
HAL Id: lirmm-00108779
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108779

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proposals for Multiple to Single Inheritance
Transformation

Michel Dao, Marianne Huchard, Thérèse Libourel Rouge, Anne Pons, Jean
Villerd

To cite this version:
Michel Dao, Marianne Huchard, Thérèse Libourel Rouge, Anne Pons, Jean Villerd. Proposals for
Multiple to Single Inheritance Transformation. MASPEGHI: Managing SPEcialization/Generalization
Hierarchies, Jun 2004, Oslo, Norway. pp.21-26. �lirmm-00108779�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108779
https://hal.archives-ouvertes.fr

Proposals for Multiple to Single Inheritance Transformation

Michel Daoa, Marianne Huchardb, Thérèse Libourelb, Anne Ponsc, Jean Villerdb

aFrance Télécom R&D DTL/TAL
38-40 rue du général Leclerc, 92794 Issy Moulineaux Cedex 9, France

bLIRMM – CNRS et Université Montpellier II – UM 5506
161 rue Ada, 34392 Montpellier Cedex 5, France

cDept Informatique – Université du Québec à Montréal
C.P. 8888 – Succursale centre ville, Montréal Québec H3C 3P8, Canada

ABSTRACT

We present here some thoughts and ongoing work regarding transformations of multiple inheritance hierarchies
into single inheritance hierarchies. We follow an approach that tries to categorize multiple inheritance situ-
ations according to a semantic point of view. Different situations should be captured through diagrammatic
UML annotations that would allow to detect a given situation and hence apply the appropriate transformation,
automatically if possible.

Keywords: multiple inheritance, UML, model transformation

1. INTRODUCTION

Multiple inheritance (MI) vs. single inheritance (SI) was the subject of numerous passionate discussions during
the era of the emergence of object-oriented programming languages. Those discussions have more or less come
to an end and we are left with: not so badly implemented MI languages (e.g. Eiffel and CLOS) that are scarcely
used, widespread not so well implemented MI languages (e.g. C++) or the flagship language Java (but for how
long?) with SI (and MI for interfaces).

Lately, a shift in software development process has given an increased importance to modelling, specially
through the widespread use of UML.1 Of course UML proposes MI: as opposed to programming languages,
there are no conflicts to be resolved at compile time when using MI in UML and those who believe, as we do,
that MI can be a good means of modelling existing entities can use it without caution. Furthermore, UML
proposes annotations allowing inheritance links to convey special meanings.

More recently, Model Driven Architecture (MDA)2 has proposed a framework in order to formalize the
extensive use of models during the software development process. MDA fosters the use of different models
throughout the process, the models of one phase of development being derived from the models of a previous
phase. More specifically, a Platform Independent Model (PIM) may be used to generate a Platform Specific
Model (PSM). For instance, a UML design level static model may be used to generate source code in a given
programming language. Our proposition fits into this precise scheme: how can we automate the transformation
of a MI UML class diagram into a SI class diagram, hence allowing straightforward transformation into SI
programming language?

There exist several works on the subject of MI vs. SI.3–5 In a previous project in which we participated,
two approaches have been considered that may eventually be combined. The first one may be described as
”combinatorial” and consists in defining a strategy to remove inheritance links so as to minimize the number of
properties (attributes and methods) that it is necessary to duplicate. Such a strategy can be based on a set of
metrics that allow to measure a priori the impact of the deletion of an inheritance link. A first work following
this approach has been realized6 that yielded interesting results but needs to be refined and completed in order
to be fully usable.

Another approach, which is the subject of this article, may be described as ”semantic”. The idea is to
consider that MI may appear in several typical situations that correspond to different semantics and that for
each situation there may exist several possible transformations into SI. The problem of MI to SI transformation
may therefore be decomposed as follows:

• elaborate a list of the different situations of MI and of the corresponding possible transformations into SI;

• be able to find occurences of those different situations in a class hierarchy;

• be able to apply the pertinent transformation.

The structure of inheritance is clearly not sufficient to determine a situation of MI. UML standard proposes
some annotations of inheritance and we believe that those annotations may help in spotting specific inheritance
situations but they are limited and do not allow to capture all situations. In a previous article,7 we have
proposed some extensions to those annotations in order to enhance the semantic expressiveness of inheritance
links in UML class diagrams. Furthermore, some other informations (size of classes, size of generalization set,
need of symmetry, number of inherited methods, etc.) may help to determine the best transformation to be
applied.

We first present the annotations that may be used to convey semantic inheritance information in UML class
diagrams. This is followed by a proposition of a set of MI to SI transformations that we have gathered in existing
work (and have partly adapted). Then we propose a tentative list of typical MI situations associated with one
or more pertinent transformations. We conclude by discussing our approach and its perspectives.

2. MULTIPLE INHERITANCE ANNOTATIONS

A first type of UML annotation1, 8 is the discriminator that allows one to group subclasses into clusters that
correspond to a semantic category. For instance, in Figure 1∗, class Employee is specialized according to two
criteria, :status (related to the salary payment), and :pension (vested vs unvested). Discriminators involve
a partition of the specialization links coming to a parent class: in our example this partition has two elements,
the set of the links labelled with the discriminator :status from one side, the set of the links labelled with the
discriminator :pension from the other side.

VestedEmployee UnvestedEmployeeHourlyEmployeeSalariedEmployee

ExemptEmployee

VestedHourlyEmployee

:status :pension
{disjoint, complete} {disjoint, incomplete}

Employee

Figure 1. Exemple of annotated multiple inheritance

A second kind of annotation existing in the UML notation appears as constraints about the extension (instance
set) of a class C and of its subclasses. We denote by E the set of the direct subclasses which are gathered by
such an annotation. Four constraints are predefined:

overlapping an instance of C can simultaneously be instance of several classes of E;

disjoint an instance of C is instance of at most one class of E;

complete elements of E are origins of links annotated by a same discriminator; any instance of C is instance
of one of the elements of E;

∗This example is borrowed from.9

incomplete the classes of E are origins of links annotated by a same discriminator; an instance of C is not
necessarily instance of one of the classes of E.

We have proposed to extend this set of annotations with the following7:

alternative the characteristics of the super classes are used alternatively as in the case of an amphibian vehicle;

concurrent (special case of overlapping for roles and states): father/husband;

successive (special case of disjoint with a temporal scheduling): chrysalis/caterpillar/butterfly, child/teenager/
adult;

exclusive (special case of disjoint for roles and states): empty/full for a stack, married/single for a person;

repeated similar to repeated inheritance in C++: a property may be inherited along several different paths
from the same indirect super class;

combined when a class is directly specialized according to several criteria denoted by discriminators, an instance
may be constrained to belong to at least one class of each discriminator;

disjoint partition conversely, an instance may be constrained to belong to only one discriminator;

implementation in numerous examples of multiple inheritance in the programming area, a class ends up
deriving from superclasses that it specializes for implementation needs.

3. INHERITANCE TRANSFORMATIONS

Figure 2 shows an initial MI situation and five possible transformations into SI.

Transformation 1 – Duplication The first transformation that may be applied is to remove one of the
inheritance links and to duplicate in the subclass all the properties that were inherited through this link. The
advantage of this solution is simplicity but duplication of code is always a bad thing regarding reuse and main-
tenance. The choice of the inheritance link to cut could be based on the number of properties that must be
duplicated: the less, the better.

Transformation 2 – Nested generalizations This transformation consists in cloning one set of classes
corresponding to a discriminator (here :discrCD) into subclasses of each class corresponding to the other dis-
criminator. This transformation may only be useful when there are few classes under the chosen discriminator
and it may be difficult to choose the discriminator to clone. Furthermore, the naming conflicts produced by the
new classes must be resolved but polymorphism is kept.

Transformation 3 – Direct link This transformation can be seen as a double duplication: both inheritance
links are cut and the properties from both superclasses (B and C) are duplicated into class E. This transformation
involves more duplication than the duplication involved in transformation 1 but allows to preserve the symmetry
of the class hierarchy if this is relevant.

Transformation 4 – Role aggregation Another solution is to transform one of the inheritance links into
an aggregation† link. Polymorphism is replaced by a delegation mechanism at the expense of the creation of a
new class A/CD and of code rewriting. In our example each method or accessor of class C should be replaced by
one with the same name in class A performing a call to the right method or accessor in class C. The choice of the
inheritance link to be replaced by delegation could be based on the amount of properties to be redefined or one
could choose the class belonging to a discriminator that is complete because such a replacement would be done
once and for all.

†In fact, that might be a composition link.

Class B

b : string

m()

Class D

d : boolean

m()

Class C

c : char

m()

Class A

a : real

m()

Class E

m()

e : integer

a : real

b : string c : char

m()

m() m()

m()

d : boolean

e : integer

m()

Class B

b : string

m()

Class C

m()

c : char

Class D

d : boolean

m()

Class A

a : real

m()

Class E

m()

e : integer

c : char

mC()

b : string

m() m()

d : boolean

a : real

m()

m()

e : integer

c : char

c : char

m()

mC()

Class B

b : string

m()

Class E-D

d : boolean

e : integer

m()

mD()

Class A

a : real

m()

Class E-C

c : char

e : integer

m()

mC()

a : real

b : string

c : char

e : integer

d : boolean

e : integer

m()

m()

m() m()

mC() mD()

Class B

b : string

m()

Class C

c : char

m()

Class D

d : boolean

m()

Class A

a : real

m()

Class E

m()

e : integer

b : string

c : char

mB()

mC()

b : string

m()

c : char

m()

d : boolean

a : real

m()

m()

e : integer

b : string

c : char

m()

mB()

mC()

Class B

b : string

m()

Class A/CD

Class E

e : integer

m()

Class A

a : real

m()

Class C

c : char

m()

 Class D

d : boolean

m()

0..1 1a : real

b : string c : char d : boolean

e : integer

m()

m() m()

m()

m()

Class A

a : real

b : string

c : char

m()

mA()

d : boolean

e : integer

typeOfA : Types

mB()

mC()

mD()

mE()

Initial inheritance situation 1 - Duplication

3 – Direct link 4 – Role aggregation

2 – Nested generalizations

5 – Class merge

:discrCD
:discrCD

:discrCD

:discrCD

Figure 2. Propositions of inheritance transformations

Transformation 5 – Class merge This transformation merges A and all its subclasses into one unique class.
Conflicting properties must be renamed and a dispatch mechanism must be implemented that uses a typing
attribute indicating the type of instances of this unique class.

Transformation – Interfaces Another transformation not depicted in the figure consists in defining a MI
interface hierarchy corresponding to the MI class hierarchy and to establish implementation links between the
class hierarchy and the implementation hierarchy.

Our ongoing work is to define a mapping between a given MI situation and one (or several) pertinent
transformations. Table 1 lists a first attempt of such a mapping. This is clearly an incomplete and debatable
table that needs completion, refinement and discussion. Let us discuss a couple of our proposals.

First, the complete annotation implies that no other classes should be added to the cluster of classes gathered
under this annotation, typically a discriminator. Therefore, in the case where there are only few classes involved,
one multiple inheritance cluster could be transformed using the nested generalization transformation. In this

case, this would not lead to a too complex diagram with a great number of classes that are not all useful. Another
case is when there is only one inheritance link that originates from a complete annotation, one could use the role
aggregation transformation with this inheritance link being replaced by the aggregation link.

The combined annotation stipulates that a subclass inherits from at least one class from each discriminator.
In the case of the alternative sub case, this argues in favor of the direct link transformation where all superclasses
are treated equally.

The implementation annotation can be viewed as a conceptual model of the interfaces of Java (*able: clone-
able, serializable, etc.) and therefore the most natural transformation consists in using interfaces to represent
multiple inheritance in that case.

Situation Semantic Transformation Comment
subsituation

overlapping
concurrent role aggregation

disjoint
successive role aggregation
exclusive

complete nested generalization few classes under the chosen discriminator
and at most two discriminators

role aggregation complete = will not evolve
combined role aggregation few classes under the chosen discriminator

nested generalizations
alternative direct link

repeated role aggregation
implementation interfaces

Table 1. MI situations and transformations

4. DISCUSSION AND PERSPECTIVES

We have presented here our ongoing work on MI to SI transformation based on semantic annotations of UML class
diagrams. We have so far enriched UML annotations with some new ones and determined a set of transformations.
We are currently studying the mapping between a given situation of inheritance (UML extended annotations
and other criteria) and the possible transformations that may be applied.

It is obvious that such transformations should be applied to a class hierarchy as automatically as possible.
We have realized a limited implementation of two of the transformations listed in Section 3 in UML CASE tool
Objecteering‡ using its proprietary object-oriented language J. We are wondering if this type of procedural imple-
mentation is best suited for our purposes. As inheritance transformation may be seen as model transformation,
we are considering the use of a model transformation language (such as those for which OMG is requiring for
proposals) to express both the research of MI inheritance situations and their transformations into SI.

We believe that the work we have presented here may be an incentive for the following discussion topics:

• can we reconcile multiple and single inheritance by allowing the latter to be (partially) automatically
obtained from the former?

• does this type of transformations fit into the MDA approach?

• to which extent can we classify multiple inheritance into well defined semantic categories?

• to which extent can we capture those semantic categories in UML annotations?

‡
www.objecteering.com

REFERENCES

1. U2 Partners, Unified Modeling Language: Superstructure, version 2.0, 3rd Revised submission to OMG RFP
ad/00-09-02, http://www.omg.org/cgi-bin/doc?ad/20 03-04-01, april 2003.

2. Object Management Group, MDA-Guide, V1.0.1, omg/03-06-01, june 2003.

3. K. Thirunarayan, G. Kniesel, and H. Hampapuram, “Simulating Multiple Inheritance and Generics in Java,”
Computer Languages 25(4), pp. 189–210, 1999.

4. M. Malak, “Simulating Multiple Inheritance,” Journal of Object-Oriented Programming , pp. 3–5, april 2001.

5. Y. Crespo, J.-M. Marquès, and J. Rodriguez, “On the Translation of Multiple Inheritance Hierarchies into
Single Inheritance Hierarchies,” in Proceedings of the Inheritance Workshop at ECOOP 2002, Black, Ernst,
Grogono, and Sakkinen, eds., pp. 30–37, 2002.

6. C. Roume, “Going from Multiple to Single Inheritance with Metrics,” in Proceedings of the sixth ECOOP
workshop on Quantitative Approaches in Object Oriented Software Engineering (QAOOSE 2002), F. Brito e
Abreu, M. Piattini, G. Poels, and H. Sahraoui, eds., pp. 30–37, 2002.

7. M. Dao, M. Huchard, T. Libourel, and A. Pons, “Extending the Notation for Specialization/Generalization,”
in Proceedings of MASPEGHI’03, ISBN 2-89522-035-2, pp. 61–67, (CRIM, Université de Montréal), 2003.

8. Rational Software Corporation, UML v 1.3, Notation Guide, version 1.3 ed., june 1999.

9. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object Oriented Modeling and Design,
Prentice Hall Inc. Englewood Cliffs, 1991. pages 15–84.

