
HAL Id: lirmm-00108774
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108774

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging the Learning Power of Examples in
Automated Constraint Acquisition

Christian Bessiere, Remi Coletta, Eugene C. Freuder, O’Sullivan Barry

To cite this version:
Christian Bessiere, Remi Coletta, Eugene C. Freuder, O’Sullivan Barry. Leveraging the Learning
Power of Examples in Automated Constraint Acquisition. CP: Principles and Practice of Constraint
Programming, Sep 2004, Toronto, Canada. pp.123-137, �10.1007/978-3-540-30201-8_12�. �lirmm-
00108774�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108774
https://hal.archives-ouvertes.fr


Leveraging the Learning Power of Examples
in Automated Constraint Acquisition �

Christian Bessiere1, Remi Coletta1, Eugene C. Freuder2, and Barry O’Sullivan2

1 LIRMM-CNRS (UMR 5506), 161 rue Ada 34392 Montpellier Cedex 5, France
{bessiere|coletta}@lirmm.fr
2 Cork Constraint Computation Centre

Department of Computer Science, University College Cork, Ireland
{e.freuder|b.osullivan}@4c.ucc.ie

Abstract. Constraint programming is rapidly becoming the technology of choice
for modeling and solving complex combinatorial problems. However, users of
constraint programming technology need significant expertise in order to model
their problem appropriately. The lack of availability of such expertise can be a
significant bottleneck to the broader uptake of constraint technology in the real
world. In this paper we are concerned with automating the formulation of con-
straint satisfaction problems from examples of solutions and non-solutions. We
combine techniques from the fields of machine learning and constraint program-
ming. In particular we present a portfolio of approaches to exploiting the seman-
tics of the constraints that we acquire to improve the efficiency of the acquisition
process. We demonstrate how inference and search can be used to extract useful
information that would otherwise be hidden in the set of examples from which
we learn the target constraint satisfaction problem. We demonstrate the utility of
the approaches on a case-study domain.

1 Introduction

Constraint programming is rapidly becoming the technology of choice for modelling
and solving complex combinatorial problems. However, users of constraint program-
ming technology need significant expertise in order to model their problem appro-
priately. The ability to assist users to model a problem in the constraint satisfaction
paradigm is of crucial importance in making constraint programming accessible to non-
experts. However, there are many obstacles which must be overcome. For example, in
some situations users are not capable of fully articulating the set of constraints they wish
to model. Instead users can only present us with example solutions and non-solutions of
the target constraint satisfaction problem (CSP) they wish to articulate. This situation
arises in many real-world scenarios. In purchasing, a human customer may not be able
to provide the sales agent with a precise specification of his set of constraints because

� The collaboration between LIRMM and the Cork Constraint Computation Centre is supported
by a Ulysses Travel Grant from Enterprise Ireland, the Royal Irish Academy and CNRS (Grant
Number FR/2003/022). This work has also received support from Science Foundation Ireland
under Grant 00/PI.1/C075.



he is unfamiliar with the technical terms that are required to specify each constraint.
Alternatively, in a data-mining context we may have access to a large source of data
in the form of positive and negative examples, and we have been set the task of gen-
erating a declarative specification of that data. Earlier work in this area has focused
on the generalization problem, inspired by work from the field of Inductive Logic Pro-
gramming [?]. Here we focus on combining techniques from constraint processing and
machine learning to develop a novel approach to constraint acquisition.

We have proposed an algorithm,CONACQ , that is capable of acquiring a model of
a CSP from a set of examples [2]. The algorithm is based on version space learning [7].
Version spaces are a standard machine learning approach to concept learning. A version
space can be regarded as a set of hypotheses for a concept that correctly classify the
training data received; in Section 2 we shall present an example which will serve both
a pedagogical role and demonstrate the problem we address in this paper.

However, theCONACQ algorithm suffers from a serious malady that has significant
consequences for its ability to acquire constraint networks efficiently. In particular, this
malady arises because we are acquiring networks of constraints, some of which may be
redundant [1, 4, 9]. Informally, for now, we can regard a constraint as being redundant if
it can be removed from a constraint network without affecting the set of solutions. While
redundant constraints have no effect on the set of solutions to a CSP, they can have a
negative effect on the acquisition process. In particular, when using version spaces to
represent the set of consistent hypotheses for each constraint, redundancy can prevent
us from converging on the most specific hypotheses for the target network, eventhough
the set of training examples is sufficient for this to occur. As a consequence, for a given
constraint in the network, its version space may not be sufficiently explicit, but rather
contain constraints which are far too general. This is a significant problem since the size
of each version space has a multiplicative effect on the number of possible CSPs that
that correctly classify the training examples.

In this paper we present a portfolio of approaches to handling redundant constraints
in constraint acquisition. In particular, we address the issue of how to make each con-
straint as explicit as possible based on the examples given. We shall present an approach
based on the notion ofredundancy rules, which can be regarded as a special-case of re-
lational consistency [5]. We shall show that these rules can eliminate some, but not all,
forms of redundancy. We shall then demonstrate a second approach, based on the notion
of backbone detection, which is far more powerful.

The remainder of this paper is organized as follows. Section 2 presents a simple
example of how acquiring redundant constraints can have an adverse effect on the con-
straint acquisition process. Section 3 presents some formal definitions of the concepts
that underpin our approach. We formalize the notion of redundancy in constraint net-
works, and show how the problem identified in Section 2 can be easily addressed.
Section 4 presents a more powerful approach to dealing with redundancy due to dis-
junctions of constraints. Section 5 presents an empirical evaluation of the various ap-
proaches presented in the paper and presents a detailed discussion of our results. A
number of concluding remarks are made in Section 6.



2 An Illustrative Example

TheCONACQalgorithm maintains a separate version space for each potential constraint
in the CSP. A solution to the target CSP (positive example) provides examples for each
constraint in the problem, sinceall constraints must be satisfied in order for an example
to be classified as positive. However, negative examples are more problematic to pro-
cess, since violating at leastone constraint is sufficient for an example to be classified
as negative. Therefore, a negative example provides a disjunction of possible examples.
It is only when the algorithm can deduce which constraints must have been violated to
classify an example as negative are the appropriate version spaces updated. An example
below will demostrate this point clearly.

We demonstrate the potential problems that can arise due to redundancy during
an interactive acquisition session usingCONACQ . Consider the hypothesis space of
constraints presented in Figure 1(a). The general-to-specific ordering over the set of
constraints is based on set inclusion; more general constraints are placed higher in the
hypothesis space. We assume in our example that all constraints in our target problem
can be expressed using this hypothesis space. The constraint� is the universal con-
straint – all tuples are accepted. The constraint⊥ is the null constraint – no tuples are
accepted.

For the purposes of this example, we wish to acquire a CSP involving 3 variables,
x1, x2 andx3, with domainsD(x1) = D(x2) = D(x3) = {1, 2, 3, 4}. The set of
constraints in the target network is{x1 > x2, x1 > x3, x2 > x3}. Note that it is
sufficient only to acquire two of these constraints, the third one being redundant. In
Table 1 the set of examples that will be provided to the acquisition system is presented.
The set of examples comprises one positive example (a solution to the target CSP) and
two negative examples (non-solutions). Figures 1(b)–1(d) illustrate the effect of each
example in turn on the version spaces of the constraints in the network.

Figure 1(b) presents the state of each of the constraint versionE x1 x2 x3

e+1 4 3 1
e−2 2 3 1
e−3 3 1 2

Table 1. Ex-
amples for
Fig. 1

spaces after the first (and only) positive example,e+
1 , has been pro-

cessed. We can see that the version space of each constraint now con-
tains four hypotheses:>, �=,≥ and�. The other hypotheses are elim-
inated because they are inconsistent withe+

1 . Specifically, ifx1 =
4∧x2 = 3 can be part of a solution, then the constraint between these
variables must bemore general than or equal to>. Therefore, we can
ignore the possibility that this constraint can be either=, <, ≤ or ⊥.
Essentially. we know that any CSP that can be expressed in terms of
the constraints presented in Figure 1(a) must comprise constraints that are no more spe-
cific than those in the version spaces presented in Figure 1(b). Similar reasoning allows
us to reduce the version space for each constraint to that illustrated in Figure 1(b).

Figure 1(c) presents the effect of processing examplee−2 , the first negative example.
Of the three constraints in the problem,e−2 differs by only one constraint,c12, compared
to the constraints implied by the the positive examplee+

1 . Therefore, we can further
refine the version space of constraintc12 by removing both�= and�. We illustrate
this as using a colored shading over those hypotheses that are removed from the version
space. Similarly, the reason whye−3 is classified as negative is due to a single constraint:
namelyc23. Figure 1(d) illustrates the result of processing negative examplee−3 .



⊥

< = >

≤ �= ≥

�

(a) Hypothesis
space of con-
straints in the
toolkit

x1

x2

x3

>

≥�=
�

>

�= ≥
�

>

�= ≥
�

(b) Step 1: After processing
the positive examplee+

1

x1

x2

x3

>

≥�=
�

>

�= ≥
�

>

�= ≥
�

(c) Step 2: After processing
the negative examplee−2

x1

x2

x3

>

≥�=
�

>

�= ≥
�

>

�= ≥
�

(d) Step 3: After processing
the negative examplee−3

Fig. 1. Acquiring a redundant constraint prevents one version space from converging.

After processing the negative examplese−2 , e
−
3 , the version spaces for the constraint

between variablesx1 andx2 and between variablesx2 andx3 are reduced to the set of
hypotheses{>,≥}. However, the version space for the constraint between variablesx 1

andx3 has not. Instead, this version space contains four possible hypotheses:{>,≥, �=
,�}.

This is an unfortunate since we cannot now find a set of negative examples which
will help this version space to reduce any closer to the target constraint. For example, to
eliminate the hypothesis�=, we need a negative example withx1 < x3 but necessarily
satisfying all other acquired constraints, i.e., satisfying their most specific possible al-
ternative:x1 > x2 andx2 > x3, so that the only possible reason to reject it isx1 < x3.
Clearly no such example exists. As a consequence, our constraint acquisition algorithm
cannot converge any further. However, it should be pointed out that it was not due to a



deficiency in our set of examples that precluded convergence in this case, but as a result
of attempting to acquire redundant constraints using theCONACQ algorithm. Specifi-
cally, in our example the constraint betweenx1 andx3 is redundant.

Therefore, it is clear that redundant constraints can prevent us from converging on
the most specific hypotheses consistent with a set of examples. However, by exploiting
the fact that we are acquiring constraint networks, we can rely on various search and
inference techniques to help us leverage the learning power of the examples that have
been provided to us. In the ideal, helping us to converge on the target hypothesis much
more quickly. In the next section we present an approach to handling redundant con-
straints which would have overcome the problem we have experienced in this example.

3 Redundancy Rules

In this section, we introduce formal definitions of the basic concepts used in this paper.
We then propose definitions of redundancy and redundancy rules, before presenting an
approach to dealing with redundant constraints in theCONACQ acquisition process.

3.1 Basic definitions

A finite constraint network N consists of a finite set of variablesX = {x1, . . . , xn},
a set of domainsD = {D(x1), . . . , D(xn)}, where the domainD(xi) is the finite set
of values that variablexi can take, and a set of constraintsC = {c1, . . . , cm}. Each
constraintci is defined by the ordered setvar(ci) of the variables it involves, and a
setsol(ci) of allowed combinations of values. An assignment of values to the variables
in var(ci) satisfies ci if it belongs tosol(ci). A solution to a constraint network is an
assignment of a value from its domain to each variable such that every constraint in
the network is satisfied. When all the constraints inC involve exactly 2 variables, we
say that the constraints and the network arebinary. This is the case we will study in
the rest of the paper since it greatly simplifies notation. We will usec(xi, xj) andcij
interchangeably to refer tosol(c) wherevar(c) = (xi, xj). However, all the results are
essentially the same for constraints of any arity.

As seen in the previous section, redundancy is a crucial notion that we need to tackle
if we want to speed up version space convergence during the constraint acquisition
process.

Definition 1 (Redundancy) Given a constraint network N = (X,D,C), we say that
a constraint c ∈ C is redundant wrt N iff the set of solutions of N is the same as the
set of solutions ofN−c = (X,D,C \ {c}). We note N−c |= c.

3.2 Redundancy in CONACQ

The CONACQ algorithm has been proposed in [2]. Its inputs are a setX of variables
with their domains, a set of examplesE = E+ ∪E−, and a biasB. An examplee ∈ E
is an assignment of values to variables fromX that must be a solution of the target
constraint network (ife ∈ E+) or non solution (ife ∈ E−).



The bias is composed of constraint scopes (sets of variables on which a constraint
c has to be guessed), attached with a set of constraint types that are the different possi-
bilities for sol(c). In the simplest case, where we guess a complete network of binary
constraints, the bias contains all pairs of variables fromX as possible scopes, attached
with all the binary constraint types available in the toolkit. The set of possible con-
straints on(xi, xj) is denoted by its bias,Bij .

The output ofCONACQ is any constraint network that has the same setX of vari-
ables with their domains, and a set of constraints chosen from the bias such that every
element ofE+ is solution and none fromE−. Since the number of constraint net-
works satisfying these criteria during the acquisition process can be huge (exponential),
CONACQ uses version space techniques and maintains only a most specific boundS ij

and a most general boundGij for each pair of variables(xi, xj) belonging to the bias.
Any constraint in the toolkit subsumed byG ij and subsumingSij is a candidate forcij
(namely, belongs to the version space).

Theorem 1. Let X,D,B,E be the input of CONACQ . Let cij ∈ Bij . If there ex-
ists {cik, ckj} ∈ Bik × Bkj such that E |= {cik, ckj} and cij is redundant wrt
(X,D, {cik, ckj}) then the version space cannot shrink its bounds on (x i, xj) more
than Sij = cij andGij = �.

Proof. Let c′ij ∈ Bij a constraint subsumed bycij . Suppose there existse ∈ E− such
thate violatesc′ij . (This is the only way to removec′ij from the version space.) We can
decrease the local general boundGij underc′ij only if no other constraint in the version
space can rejecte. Now, we know thatE |= {cik, ckj}. Hence, whene is presented, we
are guaranteed thatcik andckj are still higher than their respective lower boundsS ik

andSkj (otherwiseE would cause some version spaces to collapse, and we could infer
what we want onSij andGij ). If e violatesc′ij , it also violatescij sincec′ij is subsumed
by cij . It thus violates{cik, ckj} sincecij is redundant wrt(X,D, {cik, ckj}). As a
result, we cannot decide thatc′ij is the necessary culprit fore’s rejection since there
exists constraints betweenSik andcik, and betweenSkj andckj , which are both in the
version space, and could rejecte. So,Gij cannot decrease under�.

RegardingSij , it will increase higher thancij if and only if there existse ∈ E+

that violatescij . However, ife violatescij , it also violates{cik, ckj} (see above), which
contradicts the assumption thatE |= {cik, ckj}. ��

3.3 Formal definition of redundancy rules

A constraint in a constraint network can be seen as aconstraint type (or first order
predicate) in which we substitute network variables for variables in the predicate. For
example, the generic predicateP (s, t) = ‘s < t’ of arity n(P ) = 2 can produce
the constraintx1 < x2 in a constraint network involvingx1 andx2, or the constraint
y3 < y5 in another constraint network.

Since the process of modeling a problem is usually done using a given constraint
toolkit, it seems reasonable to study the concept of redundancy with respect to the set
of constraint types available in that toolkit. Let us first define the concept of redundancy
rule for general constraint types.



Definition 2 (Redundancy rule) Let T be a set of constraint types. The Horn clause

∀t1, . . . tn
∧

i

Pi(ti1 . . . tin(Pi)
) |= Q(tj1 . . . tjn(Q))

with Pi ∈ T ∀i, and Q ∈ T , is a redundancy rule wrt T iff there is at least one
variable tjh

in Q that appears in some Pi, and for any constraint networkN for which
a substitution1 θ maps the rule into N , we have

N−θ(Q) |= θ(Q).

If |{Pi}| = k, we say that the rule is a k-redundancy rule.

We immediately focus our attention on redundancy rules in a binary constraints
setting where, if in addition we work on a complete network of binary constraints, it is
sufficient to deal with2-redundancy rules [6].

Definition 3 (Binary redundancy rule) Let T be a set of constraint types of arity 2. A
binary redundancy rule is a redundancy rule wrt T of the form:

∀t1, t2, t3, P1(t1, t2) ∧ P2(t2, t3) |= Q(t1, t3).

Example 1 The Horn clause∀x, y, z.(x ≥ y) ∧ (y ≥ z) |= (x ≥ z) is a binary
redundancy rule since any constraint network in which we have two constraints ‘≥’
such that the second argument of the first constraint is equal to the first argument of the
second constraint subsumes the ‘≥’ constraint between the first argument of the first
constraint and the second argument of the second constraint.

Given the setT of constraint types available in a toolkit, redundancy rules can be
built for the toolkit independently of the problem we will acquire. Thus, redundancy
rules can be included as part of the constraint toolkit, in much the same way as propa-
gators are often included in constraint toolkits, at least for the most common constraints.

3.4 Redundancy rules in CONACQ

We saw in Theorem 1 that it can sometimes occur that the local version space for the
constraint between a pair of variables(xi, xj) can reach a state where it becomes im-
possible to make its general bound more specific (thus reducing its size) because it con-
tains a constraint that is redundant with respect to the other constraints already learned
by CONACQ . To avoid this problem, we can simply trigger the relevant redundancy rule
from the toolkit each time its left-hand side is true, namely the rule becomes “active”
in a version space.

Definition 4 (Active Redundancy Rule) Given a binary rule R = P1(t1, t2)∧ P2(t2,
t3) |= Q(t1, t3), a version space V , and a mapping θ substituting variables of V for
variables in R, we say that R is active in V wrt θ if P1(θ(t1), θ(t2)) is subsumed by
G(θ(t1), θ(t2)), and P2(θ(t2), θ(t3)) is subsumed by G(θ(t2), θ(t3))

1 As in most toolkits, we require thatθ is ‘locally’ injective, namely two differenttih ’s in the
samePi cannot map on the same network variable.



Definition 5 (Satisfying a Redundancy Rule) Let θ be a mapping substituting vari-
ables of a version space V for variables in a rule R = P1(t1, t2) ∧ P2(t2, t3) |=
Q(t1, t3). We say that R is satisfied on V wrt θ if Q(θ(t1), θ(t3)) is subsumed by
G(θ(t1), θ(t3)).

Thus, when a ruleR is active with respect to a mappingθ, we can force it to be sat-
isfied (orapply it) by modifying the general bound of the constraint on whichθmaps its
right hand side. This modification does not affect the set of possible networks admitted
by the version space. We state this more formally in Definition 6 and Theorem 2.

Definition 6 (Version Space Equivalence) Let V and V ′ be two version spaces de-
fined on the same variables and bias. We say that V and V ′ are equivalent iff for any
constraint network N obtained by picking a constraint between S ij and Gij for each
(xi, xj) in V there exists a constraint networkN ′ obtained the same way from V ′ such
thatN and N ′ have the same solutions.

Theorem 2. Let V be a version space. Let V ′ be the version space obtained after a
rule R has been applied to V . If R was active on V , then V ′ and V are equivalent.

Proof. Suppose there exists a constraint networkN in V for which none of the con-
straint networks inV ′ have the same set of solutions. This means that the constraint
rij added by the ruleR has decreased the general boundG ′

ij in V ′. The constraints
allowed byG′

ij all reject some solution ofN (by assumption). This is necessarily due
to rij . Thus,rij cannot be redundant wrtN . By definition of what an active redundancy
rule is, we deduce thatR cannot be active inV , which contradicts the assumption.��

This property guarantees that we can safely apply all the redundancy rules that are
active, reducing the size of the version space while its semantics is not affected.

The complexity of applying all the binary rules in a version space is inO(m×|B| 2),
with |B| the number of constraint scopes in the bias andm the number of binary rules
in the toolkit. Fork-redundancy rules this is inO(m × |B|k). Applying k-redundancy
rules to a constraint network is a relaxation of relationalk-consistency [5]. However,
relationalk-consistency requires space exponential in the number of variables in the re-
dundant constraint while in our approach we only generate constraints from the toolkit,
thus keeping constant space for each constraint.

Example 2 We now apply the method above to example of Figure 1. After processing
the examples{e+1 , e−2 , e−3 }, we know that even in the loosest constraint network still
possible, we havex1 ≥ x2 andx2 ≥ x3. Therefore, the rule described in Example 1 is
active. By applying it, we can reduce the possible constraint types betweenx 1 andx3

to {>,≥}.

4 Higher-Order Redundancy

While redundancy rules can eliminate a particular type of redundancy, there are cases
where applying these rules on the version space is not sufficient to find all redundancies.
Redundancy rules are well-suited to discovering constraints that are redundant because



of conjunctions of other constraints. However, as we shall show in Section 4.1, a con-
straint can be redundant because of a conjunction ofdisjunctions of constraints. We
refer to this as higher-order redundancy. Since our redundancy rules are in the form of
Horn clauses, they cannot tackle such redundancies. After a brief description of the way
CONACQ stores the information about negative examples, we will show how to tackle
these complex redundancies.

4.1 Another Example

In the scenario illustrated in Figure 2, we use the same set of variables and domains
as those used in the example presented in Section 2. However, in this case the target
network comprises the set of constraints{x1 = x2, x1 = x3, x2 = x3}. Furthermore,
in this example all negative instances differ frome+

1 by at least two constraints (see the
table in Figure 2).

x1

x2

x3

=

≥≤
�

=

≤ ≥
�

=

≤ ≥
�

E x1 x2 x3

e+
1 2 2 2

e−2 3 3 4

e−3 1 3 3

Fig. 2. None of the version spaces have converged.

After processing the positive examplee+
1 , each version space contains four consis-

tent hypotheses, the most specific hypothesis in each being=. The version spaces are
depicted in Figure 2. However, each of the negative examples does not contain enough
information to immediately reduce any of the version spaces for our constraints any
further. For example, negative examplee−2 may be negative because of either constraint
c12 or c23, or indeed both. Therefore, none of the version spaces of the constraints in our
example can be reduced further (indicated with dark shading in Figure 2, as opposed to
the lighter shade used earlier to depict hypotheses being removed from a version space).
The version spaces in this example each contain 4 hypotheses due to the disjunction of
possible reasons that would classify the negative examples correctly.

Without any further information, particularly negative examples which differ from
the positive example by one constraint, no further restrictions can be made on the ver-
sion spaces of the constraints in our problem. Consequently, none of the version spaces
converge. Simply applying redundancy rules also does not help. An alternative approach
is required, which will be presented next.



4.2 Storing negative examples in CONACQ

As briefly described above, when a negative examplee− is presented toCONACQ , it
is encoded as a clausecle = l

Uij

ij ∨ . . . ∨ lUkm

km whereUij is the set of most general
constraint types available forcij that rejecte− (i.e., that are violated bye−). The literal

l
Uij

ij is true if any possible constraint type forcij in its local version space is at least as
specific as the given boundUij . This is the case if any constraint typer in the general
boundGij of cij is at least as specific as a constraint type inUij . This is the condition
for cij to rejecte−. Hence, the clausecle means that at least one of the constraintscij

having a literallUij

ij in cle has to be at least as specific as itsUij to rejecte−.
We should point out that a clause does not necessarily contain a literal for each

constraint we have to find in the bias. Each constraintc ij for which the specific bound
Sij is already more general thanUij will not rejecte−. It is then useless to put a literal
for it in the clause since this literal will be forced to be false. For example, ife−k =
{x1 = 1;x2 = 1;x3 = 3} andS12 = {≥}, c12 cannot rejecte−k . In addition, not all
elements ofE− have a stored clause inCONACQ . It can indeed appear that an example
is already definitively rejected by some constraint in the version space. For example,
take again thee−k above and imagineG23 = {≥}. e−k cannot satisfyc23. Hence, it is
useless to add a clause inCONACQ to express thate−k should be rejected.

The set of all the clauses containing the necessary information aboutE − is denoted
byK. Since a constraint network assigns a single constraintc ij to each pair of variables

(xi, xj), it leads to an interpretation for every literallUij

ij in K. By construction, it is
guaranteed that for any constraint network leading to a satisfying interpretation forK,
all e− ∈ E− are non-solutions. (See [2] for more details.)

4.3 Finding higher-order redundancies

In the example in Section 4.1 we have seen a case where a constraint is implied by
the set of negative examples received byCONACQ , but redundancy rules are not able
to detect this by themselves. However, all the information necessary to deduce this
constraint is contained in the set of redundancy rules and the setK of clauses encoding
the negative examples. The reason for their inability to detect it is that rules are in the
form of Horn clauses that we apply only whenall predicates in the left-hand side are
true (i.e., we apply unit propagation on these clauses). To tackle this issue we can build
the setR of all possible substitutions on the given bias for available rules. For each rule
R = P1(t1, t2) ∧ P2(t2, t3) |= Q(t1, t3), for each substitutionθ that mapsPi’s andQ
on possible constraints in the bias, a clause¬lP1

θ(t1),θ(t2)
∨ ¬lP2

θ(t2),θ(t3)
∨ lQθ(t1),θ(t3)

is
added to the setR. This process can be done as soon as the bias is given, before the
beginning of the acquisition process.

In addition, since the semantics of a literallUij is: ‘cij is at least as specific asU ’,
we need also to link literals involving the same constraint scope. For example, if we
havel>ij true, then a literall≥ij should not be able to take the value false. Hence, we

need a third set of clauses, the setL containing¬lUij ∨ lU ′
ij for each pair(xi, xj) such

thatU subsumesU ′. These subsumption clauses between two literalslUij andlU
′

ij need

only to be included iflUij appears inK and subsumeslU
′

ij that appears inR. Adding



subsumption clauses between two literals inK would not activate any more rules. This
is an important property since the fact thatlU

′
ij comes fromR implies that|U ′| = 1,

which ensures polynomial space forL.
We now have a base of ground clauses,K ∪ R ∪ L, that contains all available

information about rules and negative examples. If a literallUij in K ∪ R ∪ L appears
positively in all models ofK∪R∪L (i.e., it belongs to the backbone [8]), we can reduce
the local version space ofcij to constraints at least as specific asU . By construction of
K∪R∪L, it is indeed impossible to assigncij to a constraint more general thanU and
at the same time reject all negative instances inE−.

Therefore, after the presentation of a new negative instancee fromE −, we have to
build the corresponding clausecle, add it toK, updateL if necessary, and test if the
addition ofcle causes some literal2 to enter the backbone ofK ∪R ∪ L.

The process that we described above guarantees that all the possible redundancies
will be detected.

Theorem 3. Given a version space V , a set E = E+ ∪ E− of examples, a constraint
type r, and the sets K,R,L built as described above, if r is a possible constraint on
(xi, xj) and r can be inferred from V , the set of rules of the toolkit, and E−, then the
literal lrij is a member of the backbone of K ∪R ∪ L.

Proof. Let r be a (most specific) possible constraint on(xi, xj) that can be inferred
from V , the set of rules of the toolkit, andE−. Supposelrij does not belong to the
backbone ofK ∪ R ∪ L. By assumption,r is the head of some rules in the toolkit
(otherwise CONACQ by itself can learnr on (xi, xj)). Then,lrij is the head of a subset
R′ of the rules inR. Then there exists a modelM of K ∪ R ∪ L for which none
of the rulesR ∈ R′ has all the literals of its tail set to true. There are two cases.
Either none of the networksNM built fromM allow a solution violatingr on (xi, xj),
which means that a rule that would inferlrij from M is missing inR, or someNM

allows solutions violatingr on (xi, xj), which means thatr cannot be inferred since
there exists a network rejecting allE− (by construction ofNM ), and allowing solutions
rejected byr on(xi, xj). Both cases contradict the assumption. Finally, ifr was not the
most specific constraint that could be learned on(x i, xj) (for exampler =’≤’ while l<ij
was inferred) the proof holds for the most specific constraintr ′, and the clauses added
toL permit to inferlrij from lr

′
ij . ��

However, this process is quite expensive from a computational point of view, since
testing if a literal belongs to the backbone of a formula is a coNP-complete problem.
This prevents the use of such a technique on big formulae, but as we are concerned with
an interactive acquisition process, it is reasonable to assume that the version spaces
we need to handle will be small enough to permit a human user to deal with them,
and consequently we expect that the speed-of-response for backbone detection will be
acceptable. The experimental section will discuss this feature more deeply.

2 Note that a literal is a candidate to enter the backbone only if it appears in the right-hand side of
a Horn clause fromR (or it belongs to a unary clause, obviously). Furthermore, the backbone
cannot contain negative literals sinceR andL are Horn bases andK contains only positive
clauses.



Example 3 We now apply the above method to the example presented in Section 4.1.
The setR of redundancy rules used in this example is presented in Table 2. It provides a
subset of possible binary rules associated with the bias in Figure 1(a). As presented pre-
viously, the setL is built dynamically only when required byK andR, so we initialize
it to ∅.

Table 2. Binary redundancy rules for the sample problem

r1 l≥12 ∧ l≥23 |= l≥13
r2 l≥13 ∧ l≤23 |= l≥12
r3 l≤13 ∧ l≥23 |= l≤12
r4 l≤12 ∧ l≤23 |= l≤13
r5 l≤12 ∧ l≥13 |= l≥23
r6 l≥12 ∧ l≤13 |= l≤23

After receivinge−2 , K = {(l≥13 ∨ l≥23)}, to apply technique presented in Section 4.3,
we test if eitherl≥13 or l≥23 belong to the backbone ofK ∪ R ∪ L. However, running a
SAT solver allows us to determine that bothK∪R∪L∪{¬l≥13} andK∪R∪L∪{¬l≥23}
have solutions. Since the backbone detection did not find any literal, at this stage, we
cannot deduce anything more than using previous methods.

However, after receivinge−3 , K = {(l≥13 ∨ l≥23), (l≥12 ∨ l≥13)} we detect the new
backbone. We run a SAT solver onR ∪ K ∪ L ∪ {¬l≥13} and because of the minimal
conflict setK ∪ {r1} ∪ {¬l≥13}, it fails. Therefore,l≥13 belongs to the backbone and we
can use this to refine the version space of constraintc13, removing from it the constraint
types≤ and�.

In this example, it is clear that the backbone detection onK ∪R ∪ L has permitted
us to detect (and learn) a redundant constraint that redundancy rules alone did not.

5 Empirical Study

To compare the approaches to exploiting redundancy to improve the quality of the ac-
quired CSP that we have proposed in this paper, we studied their effects on a sample
class of CSP. The bias used in this experiment is the same as that presented in Fig-
ure 1(a). Our experiments involved generating target CSPs, which we then attempted
to acquire by presenting examples of solutions and non-solutions of them to an acqui-
sition system based on either (we also provide the label used in Table 3 to identify that
configuration of the acquisition system) (a)CONACQ on its own (CONACQ standard);
(b) CONACQ using redundancy rules only (CONACQ +rules); (c) CONACQ using both
redundancy rules and backbone detection (CONACQ +rules+ backbone). These form
the columns in Table 3.

In each case we computed a representable set of solutions (non-solutions) to the
target CSP which were used as a source of positive (respectively, negative) examples for
the acquisition system. We generated target CSPs with 12 variables, 12 values in each



Table 3. Comparison of the capability of each acquisition system to exploit redundancy in the
larger problem studied (12 variables, 12 values, 30 constraints).

CONACQ CONACQ CONACQ

standard +rules +rules
Redundant Pattern +backbone

Length {constraints} |V S| (secs) |V S| (secs) |V S| (secs)#Exs

none 4.29 × 109 (< 1) 6.71 × 107 (3) 1.68 × 107 (46) > 103

n/3 {≤,≥} 4.10 × 103 (< 1) 64 (2) 1 (29) 360
n/2 {≤,≥} 1.72 × 1010 (< 1) 4.10 × 103 (2) 1 (23) 190
n {≤,≥} 1.44 × 1017 (< 1) 2.62 × 105 (2) 1 (21) 90

n/3 {=, <,>} 2.68 × 108 (< 1) 1.02 × 103 (2) 1 (27) 280
n/2 {=, <,>} 7.38 × 1019 (< 1) 4.19 × 107 (2) 1 (23) 170
n {=, <,>} 2.08 × 1034 (< 1) 6.87 × 1010 (2) 1 (21) 70

n {=, <,>} 5.07 × 1030 (< 1) 1.07 × 109 (3) 1 (40) > 103

domain, 30 constraints and varied the degree of redundancy in them. Clearly, during the
acquisition process it is not known between which variables there are constraints so we
must assume a complete graph comprising 66 constraints, giving us 66 local version
spaces.

The number of examples used in each experiment was equal to the number required
for CONACQ using both redundancy rules and backbone detection to converge. How-
ever, we set a maximum number of examples at just above10 3 after which we would
terminate the acquisition process.

For each acquisition system setup (the 3 different configurations ofCONACQ ), we
recorded the total time (in seconds,secs) required to process the set of examples and the
final size of the version space, denoted by|V S|. The number of examples is denoted by
#Exs in the last column. We present averages of 10 runs of the experiment.

We have studied the effects of controlling the redundancy in each CSP in two ways
(giving us the rows in Table 3). Firstly, we introduced patterns of constraints in the
target network of various lengths. In the experiment we used lengths based on the num-
ber of variables in the problem: specifically, we use lengthsn, n/2 andn/3 (Length
column). Secondly, for each length of pattern we selected a pattern of constraints with
controlled characteristics and introduced these into the target network. In the experi-
ment we selected patterns of the same constraint selected either from the set{≤,≥}
(looser constraints) or{<,=, >} (tighter constraints). For example, a path of lengthn
based on{<,=, >} is x0 > x1 > x2 > x3 > x4 > x5 > x6 > x7, while a path of
lengthn/2 based on{≤,≥} is x0 ≤ x1 ≤ x2 ≤ x3 (see{constraints} column). As a
“straw-man” we also present results for a target CSP where no pattern was introduced
into the network. Our results are presented in Table 3.

It can be clearly seen from Table 3 that, in terms of the size of the resultant version
spaces, exploiting redundancy rules withCONACQ improves uponCONACQ alone in all
situations. However, exploiting redundancy rules leads to an increase in the amount of
time required by the the acquisition to process the set of examples since it relies on the
construction ofR, derived from the set of negative examples. Combining backbone de-



tection and redundancy rules withCONACQ improves uponCONACQ with redundancy
rules, in terms of version space size, but offers a considerably slower response time due
to the use of the SAT solver3.

Furthermore, we can see that as the level of redundancy in the target problem in-
creases, fromn/3 to n, regardless of the constraints involved in the redundant pattern,
the ability of standardCONACQ to converge deteriorates dramatically. It is also inter-
esting to note thatCONACQ with redundancy rules also does progressively worse on
these networks. This is most clearly noticeable if one compares the top-line of the ta-
ble, where no redundant pattern was enforced, with the last line in the table, where a
pattern of lengthn was present, keeping the number of examples constant in both cases.

Simply combining redundancy rules withCONACQ is sufficient to detect much of
the redundancy that is completely discovered by backbone detection. Specifically, com-
paring the standardCONACQ column with theCONACQ +rules column, we can see
that there are orders-of-magnitude differences in the size of the version spaces, with a
very minor increase in processing time (approximately double in most cases). Note that
CONACQ +rules+ backbone requires and order of magnitude more time, but achieves
convergence.

Finally, the effect of the tightness of the redundancy pattern introduced into the
problem has interesting consequences. On a target network involving looser redundant
patterns, those from{≤,≥}, positive instances play a central role in the acquisition
of the problem. Specifically, more of them are required for convergence. Furthermore,
after receiving positives instances, each local version space is smaller than would be the
case if the redundant patterns were made up of the tighter constraints from{=, <,>}.
For example, when≥ is the target,{≥,�} is the largest possible version space, while
for > it is {>, �=,≥,�}. This explains the exponential difference in version space size
between tighter and looser target networks presented in Table 3.

In summary, this experimental evaluation demonstrates thatCONACQ on its own is
insufficient to fully exploit redundancy during the acquisition process and that conver-
gence may not be possible. The more sophisticated approaches that we propose based
on redundancy rules and backbone detection are far superior. However, there is a trade-
off to be considered between the need to find the tightest specification on the target
network versus the response time of the acquisition system.

We have seen that adding backbone detection and redundancy rules together to en-
hanceCONACQ is best in terms of convergence, but has a high response time cost.
Just exploiting redundancy rules withCONACQ offers a very fast response time, with
the abilities to converge quite significantly also. Obviously, it is an application-specific
and/or problem-specific issue how this tradeoff should be dealt with. For example, in an
interactive context, speed-of-response is a critical factor and, therefore, simply relying
on redundancy rules seems to be an ideal compromise. In such an application, backbone
detection could be run as a background process, further refining the version spaces that
represent the target CSP.

3 The SAT solver used for backbone detection iszchaff, version 2003.12.04,
http://ee.princeton.edu/˜chaff/zchaff.php.



6 Conclusions and Future Work

In this paper we were concerned with automating the formulation of constraint sat-
isfaction problems from examples of solutions and non-solutions. We have combined
techniques from the fields of machine learning and constraint programming. In par-
ticular we have presented a portfolio of approaches to exploiting the semantics of the
constraints that we acquire to improve the efficiency of the acquisition process.

We have demonstrated that theCONACQ algorithm on its own is insufficient to fully
exploit redundancy during the acquisition process. The more sophisticated approaches
that we propose based on redundancy rules and backbone detection are far superior.
However, there is a tradeoff to be considered between the need to find the tightest spec-
ification on the target network versus the response time of the acquisition system. We
have seen that adding backbone detection and redundancy rules together to enhance
CONACQ is best but has a high response time cost, while just exploiting redundancy
rules withCONACQ offers a very fast response time, with the abilities to converge quite
significantly towards the target CSP.

Our future work in this area will look at a number of important issues that must
be addressed in real-world acquisition contexts. For example, techniques for handling
noise and errors in the process are of critical importance also, particularly if human
users are providing the training examples [?].

References

1. C.W. Choi, J.H.M. Lee, and P.J. Stuckey. Propagation redundancy in redundant modelling. In
Proceedings of CP-2003, volume LNCS 2833, pages 229–243. Springer, September 2003.

2. R. Coletta, C. Bessiere, B. O’Sullivan, E.C. Freuder, S. O’Connell, and J. Quinqueton. Con-
straint acquisition as semi-automatic modeling. InProceedings of AI’03, pages 111–124,
December 2003.

3. R. Coletta, C. Bessiere, B. O’Sullivan, E.C. Freuder, S. O’Connell, and J. Quinqueton. Semi-
automatic modeling by constraint acquisition. InProceedings of CP-2003, Short paper, LNCS
2833, Springer Kinsale, Cork, Ireland., pages 812–816, September 2003.

4. A. Dechter and R. Dechter. Removing redundancies in constraint networks. InProceedings
of AAAI-87, pages 105–109, 1987.

5. R. Dechter and P. van Beek. Local and global relational consistency.Theoretical Computer
Science, 173(1):283–308, 1997.

6. A.K. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8:99–118,
1977.

7. T. Mitchell. Generalization as search.Artificial Intelligence, 18(2):203–226, 1982.
8. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Ttroyansky. Determining com-

putational complexity from characteristic ’phase transition’.Nature, 400:133–137, July 1999.
9. B.M. Smith. Succeed-first or fail-first: A case study in variable and value ordering. Technical

Report 96.26, School of Computer Studies, University of Leeds, September 1996.


