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ABSTRACT

In many situations, one faces the need for integrating a set of conceptual hierarchies that represent parts of the
same domain. The target structure of the integration is a unique conceptual hierarchy that embeds at least the
total of the knowledge encoded in the initial ones. The key issues to address here are the discovery of higher-level
abstractions on top of the existing concepts and the resolution of naming conflicts among these. Formal concepts
analysis (FCA) is a mathematical approach toward abstracting from attribute-based object descriptions which
has been recently extended to fit relational descriptions thus giving rise to the relational concept analysis (RCA)
framework. Building up on RCA, our integration approach amounts to encoding the initial hierarchies into set
of binary tables, one for each component category, e.g., classes, associations, etc., and subsequently constructing,
querying and reorganizing the corresponding abstraction hierarchies until a unique satisfactory hierarchy is
obtained. This paper puts the emphasis on the mechanisms of discovering new abstractions and exporting them
between the abstraction hierarchies of related component categories. The impact of naming conflicts within the
RCA process is discussed as well. The paper uses UML as description language for conceptual hierarchies.

Keywords: Hierarchy integration, formal concept analysis, abstraction, naming conflict resolution.

1. MOTIVATION

Specialization hierarchies embody the knowledge about a particular domain expressed by means of concepts,
concept features and inter-concept relationships (general kind relationships, composition, aggregation, etc.).
The design of such hierarchies is known to be a hard-to-automate problem, even in the cases where the ground
set of objects/classes is given and the goal is simply to organize them into a meaningful structure. Consequently,
most methods that support the hierarchy design task apply some inductive techniques in a semi-automated or
interactive mode.

We focus here on the integration of specialization hierarchies. In fact, the need for merging two or more
existing specialization hierarchies into a unique global one that encodes at least the initial hierarchical knowledge
occurs in many practical situations. Thus, in database design, it is known as schema integration,1 in knowledge
engineering as ontology merge,2 in software modeling as model integration3(e.g., assembly of subjects or aspect
inter-weaving), etc. Whatever the name given and the domain-specific constraints, the integration of hierarchies
basically consists in assembling a set of potentially incomplete views on the same reality.

Yet the assembly is more than a mere juxtaposition of hierarchies as parts of these may overlap whereas
overlapping between concepts of different hierarchies may remain partial, thus suggesting these are the variants
of a more general concept. To sum up, integration requires the detection of overlapping parts of the initial
hierarchies whereby some of the corresponding elements, i.e., concepts, relationships, properties, etc., stemming
from different hierarchies will be directly recognized as identical whereas, others, although similar, will rather
give rise to abstractions that have not been discovered beforehand.

In this paper, we discuss the automated support for the integration process which remains manual in its
very nature. Indeed, identity recognition for elements of different hierarchies is ultimately up to the designer’s
judgment as concept naming is prone to errors and ambiguity, e.g., the same domain element may be given
different, yet synonymous, names in different hierarchies. Moreover, the choice of the “interesting” abstractions
among the set of all plausible ones is hardly automated. We sketch an approach for hierarchy integration that
relies on abstraction mechanisms from the formal concept analysis (FCA)4 field. FCA turns a binary (individuals
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x properties) table into a complete lattice made up of pairs of closed sets. To cover more sophisticated concept
descriptions, a version of FCA is used that feeds inter-individual relations into the generalization process. In our
framework, mechanisms detecting regularities in individual/property co-occurrences and in the lattice structure
are relied on to spot potential naming conflicts.

2. INTEGRATION CHALLENGES

In the remainder of the paper, we consider hierarchies described in UML.5 Using the underlying terminology,
abstractions represent generic domain concepts and are obtained by factorizing the shared specifications of classes
or associations.

Figure 1 shows two class diagrams pertaining to strict subsets of the banking domain, i.e., the bank account
sub-domain (henceforth identified by BA) and credit card sub-domain (CCA). Please notice that there is a
substantial overlap between both in terms of business classes, associations and class members.
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Figure 1. Left:Bank account sub-domain model. Right: Credit card sub-domain model.

When only a sub-domain is focused on, then obviously, the possibilities of identifying the appropriate generic
concepts are limited. In particular, concepts transcending the sub-domain boundaries would be overlooked. For
instance, although both hierarchies in Figure 1 are faithful representations of the underlying sub-domains, none
of them identifies the general concept of account that would factor the specifications of CreditCardAccount and
(check) Account (see class Account in Figure 6). These can only be discovered when the appropriate sub-domain
hierarchies are put side-by-side.

Consequently, a clever integration approach should look for all the ’hidden’ domain abstractions that cross
the local hierarchy boundaries. As we shall show it in the following paragraphs, mathematical tools exist that,
provided an appropriate encoding is performed beforehand, deliver the set of all potentially useful abstractions
over a set of concrete entities.

There is yet another difficulty integration has to face which is due to the overlapping of some hierarchies.
Indeed, restricted views and insufficient synchronization may cause mismatches in the naming of domain elements
that happen to appear in several sub-domains, as the case of the Client/Holder classes suggests. Indeed, both
Client and (card) Holder seem to reflect the same reality, i.e., bank customers whose only differentiation, except
for naming, lays in the sort of banking products they possess. Hence, and despite the diverging class names, these
classes should be merged in the global hierarchy (see Figure 6). In contrast, the pair of Feature classes, although
identically named, rather translate variations of a hypothetic Feature entity. Again, the name (mis)match is due
to the limited view in both local hierarchies: the lack of intra-hierarchy variation prevented the identification of
the generic class Feature whose absence prompted its local variants (subclasses) to be named identically. It is
noteworthy that in both above cases of misleading naming, the specification of the compared entities, i.e,, the
list of attributes, is a strong indicator of whether these are identical or not: while both Feature classes share



only a subset of their properties, the description of Client and Holder match perfectly. In fact, integration is
also a reconciliation activity on two inherently incomplete, i.e., partial, views on the same reality.

In the next section we present a domain that studies the construction of conceptual hierarchies from obser-
vation from a mathematical point of view and therefore provides a formal framework for the abstraction activity
that is considered here.

3. FCA-BASED INTEGRATION

3.1. FCA basics

A context K = (O, A, I) is given where O is a finite set of formal objects, A is a finite set of formal attributes
and I ⊆ O × A is a binary relation between these sets, saying that the object o ∈ O has the attribute a ∈ A
whenever (o, a) ∈ I holds.
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BA-Account X X X X

Client X X X

BA-Features X X X X X

BA-Operation X X X

CCA-Account X X X X X

CCA-Operation X X X

CCA-Features X X X X

Holder X X X

Table 1. Binary context K0
class. Formal objects are UML classes and formal attributes are their variables.

Table 1 represents a context drawn from Figure 1. The image of an object set X ∈ O is defined by:
X ′ = {a ∈ A | ∀o ∈ O : (o, a) ∈ I} and dually the image of an attribute set Y ∈ A is defined by: Y ′ = {o ∈
O | ∀a ∈ A : (o, a) ∈ I}. For example within Table 1, {BA-Account, CCA-Account}′ = {balance} and {withDrawLimit}′ =
{BA-Features, CCA-Features}. A (formal) concept in K is a pair (X, Y ) ∈ P(O)×P(A) for which X = Y ′ and Y = X ′

where X is called the extent and Y the intent. The set C of all concepts provided with an order relation based
on extent inclusion, say L, is a complete lattice. The lattice drawn from the context of Table 1 is shown in
Figure 2 on the right. As many practical applications involve non-binary data, many-valued contexts have been
introduced in FCA. In such a context K = (O, A, V, J), an object o is described by a set of attribute value pairs
(a, v), meaning that J is a ternary relation that binds the objects from O, the attributes from A and the values
from V (see table presented on the left-hand side of Figure 2). The construction of a lattice for K requires a
pre-processing step, called conceptual scaling ,4 that derives a binary context out of K.

3.2. FCA-based hierarchy analysis

FCA has been successfully applied to class hierarchy design and maintenance6 with contexts drawn from sets
of existing classes by encoding classes and class members as formal objects and attributes, respectively. The
resulting conceptual lattice was interpreted as a surrogate hierarchy where formal concepts represent (abstract)
software classes and order in the lattice as specialization.

Recently, Huchard et al.7 proposed an extension of the basic FCA mechanisms, called relational concept
analysis (RCA), that allows links among formal objects to be fed into the lattice construction in order to abstract
from those links higher order inter-concept relations similar to UML associations. RCA uses a compound data



out-assoc in-assoc

BA-Account {Allows, BA-Owns, BA-Has}
BA-Features BA-Has

BA-Operation Allows

CCA-Features CCA-Has

CCA-Operation Supports

Client BA-Owns

CCA-Account {CCA-Owns, CCA-Has, Supports}
Holder CCA-Owns

Figure 2. Left: Relational variables in Kclass. Right: The lattice L0
class.

format, called relational context family (RCF), including a set of formal contexts and a set of inter-object relations
(translated to relational attributes for computational reasons). Each context, called relational context, describes
a separate sort of domain entities as formal objects, while relations connect entities from (possibly) separate
contexts. An encoding of a UML class diagram maps classes and associations to separate contexts of the RCF
and the class - association relations to dedicated relational attributes in both contexts (e.g., in-association,
target-class, etc.). An innovative feature of RCA is the inference of relational abstractions connecting formal
concepts from links between formal objects, following a tight analogy to the Entity-Relationship data model. In
our UML encoding, this means that the intent of a formal concept over the class context may include a relational
attribute ”pointing at” a formal concept of the associations context, which abstracts from existing links between
the corresponding formal objects of class and association type.

The production of inter-concept relations is integrated into the overall lattice construction step by means
of relational scaling mechanism.8 RCA uses an iterative lattice construction mechanism that processes all the
contexts of a family simultaneously. The construction alternates relational scaling and lattice construction tasks.
Thus, each lattice gets more detailed along subsequent iterations (since new concepts are added while the old
ones remain) whereas the global construction halts whenever a particular step yields no new concept.

Figure 2, on the left, presents a relational context extracted from the UML diagrams given in Figure 1 in a
way that will be presented later on. RCA uses an iterative lattice construction method that processes all the
contexts of a family simultaneously by means of relational scaling mechanism which encodes relational attributes
into binary ones. Figure 3 presents the lattice of the context obtained by concatenating Table 1 and table shown
in the left hand-side of Figure 2.

3.3. Naming conflicts resolution
A set of hierarchical elements may overlap either on their names or on their descriptions (including properties and
links to other elements). Both these aspects of an element are to be seen as “proxies” for the denotation behind
the element, i.e., the domain entity it represents, which is not necessarily available for a hypothetical automated
tool. Indeed, although providing some rigor and a lot of structure, plain UML models, as other hierarchy
description languages, are basically natural-language-bound and therefore potentially ambiguous. Obviously,
a strong match in both name and description is a good indication for elements representing the same reality.
Overlap in only one aspect is trickier case as it may be the sign, except for imprecise modeling, of complex
linguistics phenomena intervening such as synonymous (same entity, different names, e.g., Client/Holder) or
polysemous (same name, different entities, e.g., the Feature classes).

These problems have been addressed in the database schema integration field and it is usually suggested
that name conflicts be resolved through name normalization based on linguistic resources such as electronic



dictionaries or specialized domain ontologies. Of course, neither is the linguistic-knowledge based approach
universally applicable, nor is it possible to solve all conflicts by an automated tool. Therefore, a more realistic
agenda for an integration tool could be to detect the suspect areas in the global hierarchy where effective/potential
name conflicts reside. FCA offers mechanisms for the detection of typical and exceptional patterns of co-
occurrence of formal objects/attributes called implication rules.9 These can be used to detect discrepancies
between descriptions of elements, i.e., mainly classes and associations, having same or close names that may hide
a conflict. Structural properties of the lattice and mutual position of those elements within it could be further
explored to the same end.

More sophisticated tools could even suggest, for a given pair of elements, the impact of a particular action
on them, e.g., merge, creation of a dedicated generalization, split into thinner elements, etc., to the remaining
lattice and hence the final hierarchy. Finally, a more extensive and fully manual approach towards name conflict
resolution could be based on the attribute exploration10 mechanism which is basically a knowledge acquisition
method assisted by a automated tool asking questions to the expert designer. The tool guides the hierarchy
designer to the discovery of a minimal set of implications that represent the entire domain while minimizing the
number of questions. It is noteworthy that the above mentioned FCA tools such as implication extraction and
attribute exploration are yet to be extended to the relational data descriptions that are used here.

Figure 3. Relational lattice L1
class.

3.4. Description of the approach

The global scenario of integration includes three main stages: encoding, abstraction and reverse encoding. During
the encoding stage, the initial hierarchies are transformed into a unique RCF where each context correspond to
a sort of objects in the UML meta-model, i.e., classes, associations, methods and variables. Here we limit our
considerations to classes and associations. Moreover, the incidences between meta-objects are translated into
relational attributes in the RCF, e.g., the attribute target-class in Table 2. The encoding of the entire running
example is jointly represented by Tables 1 and 2, together with the left-hand side of Figure 2. The resolution
of some naming conflicts takes place at this step, in particular conflicts in attribute/method names, which are
often less ambiguous than the class or association ones.

At the abstraction stage, a set of inter-related concept hierarchies are constructed on top of the global RCF.11

The global hierarchy construction starts by processing only the non-relational part of context attributes. Next,



name s-mult t-mult nav source-class target-class

Allows allows 1 0..N st BA-Account BA-Operation

BA-Owns ba-owns 1..N 1 st BA-Account Client

BA-Has ba-has 0..N 1 st BA-Account BA-Features

CCA-Owns cca-owns 1..N 1 st CCA-Account Holder

CCA-Has cca-has 0..N 1 st CCA-Account CCA-Features

Supports supports 1 0..N st CCA-Account CCA-Operation

Table 2. Context Kassoc of associations.

the process iterates between construction and scaling of relational attributes in the RCF until a fixed point is
reached, i.e., isomorphism between lattices at step i+1 and their counterparts at step i. Relational scaling turns
each object-valued attribute into a set of binary ones each of whom represents a concept from the conceptual
hierarchy of the underlying context. For a relational attribute α that is scaled along an existing lattice on its
range context, the resulting scale attributes will have the form α-l#j#i-c#k where j is the context number
(here 1 stands for classes and 2 for associations), i refers to the step of the iterative construction process and
k is the concept index in Li

j . For instance, as the values of target-class in Kassoc are objects in Kclass (see
Table 2), the attributes of the scale context Ktarget−class correspond to concepts from L0

class (see Figure 4 on
the left). They are used to compute the relational extension of K1

assoc along the link target-class (see the
tc-l10-cX attribute in Figure 4 on the right). Figures 3 and 5 show the final hierarchy derived from the class
and association contexts, respectively. Reverse encoding turns the resulting lattices into a global UML class
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diagram (see Figure 6). The process starts with an initial set of class concepts and examines iteratively both
lattices following inter-concept relational attributes to figure out the appropriate associations. Initial class set
includes all the object-concepts which represent existing local classes and some of the attribute-concepts in Ln

class

which means the GSH of Ln
class is the focus. However, concepts with exclusively relational scale attributes in

their intents are left aside at this step as they represent potential classes of high generality level. In our running
example, the object-concepts in L1

class are as follows (corresponding classes in Figure 6 given in brackets):
#3 (BA-Account), #16 (BA-Features), #11 (BA-Transaction), #4 (CCA-Account), #18 (CCA-Features), #15
(CCA-Transaction), #17, #19. The concepts #17 and #19 are discarded as they hold only links in their intents.
The attribute-concepts in L1

class are also considered: #1 (Account), #7 (Transaction), #12 (Feature), and
#14 (Holder) are kept while the remaining concepts such as #2 and #5 are ignored. The selected concepts, once
assigned a name each, constitute a first draft of the global UML model. The next step consists in detecting the
appropriate associations from the relational information in the retained class concepts. According to our forward
encoding, concepts from Kclass have incoming and outgoing links to concepts from Kassoc. Moreover, as these
links play symmetrical role, tracking one of them is enough. The scale attributes of the incoming link in each
selected concept (prefix in) are examined and only those corresponding to a minimum of the related concept
set are kept for association computation. For example, the concept #7 in L1

class which corresponds to the class
Transaction has two such attributes in-l21-c0 and in-l21-c2 hence potentially two incoming associations.



Figure 5. Relational lattice L1
assoc.

However, the concepts #0 (in-l21-c0) is a parent of #2 (in-l21-c2) in L1
assoc and thus the unique incoming

association for Transaction is described by #2. The latter has two source class attributes, sc-l10-c0 and
sc-l10-c1, whereby the corresponding concepts in L0

class, i.e., #0 and #1, satisfy #1 ≤ #0. Thus, the source
class is #1 which corresponds to the super-concept of the object-concepts for both account classes, i.e., the class
Account in our interpretation. As the target of the new association is known to be Transaction, the exploration
of the relations between L1

class and L1
assoc continues with another class concept. Figure 6 shows the result of the

integration process. Clearly, interesting abstractions have been discovered: Account generalizes both sorts of
accounts and Transaction the respective operations on them, Holder become the generic account owner after
discarding the Owner class as independent one. A new associations have been found as well, i.e., Supports which
links Transaction and Account.
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Figure 6. Global UML model.



4. RESEARCH AVENUES

We addressed the integration of a set of UML class diagrams into a global one as an instance of the generic
hierarchy integration problem. The underlying challenges amount to abstracting new and previously unknown
concepts and properly match overlapping parts of the hierarchies. We suggested a RCA-based framework for
integration where concepts and relations are organized in a separate but mutually related abstraction hierarchies,
the concept lattices. The core abstraction process is highly complex while the gap between a conceptual hierarchy
and its encoding in terms of a RCF requires an effective set of tools that facilitate the back and forth navigation.

Our focus in future steps will be on increasing the precision of the mapping from a hierarchy to a RCF and
on the design of effective tools for naming conflict detection and on-line adaptive restructuring of the hierarchies.
A possible approach would be to assess term “similarity” using a lexical database as in.12 Moreover, we shall
look at interactive simplification (pruning) of the obtained hierarchies and at increasing the automation of the
identification of relevant classes and associations as starting point for the reverse-encoding of the global hierarchy.
Finally, studying practical cases to assess the quality of the integrated hierarchies.
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