be easily matched with 
the equivalence relation Meq. The matching 
status is then:  
 

        Nceq                 Nunm 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) 
 
The unmatched FFs may come from redundant 
FFs as explained in [8]. They can also come from 
FFs, whose input function could not be computed 
during the process. 
 
The example on figure 2 illustrates the method. 
At the beginning no FFs have been matched, MS 
is represented in figure 3. The set F = 
{F1,F2,F3,F4,F5,F6,F7}. Considering the initial state 
(init), F1=F6=F7=0 and F2=F3=F4=F5=1. The set F 
is split in two partitions (P0, ¬V) and (P1, V) 
(where P0={F1, F6, F7} and P1={F2, F3, F4, F5}). 
After iteration1 (iter1) of the process   F1 = ¬ F2, 
F3 = F4, F4 ⊆ F5 and F6 = F7. The set F is refined in 
four partitions (P0, ¬V1), (P1,V1), (P2,V2), (P3,V3) 
(where P0={F1}; P1={F2}, P2 ={F3,F4,F5}; 
P3={F6,F7}. After iteration 2 (iter2), the relation 
between the functions remains the same i.e. F1 = 
¬ F2, F3 = F4, F4⊆ F5 and F6 = F7. No new 
partitions are created. The fixpoint is reached and 
the process stops.  All the Fi in the same partition 
modulo the inversion are equivalent, included or 
inverted. Thus, all corresponding FFs Ri can be 
matched with the equivalence relation Meq. The 
matching status is then the one in figure 4. 
 
Let suppose that the initial state of the product 
machine is not known in the example of figure 2. 
At the beginning of the process, all the Fi are in 
the same partition (P0, V). The first iteration of 
the process gives F1 ≠ ¬F2, F3 ≠ F4, F4 ⊄ F5, 
F6=F7. The set F is refined in 6 partitions  (P0, 
V0), (P1, V1), (P2, V2), (P3, V3), (P4, V4), (P5, V5), 
(P6, V6),   (where P0 = {F1}, P1 = {F2}, P3 = {F3}, 
P4 = {F4}, P5 = {F5}, P6 = {F6, F7}). The second 
iteration gives F1 ≠ ¬F2, F3 ≠ F4, F4 ⊄ F5, F6 ≠ F7. 
The set R is refined in 7 partitions (P0, V0), (P1, 
V1), (P2, V2), (P3, V3), (P4, V4), (P5, V5), (P6, V6), 
(P7, V7  (where P0 = {F1}, P1 = {F2}, P3 = {F3}, P4 
= {F4}, P5 = {F5}, P6 = {F6}, P7 = {F7}). At the 
next iteration the fixpoint is reached. All the Fi 
are in a different partition at the fixpoint. This 
implies that no FFs can be matched with Meq. 
This shows that to now the initial state of the 
product machine is needed. 
 
One way to speed up the process is to notice that 
each input function of the FFs doesn’ t need to be 
re-computed at each fixpoint iteration. Indeed for 
example, the input functions of FFs depending 
only on the primary inputs don’ t change. 



Moreover when a new class is created, only the 
input functions of the FFs presents in the TFO of 
the FFs in the new class need to be computed, 
other functions remains the same. Another 
improvement consists not in starting with only 
two classes, but to use random simulation to 
create more classes. The experimental results 
show that those improvements decrease 
drastically the CPU time. 
 
In [8], it is explained why redundant FFs (as 
constant or stuck at FFs) should be removed to 
improve the functional matching and avoid false 
negative problems. The redundancy removal 
engine introduced in [8] is combined with the 
functional matching in a fixpoint algorithm. 
Indeed removing redundant FFs may lead to have 
new matching and new matching may lead to have 
new redundant FFs. The redundant FFs are 
removed from the unmatched one and the 
matching status is: 
 
                                     Nceq                Nunm - Nred 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For some particular cases, a redundant state 
removal has been added in our redundancy 
removal engine. Indeed matching with a one to 
one correspondence n flip-flop of the reference 
design with n FFs of the implementation implies 
that the output value of the n FFs can take 2n 
values. This can be false if the fsm corresponding 
to the n FFs have a one hot encoding. This implies 
that there is 2n – n unreachable values for the 
output function of the n matched FFs.  Let 
suppose now that FFs Rref have the n FFs of the 
reference in its support and Rimpl the n FFs of the 
implementation.        Rref and Rimpl may not match 
because their input functions differ in the 2n – n 
unreachable values.  
 
The problem is illustrated on figure 5. Functional 
matching matched R1 with R5, R2 with R6, R3 with 
R7 and left unmatched R4 and R8 because F4 ≠ F8. 
Match (R1,R2,R3,R5,R6,R7) implies automatically 
to suppose there is a full range in the output 
function of those FFs (e.g. matching assume that 
there is 23  possible output values). This results to 
have F4≠F8. Applying our redundant state 
removal, it can be seen that the output value of 
(R1,R2,R3) can never take the value (1,1,1). This 
implies directly that F4 = F8 and F4 is 
functionally matched with F8. 
 
 

Figure 3: Initial matching status 
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  Figure 2: Example of functional matching 

Init: F1=0, F2=1, F3=1, F4=1, F5=1, F6=0, F7=0 
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F3=V1∨¬V3, F4=V1∨¬V3, F5=(V1∨¬V3) ∧Dc, 
F6=V2∧In3, F7=V2∧In3  
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5. Initial State 
 
As discuss in section 4, the computation of an 
initial state So is needed for functional matching. 
General method presented in [13] is based on 
state traversal and could be very time consuming. 
In this section, a basic heuristic to compute a 
synchronization sequences is presented. 
Experiments done show clearly that for 90% of 
the industrial benchmark tested, the heuristic 
could find the right synchronization sequence in 
few seconds. 
The heuristic consists in unrolling the product 
machine as described in [14]. The unrolling 
technique consists in computing the product 
machine at time frame t, then at time t+1… . The 
notion of time frame model of the product 
machine is described in [5].  
Fi(t) is the function Fi at time frame t, Fi(t+1) at 
time t+1… ..such as  Fi(t) is a function of (Vi, Xt), 
Fi(t+1) a function of  (Vi,Xt,Xt+1)…   
The time frame at the beginning of the process is 
noted t. The heuristic unrolls the product machine 
until time frame T. T is the first time frame where 
all Fi(T) can be justified separately to a value with 
a primary inputs sequence between time t and T 
(Xt, Xt+1,… XT). It is not sure that all FFs can be 
justified globally at this time frame T. For 
instance, at time T, two sequences S1 and S2 are 
found that justifies F1(T) (resp F2(T)) but not 
F2(T) (resp F1(T)). This is why our method is a 
heuristic and not a general method. The product 
machine has a synchronization sequence. This 
implies that here is at least a time frame Tinit 
where all FFs can be globally initialized. This 
guarantees to find a time frame T. The weakness 
of our method is that we may have Tinit > T. But 
if at time T, there is a sequence, which initializes 

all FFs (i.e T=Tinit), our procedure guarantees to 
find it. 
Finally, a pattern input sequence, which initializes 
the maximum of Fi(T), is found using TPG 
techniques. This input sequence has a length of T-
t. If this input sequence could initialize all the N 
FFs, the synchronization sequence has been 
found.  
The heuristic is illustrated on the design of figure 
2. Each flip-flop has a different output variable as 
at the beginning of the matching e.g. V1, V2… . 
The unrolling of the product machine gives: 
At time frame t: 
F1(t) = ¬((¬V1∧¬In2t) ∨ (In1t ∧ In2t))  
F2(t) = (V2∧¬In2t) ∨ (In1t∧ In2t) 
F3(t) = ¬V1 ∨ ¬V6 
F4(t) = V2 ∨ ¬V7 
F5(t) = (¬V1 ∨ ¬V6) ∧ Dc  
F6(t) = V3 ∧ In3t 
F7(t) = V4 ∧ In3t 
At time frame t, R3, R4, R5 cannot be justified 
with the primary inputs, the product machine is 
computed at next time frame. 
At time frame t+1: 
F1(t+1) = ¬((¬F1(t)∧¬In2t+1) ∨ (In1t+1 ∧ In2t+1))  
F2(t+1) = (F2(t)∧¬In2t+1) ∨ (In1t+1∧ In2t+1) 
F3(t+1) = ¬F1(t) ∨ ¬F6(t) = ((¬V1∧¬In2t) ∨               
(In1t ∧ In2t))  ∨  (¬ (V3 ∧ In3t)) 
F4(t+1) = F2(t) ∨ ¬F7(t) = ((V2∧¬In2t) ∨ (In1t∧ 
In2t)) ∨ (¬(V4 ∧ In3t)) 
F5(t+1) = (¬F1(t) ∨ ¬F6(t)) ∧ Dc =  ((¬V1∧¬In2t) 
∨          (In1t ∧ In2t))  ∨  (¬ (V3 ∧ In3t)) ∧ Dc 
F6(t+1) = F3(t) ∧ In3t+1 
F7(t+1) = F4(t) ∧ In3t+1 
At time frame t+1, all the FFs can be justified 
with primary inputs (In1t, In2t, In3t, In1t+1, In2t+1, 
In3t+1), we set T = t+1. 
At time frame T, using TPG techniques an input 
sequences which initialized all the FFs is found. 
For example a synchronization sequence can be: 
(In1t, In2t, In3t, In1t+1, In2t+1, In3t+1) = 
(1,1,0,1,1,0), this implies that an initial state of 
the circuit could be: 
R1=0, R2=1, R3=1, R4=1, R5=1, R6=0, R7=0.  
 
 

6. Non-functional matching 
 
As explained in section 4, functional matching 
may leave some FFs unmatched due to the 
function representation issue. In this case, non-
functional matching should be combined with 
functional matching. Indeed matching FFs with 
non-functional algorithm may lead to new 
functional matching as described in figure 6. Non-
functional techniques are a combination of name 
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     Figure 5: Example of circuit with  
                     redundant states 



matching simulation, structural matching and 
support matching.   
On the example of figure 6, the output function of 
the pin 31 of the 32x32 multiplier cannot be 
computed with BDD techniques. Functional 
matching is not able to match R3 with R7 and 
automatically R4 is not matched with R8. 
Applying non-functional matching, R3 is matched 
with R7. Then applying functional matching R4 is 
matched with R8.  
The matching status after non-functional 
matching is: 
 

                       Nceq                 Ncpeq              Nunm - Nred 

MS = ( ∪ Ci ) ∪ ( ∪ Cj ) ∪ ( ∪ Ck ) 
                 
               Ncpeq 
 

The set ∪ Cj, which comes from non-functional 
matching, should be proved. Indeed non-
functional matching gives only the assumptions 
that FFs are equivalent. Those assumptions 
should be proved using more powerful 
combinational equivalence checking techniques 
than the one used in the functional matching. On 
the figure 6, R3 should be proved with R7 to 
validate the matching. Combinational technique 
as [3] can be used for this purpose.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

7. Retiming procedure 
 
Retiming is one major problem for the matching 
step. The input function of the retimed FFs is 
changed during retiming. Thus, it is not possible 
to find any matching for those FFs using 
functional or structural matching. Efficient 
methods as [5][10][11][12] exist to prove retimed 
circuits. The method [5] uses induction to find a 
functional nets matching to prove retiming. The 
method in [10] uses combinational techniques to 
do it. This method reintroduces the input function 
of the retimed FFs to the output at next clock 
cycle. In this section, we present our retiming 

procedure based on [5] and [10]. The difference 
with the previous approach is that those methods 
are applied in subset circuits and not in all the 
circuit. The other difference is that our retiming 
procedure chose the best approach regarding the 
subset circuit structure. [10] is applied when the 
subset circuit is a pipeline one. [5] is applied for 
no pipeline one. 
The retiming procedure is applied on the last set 
of the 
                       Nunm - Nred 

matching status  ∪ Ck. This set corresponds to 
the unmatched FFs after functional and non-
functional matching and redundancy removal.  
To be able to prove complex retiming, the 
functional matching described in section 4 is 
extended to net (e.g. not only FFs are matched but 
also nets). 
The construction of the retimed subset circuits 
consists in finding all matched FFs, nets, primary 
input and primary output present in the TFO and 
TFI of all unmatched FFs. The primary inputs of 
the subset circuits are the matched FFs, nets and 
the primary input present in the TFI. The new 
primary outputs are the matched FFs, nets and 
primary output present in the TFO. Then if the 
subset circuit is a pipeline circuit, technique as 
[10] is applied. If the circuit has sequential loops, 
technique as [5] is applied. Applying retiming 
methods as [5][10] on subset circuits and not on 
the product machine make our procedure 
efficient.  
A retimed design (7.a) and its subset circuit (7.b) 
are presented on figure 7. In the original design 
(7.a), R5 has been retimed in R11 and R12. Thus, 
functional matching is not able to match R6 with 
R13. This implies automatically to not match  (R3, 
R4, R9, R10). However (R1,R2,R7,R8) only depends 
of the primary inputs, they are matched. The 
retiming procedure builds the subset circuit (7.b) 
by replacing all FFs in the TFI of the unmatched 
FFs by primary inputs.  The circuit created is not 
a pipeline one. The method in [5] is applied. This 
results to match the net n with R5.  This leads to 
F6=F13=¬V5 and implies to match R6 with R13. 
Then automatically R3 is matched with R9 and R4 
with R10. Thus, the outputs of the subset circuit 
are proved.  
 
Another example of the retiming procedure is 
given figure 8. In the original circuit (8.a), R2 has 
been retimed backward then merged with R1. R1, 
R4 and the network n are matched together by 
functional matching because they have the same 
input function. Then the subset circuit is built 
(8.b). The method [10] is applied on the pipeline 
subset circuit. The input function of the retimed 

Figure 6: Example of non-functional 
                         matching 
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FFs R2 and R4 is reintroduced to their output at 
next clock cycle. This results to match R3 with R6. 
Thus, the outputs of the subset circuit are proved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
8. Experimental results 
 
This section reports the experimental results of 
our procedure on circuits synthesized and 
sequentially optimized using Synplify Pro 7.3 tool 
(www.synplicity.com). We use a corporate BDD 
package for the functional matching. The FFs 
matched with non-functional techniques are 
proved using an improved technique of [3]. All 
tests are performed using a Dell Precision 
833Mhz workstation with a memory limit of 1Gb. 
We compare our method with the last VIS version 

on ISCAS89 circuits (Table1) and with an 
industrial sequential equivalence-checking tool on 
some industrial designs (Table2).  For all tests, we 
have resumed the matching  
(complete/incomplete), the rate of matched FFs 
by the functional and non-functional part of the 
procedure, the cpu time and if the test is proved 
or not. The time limit has been set to 1 hour for 
the comparison with VIS on the ISACS89 
benchmarks.  For the comparison with the 
industrial tool, the time limit has been set to 3 
days. Note that VIS runs out of time for industrial 
circuits.   
Table 1 shows that our procedure passes quickly 
24 tests over 25 where VIS passes only 17 tests.  
The benchmarks, which failed in Table1 using 
VIS, are due to that the time limit has been 
reached. The average rate of FFs matched 
functionally is 91% and non-functionally 9%. The 
circuit S38584 does not pass with our procedure 
because it cannot produce a complete matching 
for this circuit. Indeed two subset circuits from 
the retiming procedure are not proved due to 
function representation issues (BDD blow-up).  
Table 2 shows that the proposed matching engine 
passes 21 test over 23 industrial circuits where the 
industrial tool passes only 14 tests. The average 
rate of FFs matched functionally is 69% and non-
functionally 31%. The non-passing tests using the 
industrial tool come from the fact the tests are 
proved inequivalent due to an incomplete 
matching (False negative problem). The circuit 
I17 produces a false negative with our procedure 
due to an incomplete matching. Our procedure 
does not find a FFs replication because of BDD 
size limit. The circuit passes if the replication 
information is given using the user matching input 
of our procedure. The circuit I21 does not pass 
with our method because it does not complete 
with the time limit of 3 days. This circuit passes 
using the industrial tool. Our belief is that the 
industrial tool has a better and faster SAT/BDD 
solver that ours. This is confirmed with the circuit 
I20 where both our procedure and the industrial 
tool pass it but the industrial tool passes it twice 
faster (2378s) than our method (5288s). It can be 
noticed that both industrial tool and our matching 
procedure produce false negative with an 
incomplete matching. This confirmed the 
importance of a complete matching for the 
sequential equivalence-checking problem. 
Comparison done with [5], [7] and [14] show that 
we obtained better performances, but we could 
not optimize the circuits using the same tools and 
we did not know the exact machine used for the 
testing. To give an idea, the circuit S838 is proved 
on 55.6s with apparently the same optimizations 
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Figure 8: Example of creation of the subset  
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(same number of FFs after optimizations) with [5] 
on a HP9000/755, our method proved it on 4.5s. 
The circuit S1196 is proved in 159.3s with 
apparently the same optimizations with [7] on a 
Sun machine, our method proved it on 1.5s. The 
circuit S35932 with apparently the same 
optimizations is proved on 75s with [14] on a 
Sun-sparc5 machine, our method proved it on 
9.1s. 
 
 

9. Conclusion 
 
To conclude, the experimental results show a 
clear advantage to our procedure.  The results 
also show that our procedure is more reliable that 
an industrial tool (less false negative). These 
better results are due to several factors. The first 
one is our incremental approach (every time that 
new matching is found, all the procedure is run 
again).  The second one is the use of several 
engines (functional matching, non-functional 
matching, complex redundancy removal, retiming 
procedure), which can produce a complete 
matching in most of the cases. The advantage of 
our method is also due to our functional matching 
which handles 69% of the matched FFs for the 
industrial circuit and 91% for the ISCAS89. Thus, 
it finds more complex sequential optimizations 
and produces a complete and better matching than 
the industrial tool. Our SAT/BDD solver could 
not handle the circuits, which do not pass with our 
method (BDDs become too large). This problem 
is related to our SAT/BDD solver, which is not 
optimized.  
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           VIS                                  Our procedure Circuit 
 

#FFs 
orig./opt Time Pass Time(s) Pass Matching  FM (%) NFM (%) 

S208 8/12 0.8 Yes 0.9 Yes Complete 100 0 
S298 14/29 3.2 Yes 0.9 Yes Complete 100 0 
S344 15/27 18 Yes 1.4 Yes Complete 100 0 
S382 21/24 24 Yes 0.9 Yes Complete 100 0 
S386 6/6 10 Yes 0.9 Yes Complete 100 0 
S420 16/20 82 Yes 0.9 Yes Complete 100 0 
S444 21/29 15 Yes 1.4 Yes Complete 100 0 
S510 6/12 2932 Yes 1.5 Yes Complete 100 0 
S526 21/32 76 Yes 1.4 Yes Complete 100 0 
S641 19/17 4 Yes 1.4 Yes Complete 100 0 
S713 19/17 5 Yes 1.4 Yes Complete 100 0 
S832 5/5 236 Yes 1.4 Yes Complete 100 0 
S838 32/74 - No 4.5 Yes Complete 88 12 
S953 29/62 186 Yes 1.5 Yes Complete 100 0 
S1196 18/18 3.8 Yes 1.5 Yes Complete 100 0 
S1238 18/18 4.3 Yes 1.75 Yes Complete 92 8 
S1423 74/154 - No 27.3 Yes Complete 78 22 
S1488 6/6 1.1 Yes 1.4 Yes Complete 100 0 
S1494 6/6 0.9 Yes 1.5 Yes Complete 100 0 
S5378 179/253 - No 5.2 Yes Complete 78 22 
S9234 160/62 - No 2.3 Yes Complete 82 18 
S13207 648/431 - No 3.1 Yes Complete 88 12 
S15850 563/304 - No 11 Yes Complete 69 31 
S35932 1728/1728 - No 9.1 Yes Complete 74 26 
S38584 1301/1406 - No 68 No Incomplete 36 64 

Industrial tool Our procedure Ii 
 

  Size 
  (K) 

#FFs 
orig./opt Time Pass Matching Time  Pass Matching FM NFM 

I1 36 255/277 2.2 Yes Complete 2.9 Yes Complete 72 28 
I2 38 255/270 1.9 Yes Complete 2.2 Yes Complete 100 0 
I3 56 158/206 5.2 No Incomplete 2.3 Yes Complete 18 82 
I4 24 17/18 0.9 Yes Complete 1.5 Yes Complete 100 0 
I5 612 1437/1437 345 Yes Complete 595 Yes Complete 95 5 
I6 68 101/105 1.5 Yes Complete 1.7 Yes Complete 100 0 
I7 198 222/211 36 No Incomplete 24 Yes Complete 12 88 
I8 98 523/568 11 No Incomplete 7.2 Yes Complete 100 0 
I9 88 354/219 6.3 No Incomplete 5.4 Yes Complete 95 5 
I10 56 565/537 4.1 Yes Complete 4.6 Yes Complete 100 0 
I11 55 381/384 3.4 Yes Complete 3.3 Yes Complete 38 62 
I12 278 72/72 18.2 Yes Complete 20.6 Yes Complete 0 100 
I13 308 120/162 36.3 No Incomplete 32.5 Yes Complete 34 66 
I14 456 996/1251 78.6 No Incomplete 56.4 Yes Complete 100 0 
I15 312 524/611 24.5 No Incomplete 19.7 Yes Complete 100 0 
I16 54 48/52 3.4 Yes Complete 4.2 Yes Complete 21 79 
I17 356 250/246 345 No Incomplete 222 No Incomplete 0 100 
I18 76 419/439 12.5 Yes Complete 18.3 Yes Complete 76 24 
I19 98 358/369 14.1 Yes Complete 21.2 Yes Complete 82 18 
I20 800 357/360 2378 Yes Complete 5288 Yes Complete 42 58 
I21 950 347/249 26378 Yes Complete - No Complete 57 43 
I22 188 432/444 92.3 No Incomplete 68.1 Yes Complete 76 24 
I23 1280 236/237 36200 Yes Complete 172800 Yes Complete 75 25 

Table 2. Experimental results on sequential and logically optimized industrial circuits 

Table 1. Experimental results on sequential and logically optimized ISCAS89 circuits 


