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Abstract. Constraint programming is rapidly becoming the technology of choice
for modeling and solving complex combinatorial problems. However, users of
constraint programming technology need significant expertise in order to model
their problem appropriately. The lack of availability of such expertise can be a
significant bottleneck to the broader uptake of constraint technology in the real
world. In this paper we are concerned with automating the formulation of con-
straint satisfaction problems from examples of solutions and non-solutions. We
combine techniques from the fields of machine learning and constraint program-
ming. In particular we present a portfolio of approaches to exploiting the seman-
tics of the constraints that we acquire to improve the efficiency of the acquisition
process. We demonstrate how inference and search can be used to extract useful
information that would otherwise be hidden in the set of examples from which
we learn the target constraint satisfaction problem. We demonstrate the utility of
the approaches on a case-study domain.

1 Introduction

Constraint programming is rapidly becoming the technology of choice for modelling
and solving complex combinatorial problems. However, users of constraint program-
ming technology need significant expertise in order to model their problem appro-
priately. The ability to assist users to model a problem in the constraint satisfaction
paradigm is of crucial importance in making constraint programming accessible to non-
experts. However, there are many obstacles which must be overcome. For example, in
some situations users are not capable of fully articulating the set of constraints they wish
to model. Instead users can only present us with example solutions and non-solutions of
the target constraint satisfaction problem (CSP) they wish to articulate. This situation
arises in many real-world scenarios. In purchasing, a human customer may not be able
to provide the sales agent with a precise specification of his set of constraints because
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he is unfamiliar with the technical terms that are required to specify each constraint.
Alternatively, in a data-mining context we may have access to a large source of data
in the form of positive and negative examples, and we have been set the task of gen-
erating a declarative specification of that data. Earlier work in this area has focused
on the generalization problem, inspired by work from the field of Inductive Logic Pro-
gramming [?]. Here we focus on combining techniques from constraint processing and
machine learning to develop a novel approach to constraint acquisition.

We have proposed an algorith@pNACQ, that is capable of acquiring a model of
a CSP from a set of examples [2]. The algorithm is based on version space learning [7].
Version spaces are a standard machine learning approach to concept learning. A version
space can be regarded as a set of hypotheses for a concept that correctly classify the
training data received; in Section 2 we shall present an example which will serve both
a pedagogical role and demonstrate the problem we address in this paper.

However, thecONACQ algorithm suffers from a serious malady that has significant
consequences for its ability to acquire constraint networks efficiently. In particular, this
malady arises because we are acquiring networks of constraints, some of which may be
redundant [1, 4, 9]. Informally, for now, we can regard a constraint as being redundant if
it can be removed from a constraint network without affecting the set of solutions. While
redundant constraints have no effect on the set of solutions to a CSP, they can have a
negative effect on the acquisition process. In particular, when using version spaces to
represent the set of consistent hypotheses for each constraint, redundancy can prevent
us from converging on the most specific hypotheses for the target network, eventhough
the set of training examples is sufficient for this to occur. As a consequence, for a given
constraint in the network, its version space may not be sufficiently explicit, but rather
contain constraints which are far too general. This is a significant problem since the size
of each version space has a multiplicative effect on the number of possible CSPs that
that correctly classify the training examples.

In this paper we present a portfolio of approaches to handling redundant constraints
in constraint acquisition. In particular, we address the issue of how to make each con-
straint as explicit as possible based on the examples given. We shall present an approach
based on the notion eédundancy rules, which can be regarded as a special-case of re-
lational consistency [5]. We shall show that these rules can eliminate some, but not alll,
forms of redundancy. We shall then demonstrate a second approach, based on the notion
of backbone detection, which is far more powerful.

The remainder of this paper is organized as follows. Section 2 presents a simple
example of how acquiring redundant constraints can have an adverse effect on the con-
straint acquisition process. Section 3 presents some formal definitions of the concepts
that underpin our approach. We formalize the notion of redundancy in constraint net-
works, and show how the problem identified in Section 2 can be easily addressed.
Section 4 presents a more powerful approach to dealing with redundancy due to dis-
junctions of constraints. Section 5 presents an empirical evaluation of the various ap-
proaches presented in the paper and presents a detailed discussion of our results. A
number of concluding remarks are made in Section 6.



2 An lllustrative Example

ThecoNAcQalgorithm maintains a separate version space for each potential constraint
in the CSP. A solution to the target CSP (positive example) provides examples for each
constraint in the problem, sinedl constraints must be satisfied in order for an example

to be classified as positive. However, negative examples are more problematic to pro-
cess, since violating at leame constraint is sufficient for an example to be classified

as negative. Therefore, a negative example provides a disjunction of possible examples.
It is only when the algorithm can deduce which constraints must have been violated to
classify an example as negative are the appropriate version spaces updated. An example
below will demostrate this point clearly.

We demonstrate the potential problems that can arise due to redundancy during
an interactive acquisition session usioQNACQ . Consider the hypothesis space of
constraints presented in Figure 1(a). The general-to-specific ordering over the set of
constraints is based on set inclusion; more general constraints are placed higher in the
hypothesis space. We assume in our example that all constraints in our target problem
can be expressed using this hypothesis space. The consfrénthe universal con-
straint — all tuples are accepted. The constrairng the null constraint — no tuples are
accepted.

For the purposes of this example, we wish to acquire a CSP involving 3 variables,
x1, T2 andzs, with domainsD(z;) = D(x2) = D(z3) = {1,2,3,4}. The set of
constraints in the target network {1 > 2, 1 > 3, x2 > z3}. Note that it is
sufficient only to acquire two of these constraints, the third one being redundant. In
Table 1 the set of examples that will be provided to the acquisition system is presented.
The set of examples comprises one positive example (a solution to the target CSP) and
two negative examples (non-solutions). Figures 1(b)-1(d) illustrate the effect of each
example in turn on the version spaces of the constraints in the network.

Figure 1(b) presents the state of each of the constraint versiorg|,.
spaces after the first (and only) positive examplg, has been pro- i
cessed. We can see that the version space of each constraint now cpr
tains four hypotheses:, #, > andT. The other hypotheses are elim- 62_
inated because they are inconsistent with Specifically, ifz; = .
4 ANxzo = 3 can be part of a solution, then the constraint between thefgme 1 Ex-
variables must beore general than or equal to >. Therefore, we can amples  for
ignore the possibility that this constraint can be eithek, < or L. Fig. 1
Essentially. we know that any CSP that can be expressed in terms gf
the constraints presented in Figure 1(a) must comprise constraints that are no more spe-
cific than those in the version spaces presented in Figure 1(b). Similar reasoning allows
us to reduce the version space for each constraint to that illustrated in Figure 1(b).

Figure 1(c) presents the effect of processing exampldhe first negative example.

Of the three constraints in the problesy, differs by only one constraint;», compared

to the constraints implied by the the positive exampfe Therefore, we can further
refine the version space of constraint by removing both# and T. We illustrate

this as using a colored shading over those hypotheses that are removed from the version
space. Similarly, the reason why is classified as negative is due to a single constraint:
namelycqs. Figure 1(d) illustrates the result of processing negative exaaiple
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Fig. 1. Acquiring a redundant constraint prevents one version space from converging.

After processing the negative exampigs e , the version spaces for the constraint
between variables; andz, and between variables, andzs are reduced to the set of
hypothese$>, >}. However, the version space for the constraint between variables
andx3 has not. Instead, this version space contains four possible hypothieses;:+#

9 T}

This is an unfortunate since we cannot now find a set of negative examples which
will help this version space to reduce any closer to the target constraint. For example, to
eliminate the hypothesig, we need a negative example with < x3 but necessarily
satisfying all other acquired constraints, i.e., satisfying their most specific possible al-
ternative:r; > zo andzy > x3, SO that the only possible reason to reject it {s< x3.
Clearly no such example exists. As a consequence, our constraint acquisition algorithm
cannot converge any further. However, it should be pointed out that it was not due to a



deficiency in our set of examples that precluded convergence in this case, but as a result
of attempting to acquire redundant constraints usingdb®AcQ algorithm. Specifi-
cally, in our example the constraint betweenandzx; is redundant.

Therefore, it is clear that redundant constraints can prevent us from converging on
the most specific hypotheses consistent with a set of examples. However, by exploiting
the fact that we are acquiring constraint networks, we can rely on various search and
inference techniques to help us leverage the learning power of the examples that have
been provided to us. In the ideal, helping us to converge on the target hypothesis much
more quickly. In the next section we present an approach to handling redundant con-
straints which would have overcome the problem we have experienced in this example.

3 Redundancy Rules

In this section, we introduce formal definitions of the basic concepts used in this paper.
We then propose definitions of redundancy and redundancy rules, before presenting an
approach to dealing with redundant constraints indb&lACQ acquisition process.

3.1 Basic definitions

A finite constraint network N consists of a finite set of variablé§ = {z1,...,z,},
a set of domaind = {D(z1),...,D(z,)}, where the domai®(z;) is the finite set
of values that variable; can take, and a set of constraidts= {c1,...,c,}. Each
constraintc; is defined by the ordered setr(c;) of the variables it involves, and a
setsol(c;) of allowed combinations of values. An assignment of values to the variables
in var(c;) satisfies ¢; if it belongs tosol(c;). A solution to a constraint network is an
assignment of a value from its domain to each variable such that every constraint in
the network is satisfied. When all the constraint€’iinvolve exactly 2 variables, we
say that the constraints and the network lBir@ry. This is the case we will study in
the rest of the paper since it greatly simplifies notation. We will ¢(sg, z;) andc;;
interchangeably to refer tal(c) wherevar(c) = (4, z,). However, all the results are
essentially the same for constraints of any arity.

As seen in the previous section, redundancy is a crucial notion that we need to tackle
if we want to speed up version space convergence during the constraint acquisition
process.

Definition 1 (Redundancy) Given a constraint network N = (X, D, C'), we say that
acongtraint ¢ € C isredundant wrt V iff the set of solutions of V is the same as the
set of solutionsof N_. = (X, D, C \ {c}). Wenote N_, = c.

3.2 Redundancy in CONACQ

The cONAcCQ algorithm has been proposed in [2]. Its inputs are a’Seif variables
with their domains, a set of exampl&s= EF™ U E~, and a bias3. An example: € E

is an assignment of values to variables frafmthat must be a solution of the target
constraint network (it € ET) or non solution (ife € £ 7).



The bias is composed of constraint scopes (sets of variables on which a constraint
¢ has to be guessed), attached with a set of constraint types that are the different possi-
bilities for sol(c). In the simplest case, where we guess a complete network of binary
constraints, the bias contains all pairs of variables fidras possible scopes, attached
with all the binary constraint types available in the toolkit. The set of possible con-
straints on(z;, ;) is denoted by its biad3;;.

The output ofcONACQ is any constraint network that has the same’Sadf vari-
ables with their domains, and a set of constraints chosen from the bias such that every
element of E* is solution and none fronk —. Since the number of constraint net-
works satisfying these criteria during the acquisition process can be huge (exponential),
CONACQ uses version space techniques and maintains only a most specific $gund
and a most general boutdd;; for each pair of variablegr;, «;) belonging to the bias.

Any constraint in the toolkit subsumed 6§;; and subsuming’;; is a candidate fot;;
(namely, belongs to the version space).

Theorem 1. Let X, D, B, E be the input of CONACQ . Let ¢;; € By;. If there ex-
ists {cik,crj} € Bk X Bij such that E = {cik,ck;} and ¢;; is redundant wrt
(X, D, {cik, cx;}) then the version space cannot shrink its bounds on (z;, z;) more
than Sij = Cij and GU =T.

Proof. Letc;; € B;; a constraint subsumed ly;. Suppose there existsc £~ such
thate violat95c§j. (This is the only way to removdij from the version space.) We can
decrease the local general boutgh underc;; only if no other constraint in the version
space can rejeet Now, we know thatt |= {cx, cx; }. Hence, wher is presented, we
are guaranteed thag;, andcy; are still higher than their respective lower bouritis
andsS; (otherwisel’ would cause some version spaces to collapse, and we could infer
what we want orf;; andG;). If e violateSng, it also violates:;; sincec;j is subsumed
by c;;. It thus violates{c;x, cx;} sincec;; is redundant wr{X, D, {cx, cx;}). As a
result, we cannot decide thaf; is the necessary culprit far's rejection since there
exists constraints betweeiy, andc;;, and betweely,; andcy;, which are both in the
version space, and could rejectSo,G;; cannot decrease undet

RegardingS;;, it will increase higher tham;; if and only if there existe € E+
that violates:; ;. However, ife violatesc;;, it also violates ¢, , cx; } (See above), which
contradicts the assumption th&t= {c;, ci; }- O

3.3 Formal definition of redundancy rules

A constraint in a constraint network can be seen asratraint type (or first order
predicate) in which we substitute network variables for variables in the predicate. For
example, the generic predicai&(s,t) = ‘s < ¢’ of arity n(P) = 2 can produce

the constraintz; < x5 in a constraint network involving; andzs, or the constraint

y3 < ys5 in another constraint network.

Since the process of modeling a problem is usually done using a given constraint
toolkit, it seems reasonable to study the concept of redundancy with respect to the set
of constraint types available in that toolkit. Let us first define the concept of redundancy
rule for general constraint types.



Definition 2 (Redundancy rule) Let T" be a set of constraint types. The Horn clause

Vi1, . ..tn/\P,-(til i) E QG )
i

with P, € T Vi, and Q € T, is a redundancy rule wrt T iff there is at least one
variablet;, in () that appearsin some P;, and for any constraint network N for which
a substitution® # mapstheruleinto N, we have

N_g@) F0(Q).
If [{P;}| = k, we say that theruleis a k-redundancy rule.

We immediately focus our attention on redundancy rules in a binary constraints
setting where, if in addition we work on a complete network of binary constraints, it is
sufficient to deal witl2-redundancy rules [6].

Definition 3 (Binary redundancy rule) Let T bea set of constraint types of arity 2. A
binary redundancy ruleis a redundancy rule wrt 7" of the form:

Vﬁ17ﬁ27t37 Pl (tla t2) N PQ(f'27ﬁ3) 'Z Q(t17t3)'

Example1 The Horn claus&/z,y,z.(x > y) A (y > 2) E (z > 2) is a binary
redundancy rule since any constraint network in which we have two constraihts
such that the second argument of the first constraint is equal to the first argument of the
second constraint subsumes the tonstraint between the first argument of the first
constraint and the second argument of the second constraint.

Given the sefl” of constraint types available in a toolkit, redundancy rules can be
built for the toolkit independently of the problem we will acquire. Thus, redundancy
rules can be included as part of the constraint toolkit, in much the same way as propa-
gators are often included in constraint toolkits, at least for the most common constraints.

3.4 Redundancy rulesin CONACQ

We saw in Theorem 1 that it can sometimes occur that the local version space for the
constraint between a pair of variables;, z;) can reach a state where it becomes im-
possible to make its general bound more specific (thus reducing its size) because it con-
tains a constraint that is redundant with respect to the other constraints already learned
by cONACQ. To avoid this problem, we can simply trigger the relevant redundancy rule
from the toolkit each time its left-hand side is true, namely the rule becoautis¢’

in a version space.

Definition 4 (Active Redundancy Rule) Givenabinaryrule R = P;(t1,t2) A Pa(ta,
ts) = Q(t1,t3), aversion space V, and a mapping ¢ substituting variables of V' for
variablesin R, we say that R isactive in V wrt 6 if P;(0(t1),6(t2)) is subsumed by
G(6(11),6(t2)), and Pa(8(t2), 6(13)) is subsumed by G(8(t=), 6(ts))

! As in most toolkits, we require thais ‘locally’ injective, namely two different;, ’s in the
sameP; cannot map on the same network variable.



Definition 5 (Satisfying a Redundancy Rule) Let 6 be a mapping substituting vari-
ables of a version space V for variablesin arule R = P;(t1,t2) A Pa(ta,t3) =
Q(t1,t3). We say that R is satisfied on V' wrt 6 if Q(0(t1),6(t3)) is subsumed by
G(0(t1), 0(t3)).

Thus, when a rule is active with respect to a mappifigwe can force it to be sat-
isfied (orapply it) by modifying the general bound of the constraint on whiehaps its
right hand side. This modification does not affect the set of possible networks admitted
by the version space. We state this more formally in Definition 6 and Theorem 2.

Definition 6 (Version Space Equivalence) Let V and V'’ be two version spaces de-
fined on the same variables and bias. We say that V' and V'’ are equivalent iff for any
constraint network N obtained by picking a constraint between S;; and G;; for each
(xi,x;) InV there exists a constraint network N’ obtained the same way from 1V’ such
that N and N’ have the same solutions.

Theorem 2. Let V be a version space. Let V' be the version space obtained after a
rule R hasbeen appliedto V. If R wasactiveon V, then V/ and V' are equivalent.

Proof. Suppose there exists a constraint netwarkn 1 for which none of the con-
straint networks i/’ have the same set of solutions. This means that the constraint
r;; added by the rulg? has decreased the general bodhg in V'. The constraints
allowed byG?; all reject some solution oV (by assumption). This is necessarily due
tor;;. Thus,r;; cannot be redundant wit. By definition of what an active redundancy
rule is, we deduce thdt cannot be active iy, which contradicts the assumptiond

This property guarantees that we can safely apply all the redundancy rules that are
active, reducing the size of the version space while its semantics is not affected.

The complexity of applying all the binary rules in a version space @3(im x | 3| %),
with |B| the number of constraint scopes in the bias anthe number of binary rules
in the toolkit. Fork-redundancy rules this is i@(m x |B|*). Applying k-redundancy
rules to a constraint network is a relaxation of relatiohaonsistency [5]. However,
relationalk-consistency requires space exponential in the number of variables in the re-
dundant constraint while in our approach we only generate constraints from the toolkit,
thus keeping constant space for each constraint.

Example2 We now apply the method above to example of Figure 1. After processing
the examplege, ey, e5 }, we know that even in the loosest constraint network still
possible, we have; > x5 andxz, > x3. Therefore, the rule described in Example 1 is
active. By applying it, we can reduce the possible constraint types betweandx;
to{>,>}.

4 Higher-Order Redundancy

While redundancy rules can eliminate a particular type of redundancy, there are cases
where applying these rules on the version space is not sufficient to find all redundancies.
Redundancy rules are well-suited to discovering constraints that are redundant because



of conjunctions of other constraints. However, as we shall show in Section 4.1, a con-
straint can be redundant because of a conjunctiodigfinctions of constraints. We

refer to this as higher-order redundancy. Since our redundancy rules are in the form of
Horn clauses, they cannot tackle such redundancies. After a brief description of the way
CONACQ stores the information about negative examples, we will show how to tackle
these complex redundancies.

4.1 Another Example

In the scenario illustrated in Figure 2, we use the same set of variables and domains
as those used in the example presented in Section 2. However, in this case the target
network comprises the set of constraifits = x2, 21 = x3,22 = z3}. Furthermore,

in this example all negative instances differ fref by at least two constraints (see the

table in Figure 2).
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Fig. 2. None of the version spaces have converged.

After processing the positive examplé, each version space contains four consis-
tent hypotheses, the most specific hypothesis in each beifdne version spaces are
depicted in Figure 2. However, each of the negative examples does not contain enough
information to immediately reduce any of the version spaces for our constraints any
further. For example, negative examplg may be negative because of either constraint
c12 Of co3, OF indeed both. Therefore, none of the version spaces of the constraints in our
example can be reduced further (indicated with dark shading in Figure 2, as opposed to
the lighter shade used earlier to depict hypotheses being removed from a version space).
The version spaces in this example each contain 4 hypotheses due to the disjunction of
possible reasons that would classify the negative examples correctly.

Without any further information, particularly negative examples which differ from
the positive example by one constraint, no further restrictions can be made on the ver-
sion spaces of the constraints in our problem. Consequently, none of the version spaces
converge. Simply applying redundancy rules also does not help. An alternative approach
is required, which will be presented next.



4.2 Storing negative examplesin CONACQ

As briefly described above, when a negative examplds presented t€ ONACQ, it
is encoded as a clausé. = ZZJ V...V l,(jglm whereU; is the set of most general
constraint types available fog; that rejecie™ (i.e., that are violated by—). The literal
ZZJ is true if any possible constraint type foy; in its local version space is at least as
specific as the given bourid;;. This is the case if any constraint typén the general
boundG;; of ¢;; is at least as specific as a constraint typ€jn This is the condition

for ¢;; to rejecte™. Hence, the clausd. means that at least one of the constrainjs
having a Iiteralg” in ¢l has to be at least as specific adlits to rejecte™.

We should point out that a clause does not necessarily contain a literal for each
constraint we have to find in the bias. Each constrajpfor which the specific bound
S;; is already more general than; will not rejecte. It is then useless to put a literal
for it in the clause since this literal will be forced to be false. For example,; if=
{z1 = L;22 = 1;23 = 3} andS;2 = {>}, c12 cannot reject, . In addition, not all
elements o~ have a stored clause @DNACQ. It can indeed appear that an example
is already definitively rejected by some constraint in the version space. For example,
take again the,” above and imagin&/,3 = {>}. ¢,  cannot satisfy:»3. Hence, it is
useless to add a clausedwNACQto express that, should be rejected.

The set of all the clauses containing the necessary information abolg denoted
by KC. Since a constraint network assigns a single constegjrib each pair of variables
(xi,x;), it leads to an interpretation for every Iiterl#’j in K. By construction, it is
guaranteed that for any constraint network leading to a satisfying interpretatifih for
all e € E~ are non-solutions. (See [2] for more details.)

4.3 Finding higher-order redundancies

In the example in Section 4.1 we have seen a case where a constraint is implied by
the set of negative examples receiveddiyNACQ , but redundancy rules are not able
to detect this by themselves. However, all the information necessary to deduce this
constraint is contained in the set of redundancy rules and thé setlauses encoding
the negative examples. The reason for their inability to detect it is that rules are in the
form of Horn clauses that we apply only whah predicates in the left-hand side are
true (i.e., we apply unit propagation on these clauses). To tackle this issue we can build
the setR of all possible substitutions on the given bias for available rules. For each rule
R = Py(t1,t2) A Pa(te, t3) = Q(t1,t3), for each substitutiofl that mapsP;’s and@
on possible constraints in the bias, a clau$§<1tl)79(t2) Y, ﬂlfl)’éz)’e(m Y, lff(tl)ﬁ(m is
added to the seR. This process can be done as soon as the bias is given, before the
beginning of the acquisition process.

In addition, since the semantics of a Iitet%l iS: ‘c;; is at least as specific d8,
we need also to link literals involving the same constraint scope. For example, if we
havel,z true, then a Iiteralizj should not be able to take the value false. Hence, we

need a third set of clauses, the setontaining—!7; v 17" for each pair(z;, z;) such
thatU subsumed/’. These subsumption clauses between two Iitd@landlg' need
only to be included iflg appears inC and subsumelsg/ that appears ifk. Adding



subsumption clauses between two literal&imould not activate any more rules. This
is an important property since the fact th]gf comes fromR implies that|U’| = 1,
which ensures polynomial space or

We now have a base of ground clausEsy R U L, that contains all available
information about rules and negative examples. If a Iitéfpin K URU L appears
positively in all models o UR UL (i.e., it belongs to the backbone [8]), we can reduce
the local version space of; to constraints at least as specificlasBy construction of
KURUL, itis indeed impossible to assigry; to a constraint more general thenand
at the same time reject all negative instanceg in

Therefore, after the presentation of a new negative instafrcen £ —, we have to
build the corresponding claugé,., add it to/C, updatel if necessary, and test if the
addition of¢l, causes some litefato enter the backbone &f U R U L.

The process that we described above guarantees that all the possible redundancies
will be detected.

Theorem 3. Givenaversion space V,aset E = ET U E~ of examples, a constraint
type r, and the sets K, R, £ built as described above, if r is a possible constraint on
(x;,x;) and r can be inferred from V, the set of rules of the toolkit, and £ —, then the
literal I}, isa member of the backboneof K UR U L.

Proof. Let r be a (most specific) possible constraint(an, z;) that can be inferred

from V, the set of rules of the toolkit, anfi ~. Supposé;; does not belong to the

backbone offC U R U L. By assumptionr is the head of some rules in the toolkit

(otherwise @NACQ by itself can learn on (z;, x;)). Then,l}; is the head of a subset

R’ of the rules inR. Then there exists a modéll of X U R U L for which none

of the rulesk € R’ has all the literals of its tail set to true. There are two cases.

Either none of the network¥ »; built from A/ allow a solution violating on (z;, z;),

which means that a rule that would inflz{g from M is missing inR, or someN

allows solutions violating: on (z;, z;), which means that cannot be inferred since

there exists a network rejecting &l~ (by construction ofV,,), and allowing solutions

rejected by on (z;, ;). Both cases contradict the assumption. Finally,fas not the

most specific constraint that could be learned:opn =) (for exampler =" <’ while [

was inferred) the proof holds for the most specific constrainand the clauses added

to £ permit to inferl!; from 7. O
However, this process is quite expensive from a computational point of view, since

testing if a literal belongs to the backbone of a formula is a coNP-complete problem.

This prevents the use of such a technique on big formulae, but as we are concerned with

an interactive acquisition process, it is reasonable to assume that the version spaces

we need to handle will be small enough to permit a human user to deal with them,

and consequently we expect that the speed-of-response for backbone detection will be

acceptable. The experimental section will discuss this feature more deeply.

2 Note that a literal is a candidate to enter the backbone only if it appears in the right-hand side of
a Horn clause fromR (or it belongs to a unary clause, obviously). Furthermore, the backbone
cannot contain negative literals sin@and £ are Horn bases and contains only positive
clauses.



Example 3 We now apply the above method to the example presented in Section 4.1.
The setR of redundancy rules used in this example is presented in Table 2. It provides a
subset of possible binary rules associated with the bias in Figure 1(a). As presented pre-
viously, the setC is built dynamically only when required bg andR, so we initialize

it to (.

Table 2. Binary redundancy rules for the sample problem
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After receivinge; , K = {(I5 V I5;)}, to apply technique presented in Section 4.3,
we test if either 5, or I3, belong to the backbone @ U R U £. However, running a
SAT solver allows us to determine that bathy R ULU{~I 5} andCURULU{—l5,
have solutions. Since the backbone detection did not find any literal, at this stage, we
cannot deduce anything more than using previous methods.

However, after receiving;, K = {(I5 V I5), (I5, V I5)} we detect the new
backbone. We run a SAT solver & U K U £ U {-I 5} and because of the minimal
conflict setkC U {r1} U {-I5;}, it fails. Therefore/5, belongs to the backbone and we
can use this to refine the version space of consteaintremoving from it the constraint
types< andT.

In this example, it is clear that the backbone detectiolCanR U £ has permitted
us to detect (and learn) a redundant constraint that redundancy rules alone did not.

5 Empirical Study

To compare the approaches to exploiting redundancy to improve the quality of the ac-
quired CSP that we have proposed in this paper, we studied their effects on a sample
class of CSP. The bias used in this experiment is the same as that presented in Fig-
ure 1(a). Our experiments involved generating target CSPs, which we then attempted
to acquire by presenting examples of solutions and non-solutions of them to an acqui-
sition system based on either (we also provide the label used in Table 3 to identify that
configuration of the acquisition system) @»NACQ on its own CONACQ standard);
(b) coNACQ using redundancy rules onlg ONACQ +rules); (C) CONACQ using both
redundancy rules and backbone detectmoNACQ +rules + backbone). These form
the columns in Table 3.

In each case we computed a representable set of solutions (non-solutions) to the
target CSP which were used as a source of positive (respectively, negative) examples for
the acquisition system. We generated target CSPs with 12 variables, 12 values in each



Table 3. Comparison of the capability of each acquisition system to exploit redundancy in the

larger problem studied (12 variables, 12 values, 30 constraints).

CONACQ CONACQ CONACQ
standard +rules| +rules|
Redundant Pattern +backbon

Length {constraints} VS| (secs |V S| (secs |V S| (secs)#Exs
none 4.29 x 10° (< 1)]] 6.71 x 107 (3)][1.68 x 107 (46)[] > 10°
n3 {<,>} 4.10 x 10° (< 1) 64 (2) 1(29)[| 360
nR2  {<,>} 1.72 x 10*° (< 1)|| 4.10 x 10® (2) 1(23)| 190
n {£,>} 1.44 x 10*7 (< 1)|| 2.62 x 10° (2) 1(21) 90
n3  {=<,>} 2.68 x 10° (< 1)|| 1.02 x 10% (2) 1(27) 280
n2  {=,<,>} 7.38 x 1017 (< 1)|| 4.19 x 107 (2) 1(23)| 170
n {=,<,>} 2.08 x 10** (< 1)||6.87 x 10'° (2) 121 70
n {=,<,>} 5.07 x 103 (< 1)|| 1.07 x 10° (3) 1 (40)[| > 10®

domain, 30 constraints and varied the degree of redundancy in them. Clearly, during the
acquisition process it is not known between which variables there are constraints so we
must assume a complete graph comprising 66 constraints, giving us 66 local version
spaces.

The number of examples used in each experiment was equal to the number required
for coNACQ using both redundancy rules and backbone detection to converge. How-
ever, we set a maximum number of examples at just aboveafter which we would
terminate the acquisition process.

For each acquisition system setup (the 3 different configuration®shcqQ ), we
recorded the total time (in secondsgs) required to process the set of examples and the
final size of the version space, denoted Wy |. The number of examples is denoted by
#Fxs in the last column. We present averages of 10 runs of the experiment.

We have studied the effects of controlling the redundancy in each CSP in two ways
(giving us the rows in Table 3). Firstly, we introduced patterns of constraints in the
target network of various lengths. In the experiment we used lengths based on the num-
ber of variables in the problem: specifically, we use lengths/2 andn/3 (Length
column). Secondly, for each length of pattern we selected a pattern of constraints with
controlled characteristics and introduced these into the target network. In the experi-
ment we selected patterns of the same constraint selected either from {he, et
(looser constraints) of<, =, >} (tighter constraints). For example, a path of length
based o <,=,>}iszy > x1 > 22 > 3 > x4 > x5 > x6 > x7, While a path of
lengthn/2 based o <, >} isxg < 21 < 2o < x5 (See{constraints} column). As a
“straw-man” we also present results for a target CSP where no pattern was introduced
into the network. Our results are presented in Table 3.

It can be clearly seen from Table 3 that, in terms of the size of the resultant version
spaces, exploiting redundancy rules withNACQ improves uporcONACQalone in all
situations. However, exploiting redundancy rules leads to an increase in the amount of
time required by the the acquisition to process the set of examples since it relies on the
construction ofR, derived from the set of negative examples. Combining backbone de-



tection and redundancy rules witoNACQ improves uporcONACQ with redundancy
rules, in terms of version space size, but offers a considerably slower response time due
to the use of the SAT solvér

Furthermore, we can see that as the level of redundancy in the target problem in-
creases, from/3 to n, regardless of the constraints involved in the redundant pattern,
the ability of standardcONACQ to converge deteriorates dramatically. It is also inter-
esting to note thatoNACQ with redundancy rules also does progressively worse on
these networks. This is most clearly noticeable if one compares the top-line of the ta-
ble, where no redundant pattern was enforced, with the last line in the table, where a
pattern of lengtm was present, keeping the number of examples constant in both cases.

Simply combining redundancy rules witoNACQ is sufficient to detect much of
the redundancy that is completely discovered by backbone detection. Specifically, com-
paring the standardoNACQ column with theCONACQ +rules column, we can see
that there are orders-of-magnitude differences in the size of the version spaces, with a
very minor increase in processing time (approximately double in most cases). Note that
CONACQ +rules + backbone requires and order of magnitude more time, but achieves
convergence.

Finally, the effect of the tightness of the redundancy pattern introduced into the
problem has interesting consequences. On a target network involving looser redundant
patterns, those fromj<, >}, positive instances play a central role in the acquisition
of the problem. Specifically, more of them are required for convergence. Furthermore,
after receiving positives instances, each local version space is smaller than would be the
case if the redundant patterns were made up of the tighter constraint§$rpwm > }.

For example, wheer is the target{>, T} is the largest possible version space, while
for > itis {>,#, >, T}. This explains the exponential difference in version space size
between tighter and looser target networks presented in Table 3.

In summary, this experimental evaluation demonstratesabatrcQ on its own is
insufficient to fully exploit redundancy during the acquisition process and that conver-
gence may not be possible. The more sophisticated approaches that we propose based
on redundancy rules and backbone detection are far superior. However, there is a trade-
off to be considered between the need to find the tightest specification on the target
network versus the response time of the acquisition system.

We have seen that adding backbone detection and redundancy rules together to en-
hanceCONACQ is best in terms of convergence, but has a high response time cost.
Just exploiting redundancy rules witONACQ offers a very fast response time, with
the abilities to converge quite significantly also. Obviously, it is an application-specific
and/or problem-specific issue how this tradeoff should be dealt with. For example, in an
interactive context, speed-of-response is a critical factor and, therefore, simply relying
on redundancy rules seems to be an ideal compromise. In such an application, backbone
detection could be run as a background process, further refining the version spaces that
represent the target CSP.

3The SAT solver used for backbone detection zghaff, version 2003. 12. 04,
http://ee. princeton. edu/~chaff/zchaff. php.



6 Conclusionsand Future Work

In this paper we were concerned with automating the formulation of constraint sat-
isfaction problems from examples of solutions and non-solutions. We have combined
techniques from the fields of machine learning and constraint programming. In par-
ticular we have presented a portfolio of approaches to exploiting the semantics of the
constraints that we acquire to improve the efficiency of the acquisition process.

We have demonstrated that theNACQ algorithm on its own is insufficient to fully
exploit redundancy during the acquisition process. The more sophisticated approaches
that we propose based on redundancy rules and backbone detection are far superior.
However, there is a tradeoff to be considered between the need to find the tightest spec-
ification on the target network versus the response time of the acquisition system. We
have seen that adding backbone detection and redundancy rules together to enhance
CONACQ is best but has a high response time cost, while just exploiting redundancy
rules withcoNAcQ offers a very fast response time, with the abilities to converge quite
significantly towards the target CSP.

Our future work in this area will look at a number of important issues that must
be addressed in real-world acquisition contexts. For example, techniques for handling
noise and errors in the process are of critical importance also, particularly if human
users are providing the training exampl@g [
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