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[EXTENDED ABSTRACT] (submitted)

Vincent Berry and Francgois Nicolas

Equipe Méthodes et Algorithmes pour la Bioinformatique - L.I.LR.M.M. {vberry, ni col as}@irmm fr

Abstract. Given a collection of trees on n leaves with identical leaf set, the MAST, resp. MCT, problem consists in
finding a largest subset of the leaves such that all input trees restricted to this set are identical, resp. have a common
refinement. For MAST, resp. MCT, on k rooted trees, we give an O(min{3%kn, c® + kn3}) algorithm, where
¢ < 3and p is the smallest number of leaves whose removal leads to the existence of an agreement subtree, resp. a
compatible tree. This improves on [13] for MAST and proves fixed parameter tractability for McCT.

We then extend these problems to the case of supertrees where input trees can have non-identical leaf sets. For the
obtained problems, SMAST and SMCT, we give an O(V + n) time algorithm for the special case of two input trees
(IV is the time bound for solving MAST, resp. McT, on two O(n)-leaf trees). Finally, we show that SMAST and
SMmCT parametrized in p are W[2]-hard and cannot be approximated in polynomial time within a constant factor
unless P = NP, even when the input trees are rooted triples.

We also extend the above results to the case of unrooted input trees.

* supported by the Action Incitative Informatique-Mathématique-Physique en Biologie Moléculaire [ACI IMP-Bio].
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1 Introduction

Given a set of leaf-labelled trees with identical leaf sets, the maximum agreement subtree problem (MAST) consists
in finding a subtree homeomorphically included in all input trees and with the largest number of leaves [30,14,1,
18,21,22, 11]. This pattern matching problem on trees arises in various areas among which is the reconstruction of
evolutionary trees (or phylogenies) whose leaves represent living species and internal nodes represent ancestral species.
The shape of the tree describes the speciation pattern from which current species originated.

Motivation. A recent problem in phylogenetics is to infer trees from a collection of input trees on overlapping, but
different, sets of leaves. Each input tree is built from a separate data set which does not include all studied species
for various reasons. These trees are then given as input to a method that proposes a tree, called a supertree, i.e., a
tree including all (or most) species according to their relative positions in the input trees. For various reasons, the
input trees can disagree on the position of several species. Depending on the way they handle such conflicts, supertree
methods can be divided into two main categories: [31]: (i) optimization methods which tend to resolve conflicts
according to a specified optimization criterion [3, 26, 28,24, 10] ; (ii) consensus methods which output a supertree
displaying only parts of the species’ history on which the input trees agree. The drawback of approach (i) is that
output supertrees sometimes contain undesirable or unjustified resolutions of conflicts [25, 27,5, 33, 24].Approach (ii)
has been less investigated in the context of supertrees, the two proposed methods being the strict consensus [17],
sometimes criticized because of the poor amount of information of the produced supertree [33, 6], and the reduced
consensus [31], which usually proposes a set of complementary supertrees as output (see [31, Sect. 4]). Both these
methods focus on the clusters (groups of leaves under internal nodes). Several authors remarked that an alternative
would be to focus on leaves themselves, because in many cases removing a few species on the position of which the
input trees disagree, could enable to produce a single informative supertree [17, 33, 6]. Here we follow this proposition
by extending the MAST problem to the case of input trees on overlapping sets of leaves. We call SMAST the resulting
problem concerned with the inference of a supertree. We also extend a variant of MAST called maximum compatible
tree (McT) which is of interest when input trees are non-binary [20, 16], to obtain the SMCT problem. MCT and SMCT
allow multifurcating nodes (high degree nodes) of input trees to be resolved (split into several nodes) according to
other input trees.

Apart from inferring an estimate of the species’ history, SMAST and SMCT can play the same role as MAST in
the context of supertrees, i.e., measuring the similarity of input trees or identifying species that could be implied in
horizontal transfers of genes. Moreover, the supertree they produce is most likely to contain leaves from most input
trees (see Lem. 5) and, by definition, is shaped according to all these trees. It is thus a good candidate to strengthen the
results of the popular matrix representation with parsimony (MRP) method [3, 26]. E.g., [7] explicitly recommended to
use such a seed tree (i.e., a tree with leaves spanning most input trees) to improve its relatively low accuracy observed
for MRP when the input trees overlap moderately.

Previous work. [18] designed a variant of MAST that builds a tree they call a “supertree”, but with a different mean-
ing from supertrees considered in phylogenetics and in this paper. MAST is NP-hard on only three rooted trees of
unbounded degree [1], and McT on six rooted trees [20]. Efficient polynomial time algorithms have been recently
proposed for MAST on two rooted n-leaf trees: O(nlogn) for binary trees [11], then O(n'-?) for trees of unbounded
degree [21], and O(n!-* log” 2) for trees of degree bounded by d [22]. The O(n'®) results of [21] also applies to the
case of two unrooted trees of unbounded degree. In contrast, MCT is thought to be hard on two trees [29].

When £ rooted trees are given as input and have maximum degree d, MAST can be solved in O(n? + kn®)[14,
1,8] and McT in O(22k9n*) [16]. MAST is known to be fixed parameter tractable (FPT) in p, the smallest number
of leaves to remove from the input set of leaves such that the input trees agree [13]. [13] describe an algorithm in
O(3Pknlogn) and cite an unpublished work which would lead, as we understand it, to an O(c? + kn?®) algorithm
(where ¢ = 2.56).

Results. Following the work of [13], we obtain an O(min{3Pkn, H + kn®}) algorithm for both McT and MAST,
where H is the time required to solve the 3-HITTING SET problem on an instance of size O(n?) (currently H =
O(cP + n?) where ¢ &~ 2.311 [23] and p is the size of a smallest hitting set). This improves the bound for the MAST
problem w.r.t. [13] and is the first result showing that McT is FPT. Moreover, from this standpoint, McT has the same
complexity as MAST which was not expected w.r.t. previous work (on two general trees, the former is thought to be
NP-hard while efficient algorithms exist for the second, and on bounded degree trees, less efficient algorithms exist
for McT). Remark also that the exponential term in the complexity of the obtained FPT algorithm does not depend on
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the degree or number of input trees, which might be an advantage in practice over the algorithm of [16], though the
latter may be faster for trees with a high level of disagreement.

Then, we show how to extend MAST and MCT in a natural way to obtain the problems SMAST and SMCT on
supertrees. SMAST and SMCT are NP-hard in general, as they are equivalent to MAST, resp. MCT, in the case of input
trees with identical leaf sets. For both SMAST and SMCT, we give an O(N + n) algorithm for the case of two input
trees, where IV is the time bound for solving MAST, resp. McT, on two O(n)-leaf trees.

Finally, by reduction to the HITTING SET problem, we show that SMAST and SMCT are more difficult than MAST
and Mcr, as they are W[2]-hard for p. Thus, there is little hope to obtain efficient exact algorithms for these problems
on more than two trees, suggesting to resort on heuristic algorithms to solve the problem. However, it will be difficult
to prove tight approximation results for such heuristics, as we also show that no polynomial time algorithm can
approximate SMAST and SMCT within a constant factor, unless P = NP, even when the input trees are rooted triples
(binary trees on only three leaves).

All above results can be extended to the case of unrooted trees (adding an n factor in the case of the FPT algorithm).
In the following, Sect. 2 gives definitions, then results are presented for MAST and McT in Sect. 3, and for SMAST
and SMCT in Sect. 4.

2 Definitions and Preliminaries

Trees we consider are evolutionary trees (also called phylogenies). Such a tree T has its leaf set L(T") in bijection with
a label set and is either rooted (at a node denoted (7)), in which case all internal nodes have at least two children, or
unrooted, in which case internal nodes have degree at least three. When there is no ambiguity, we will identify leaves
with their labels. The size #T of a tree T' is the number of its leaves. Let u be a node in a rooted tree 7', we denote by
St(u) the subtree rooted at u (i.e., v and its descendants) and by L(u) the leaves of this subtree. Given a rooted tree
T and a set of leaves L C L(T), we denote lcar (L) the lowest common ancestor of leaves L in T.

Definition 1 Given a set L of labels and a tree T', the restriction of T to L, denoted T'|L, is obtained by taking
the smallest subtree of T which connects leaves with label in L and making it homeomorphically irreducible (by
suppressing non-root nodes of degree two and identifying the two edges to which they were connected).

Definition 2 A tree T is said to be homeomorphically included into a tree T, which is denoted ' C T', iff T' =
T'|L(T), i.e., if there exists a graph isomorphism 7' — T'|L(T) preserving leaf labels, and the root if 7,7" are
rooted. Given a collection 7 = {T1, ..., T} } of trees with a common leaf set L, an agreement subtree of 7 is any tree
T with leaves in L s.t. VT; € T,T C T;. The Maximum Agreement Subtree problem (MAST) consists in finding an
agreement subtree of 7" with the largest number of leaves. We denote M AST(T) such a tree.

In phylogenetic analysis, this definition is sometimes considered too stringent when input trees can have multifur-
cations (nodes with more than 2 children). Indeed, such a node can either represent a multi-speciation event, or an
uncertainty (irresolution) concerning the relative branching of the child subtrees of the node. The MAST problem is
best suited for the first interpretation, as the presence of a multifurcation in a input tree, will imped to resolve the node
according to other input trees. For the second interpretation, [20] introduced the MCT problem, a variant of MAST that
allows multifurcations to be resolved in the output tree:

Definition 3 A tree T refines a tree T", and we write 7' > T, if T' can be obtained by collapsing certain edges of
T (i.e., merging their extremities). More generally, a tree T refines a collection 7 = {T1,...,T}}, denoted T' &> T,
whenever T refines all T;’s in 7. Given a collection T = {T1, ..., Ty} of input trees with identical leaf set L, a tree
T with leaves in L is said to be compatible with 7 iff VT; € T,T > T;|L(T'). The McT problem consists in finding a
tree compatible with 7 having the largest number of leaves. We denote M CT(7") such a tree.

Note that #M CT(T) > #M AST(T) and that MCT is equivalent to MAST when input trees are binary.

Definition 4 Let T be a rooted tree, on any three leaves a, b,c € L(T), there are only three possible binary shapes
for T'|{a, b, c}, denoted a|bc, resp. b|ac, resp. c|ab, depending on their innermost grouping of two leaves (bc, resp. ac,
resp ab). These trees are called rooted triples (or resolved triples). Alternatively T'|{a, b, ¢} can be a fan (also called
unresolved tree), connecting the three leaves to a same internal node, which is denoted (a, b, ¢). We define ¢r(T'), resp.
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f(T), to be the set of rooted triples, resp. fans, induced by the leaves of a tree T'. We extend these definitions to define
rooted triples and fans of a collection of trees 7 = {T1, ..., Ty }: tr(T) := Nryertr(T3) and f(T) = Nre7F(T3).
Two trees T', T" are in hard conflict whenever Ja,b, ¢, € L(T) N L(T") s.t. albe € tr(T') and blac € tr(T"). T,T" are
in soft conflict whenever a|bc € tr(T') and (a,b,c) € f(T").

Ti T MAST(T) MCT(T)
STl(Uzwu A /<\
a c e
Lw):ia bc:d e a b ce
LTI a d b c e

Fig. 1. A collection T = {T1,T5}, one of the M AST(T) trees, and the MCT(T). T1, T are in hard conflict on a, ¢, d (since
dlac € tr(Th) while clad € tr(T»)) and in soft conflict on a, b, ¢ (since c|ab € tr(T1) while {a, b, c} € f(T2)).

Lemma 1l Let 7 be a collection of trees with identical leaf set L and T', T two trees.
(i) T is an agreement subtree of T iff t»(T") C tr(T) and f(T) C f(T).
(ii) T is compatible with 7 iff VI; € T ,¢r(T;) C tr(T) and L(T') C L.
(iii) T is homeomorphic to T" iff tr(T) = tr(T") and f(T) = f(T").
(iv) A tree T refines a tree T" iff tr(T") C ¢r(T) and L(T) = L(T").

Proof. (i) is [8, Lem. 6.6], (ii) is [9, Thm. 1], (iii) derives from (i), and (iv) results from (ii). O

3 An FPT algorithm for MAST and McCT

Considering the MAST problem, [8,13] remark that if the input trees are in hard or soft conflict on a set of leaves
{a, b, c}, then obviously at least one of the three leaves has to be excluded to obtain an agreement subtree (because of
Lem. 1 (i)). If trees in T are not in conflict w.r.t. any three leaves, then they are all isomorphic and any of them is a
maximum agreement subtree. Then, an algorithm for finding an agreement subtree of an initial collection 7~ consists
in identifying a conflict {a, b, ¢}, trying alternatively to remove one of a, b, ¢ and iterate on the restricted collections
until no conflict remains. Hence, to solve MAST, we need an algorithm to check that all trees in 7" are isomorphic or
alternatively identify a hard or soft conflict on three leaves. Such an algorithm can be produced by modification of a
tree isomorphism algorithm [19, 32]. We consider the case of two input trees (i.e. 7 = {T1,T2}), since applying the
resulting algorithm at most & — 1 times, solves the problem on k input trees. Define a node in a tree to be a cherry iff
all its children are leaves. We then have:

Lemma 2 ([19]) Let T1,T> be two isomorphic trees and v, a cherry in T4. Then, there exists a cherry v € T5 s.t.
L(’Ul) = L(’I)Q).

Sketch of the algorithm CHECK-1SOMORPHISM-OR-FIND-CONFLICT. Lem. 2 suggests a bottom-up process ex-
amining cherries v; € Ty. Letl € L(vy) and v the parent node of leaf I in T5. If v, is not a cherry then it has a child
v; that is not a leaf, and comparing L(v;) to L(v;) we can identify two leaves I',1" s.t. Ty, T are in conflict w.r.t.
1,I',1" (this requires an O(n) search of St, (v;)). If vy is a cherry but L(v,) # L(v2) then comparing L(v;) to L(vs)
we can again easily identify leaves I',1"” € L(v1) U L(vs) s.t. Ty, T are in (hard or soft) conflict w.r.t. I,1",1" (see
appendix 4.3 for details). If, however, v, is a cherry and L(v1) = L(v2), then we can eat the cherries in both trees, i.e.,
delete leaves hanging from vy and vs, turning them into leaves to which a same new label is given. Then the process is
repeated for another cherry of T, and iterated until both trees are reduced to a single identical leaf (in which case we
know that both input trees are isomorphic) or until a conflict is identified. Each edge being processed at most twice in
the process, and requiring each time O(1) operations, we have:

Theorem 1 Let T3, T» be two rooted trees with identical leaf sets, in time O(n) we can either conclude that the trees
are isomorphic or otherwise identify three leaves on which T, T» conflict.
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This improves by a logn factor on the complexity given in [13] for identifying a conflict or checking isomorphism,
and subsequently improves the complexity of the FPT algorithm to solve MAST (see Corol. 1).

Concerning the McT problem, Lem. 1 (ii) implies that any tree compatible with 7 will have to eliminate at least
one of {a,b,c} if input trees are in hard conflict on these three leaves (soft conflicts do not imped the existence of
a tree compatible with 7). If trees in 7 induce no hard conflict then there is a tree T refining 7 and thus T' :=
MCT(T) (because it includes all leaves of T). Thus, we are interested in an algorithm that either identifies a hard
conflict or returns a refinement of 7. As above, we consider case of two input trees. However, to use this algorithm
to find a refinement T (if one exists) of & input trees, we also need this refinement to be minimum, i.e., such that
vT' > {Ty,T>»},T' > T, to not artificially create hard conflicts.

It is no longer true also that a cherry v; € T corresponds to a cherry vy € T with the same leaf set. We can now
allow L(v1) C L(v2) or L(vy) C L(vy). Moreover, given a leaf [ € L(vy), its parent v, in T is not required anymore
to be a cherry®. However, we can prove the following:

Lemma 3 Let Ty, 7> be two trees admitting a common refinement and v, a cherry in Ty. Then L(v;) = |
with C' set of at least two children of vs := lcar, (L(v1)).

ueC L(u)

Sketch of algorithm FIND-REFINEMENT-OR-CONFLICT. Given two input trees T4, T» with same leaf set L, the
algorithm gradually erodes T3 and T%, repeatedly removing cherries in 77 and corresponding parts in 7> until the trees
are reduced to a single leaf or a hard conflict is found. The process is guided by cherries v; removed from 7. This
means that nodes labelled L(v; ) are deleted from T}, making v; a leaf in 7} that we identify with a new label /*. The
part of T removed according to v; is also replaced by a leaf labelled *.

The tree refining both T3 and T3 is built as a forest T of trees (initially containing a leaf-tree for each leaf in L) that
are gradually connected to exactly mimic clusters of leaves induced by the internal nodes of T, and T5. This guarantees
the minimality of the computed refinement (invariant 1). Trees in T are built according to subtrees of T, 75 that are
not in conflict (invariant 2). Trees are agglomerated in 7" just before subtrees of T and T are removed and replaced
by a new leaf [*. The root of the tree in forest 7" resulting from this agglomeration is accordingly labelled 7*.

When a new cherry v; € T is chosen, it is matched to node vy := Icar, (L(v1)). Then, either

— vy has the same leaf set as v; (and is then the part of T; to remove);

— a proper subset of vy’s children have their leaf sets spanning exactly L(v1) (these subtrees are thus the part of T
to remove);

— we identify a conflict involving two leaves I,!' € L(vy) and a leaf I € L(ve) — L(v;) (see appendix 4.4 for
details).

Note that in the second case above, v; induces a refinement of node v,, in the sense that it leads to agglomerate in T" a
proper subset of v’s subtrees, while v, may also refines vy in the same time if these subtrees are not all restricted to
single leaf (i.e., there is a subtree of v, agglomerating a proper subset of L(v;) in T).

After the successful processing of a cherry vy, leaves L(v;) have been removed from both Ty and T, which also
have a new common leaf [*. Hence, their leaf sets are conserved identical (invariant 3 below). If no conflict is met,
both trees end as identical leaf-trees. The pseudo-code FIND-REFINEMENT-OR-CONFLICT(T,T3) (see algorithm 1)
details this process that either identifies a hard conflict between T and T, either returns a tree minimally refining
them.

Lemma 4 The following invariants hold at the beginning and after each cherry vy € T} has been processed:

1. Let v be a node in a tree of forest T, then there is a node w in Ty or T s.t. L(v) = L(u).
2. Ty, T, are not in hard conflict w.r.t. three leaves of a same tree in the forest 7T'.
3. L(Ty) = L(Ty).

The algorithm is traversing T4, T> a constant number of times, spending a constant time at each of the O(n) nodes
and edges. Nodes v, are identified in O(n) globally by using the dynamic data structures proposed by [12], the list L
of cherries in Ty is maintained in O(n) globally, sets R of subtrees St (v;) corresponding to processed cherries of T
are identified and removed in O(n) globally.

! as shown by the example where, using parenthetical notation, 71 = (l1,12, (I3, 14)) and T» = (I3,14, (I1,12)), admitting
((l1,12), (I3, 14)) as common refinement.
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Algorithm 1: FIND-REFINEMENT-OR-CONFLICT(Ty,T5)
Input: Two rooted trees T, T> on the same leaf set L.
Result : Three leaves on which Ty and T are in hard conflict, or a tree 7" on L minimally refining 7y and T.
T < L [*T is aforest of trees (initially leaf-trees) */
Let C be the list of cherries in T}

whileC # () do
Choose v; inC
1 Let I* be a new label, v a new node in T labelled I* and let v2 = lcar, (L(v1))
2 R < ( /* R are the subtrees of v2 to agglomerate because of v1 */

P < L(v1) I* P are the leaves that lead to identify new subtrees of v to agglomerate */

3 while P # ( do
4 Choose ! in P
5 Let v; be the child of vz s.t. I € L(wv)
6 foreach leaf I € L(v;) do
if 1" € L(vy) then P« P — {I"}
ese
7 Let!' aleafin L(vi) — L(v;)
8 \; Replace [, resp. I’ and 1", by any leaf in St (1), resp. St(I') and St (I")
return conflicton 7,7',1”
9 Assemble trees in T to form a copy of St (v;) grafted as a new child of v.
L Addv;to R

10 Replace St (v1) in Ty by a new leaf labelled 7* and add its parent to C if it becomes a cherry
1 foreach subtree rooted at v; € R do Remove St, (v;) from T

12 if v2 has become a leaf then label vy by I* /* vy corresponds to vy */

else graft a new leaf labelled 1™ under v2 /* to replace its subtrees connected because of v; */

returnT" /* the forest T has been reduced to a single tree that is returned. */

Theorem 2 Let T3, T5 be two rooted trees with identical leaf sets, in time O(n) algorithm FIND-REFINEMENT-OR-
CONFLICT(T}, T>) either finds three leaves on which T4, T conflict, either returns a tree 7' minimally refining 73 and
Ts.

Using this algorithm at most ¥ — 1 times enables to solve the same problem for & input trees in O(kn). Thus, both
in the case of MAST and McCT we have an algorithm that can be used over and over in the FPT algorithm described
in [13] to solve MAST in time O(3?kn). The same FPT algorithm can be used for MAST (to the difference that
only hard conflicts generate branch points in the search tree). [13] also remark that this FPT algorithm implies an
indirect resolution of the 3-HITTING-SET (3HS) problem where the parameter p is preserved (for 3HS, p is the size
of the smallest hitting set). Using this problem as an explicit subproblem of MAST and McT provides an alternative
approach with running time O(H + kn?), where H is the time to solve 3Hs on an instance of size O(n?). As a whole,
we obtain the following result:

Corollary 1 Given acollection of k input trees of unbounded degree, MAST and McT can be solved in time O (min{3?kn, H+
kn?}), where H is the time to solve 3Hs on an instance of size O(n?).

The proof is given in appendix 4.6. Note that currently, H = 0(2.3117 4 n?) [23].

This improves on the result of [13] for MAST by a logn factor. Moreover, this shows that McT is FPT, more
precisely that the burden of the complexity can depend only on the level of disagreement of the input trees. When
considering a collection of trees disagreeing on few species, we obtain an efficient algorithm, whatever the number
and degree of the input trees. If input trees are unrooted, the same approach as above can be used by trying successively
all possible rooting of input trees at a leaf. This only adds an extra n factor to the complexity bound.

4 Extending problems to the supertree context

We now consider the case of supertree inference, where input trees are allowed to have different (but overlapping) sets
of leaves. We show how to extend MAST and MCT to this context.
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Definition 5 Given a collection 7 = {T4,..., Ty} of input trees, we denote by L(T) := Ur,e7L(T;) the set of all
input leaves. Leaves appearing in only one input tree are called specific, and we denote £(T;) the specific leaves of
tree T; and L(T) := Ug,e7L(T;) the set of specific leaves of the whole collection. If » is a node in a tree T3, let
L(ST,(u)) := L(ST,(u)) N L(T;) be the specific leaves of the subtree rooted at u. A specific subtree is a subtree
containing only specific leaves.

Though definitions would allow this, in the following we assume that any input tree shares at least two leaves with
other input trees, otherwise there is no purpose in taking such a tree into account to build a supertree.

Definition 6 Given a collection 7 = {T,..., T} of trees on overlapping sets of leaves, an agreement supertree of
T isatree T with L(T) C L(T) ands.t. VT; € T, T|L(T;) = T;|L(T'). The Maximum Agreement Supertree problem
consists in finding an agreement supertree with the largest number of leaves. Such a tree is denoted SM AST(T).
In a similar way, we define the Maximum Compatible Supertree problem (SMcCT) as finding a largest tree 7" with
L(T) C L(T) st.VT; € T,T|L(T;) & T;|L(T). Such a tree is denoted SM CT(T).

The two problems stated above are natural extensions of the problems defined in Sect. 2, as SMAST, resp. SMCT, is
equivalentto MAST, resp. McT, when the input trees have equal leaf set.

The following observation states that the supertrees defined above are likely to contain a non-trivial number of
leaves, and moreover, leaves from many, if not all, input trees. This suggests that these supertrees might be good seed
trees for the MRP method [3, 26] or its variant MRF [10].

Lemma5 Let 7 = {Ti,...,Ty} be a collection of rooted trees with overlapping sets of leaves, any tree T' :=
SMAST(T)orT := SMCT(T), issuchthat L(T) C L(T).

The same lemma can be proved for unrooted trees.

4.1 Solving SMAST and SMCT on 2 Trees in polynomial time

Given two trees T, T5 on overlapping sets of leaves, let L := L(T1) N L(T3).
Lemma 6 Let 7 = {T3,T>} be a collection of two rooted trees on overlapping sets of leaves,

(i) VT := MAST(Ty|Ln, To|Ln), 3T := SMAST(Ty, Ts) st. T|Ln = T" .
(i) VT' := MCT(T1|Ln, T2|Le), 3T := SMCT(T1,Ts) st. T|La =T" .

This result is easily extended to the case of unrooted trees.

Sketch of the algorithm. The algorithm proceeds as suggested by Lem. 6, i.e., grafting specific parts of the input
trees to a precomputed maximum agreement subtree 7., of 7|L~. The approach is similar to the O(n?) algorithm
of [17] for computing a strict consensus supertree, which attaches one by one specific leaves to a common backbone
tree (sensu [17]). Similarly, we can take advantage here of the fact that 7}, is a backbone tree common to 77 and T5.
Indeed, once restricted to leaves which are either specific or in T,,,, input trees have the same underlying topology as
Tm (T, € T;|Ln C T;), from which specific subtrees are hanging (see Fig. 2). However here, the algorithm proceeds
by successively attaching whole specific subtrees at a time to 7T7,,. Child subtrees of a node n; € T; are partitioned
into specific subtrees, whose roots are stored in a list called SpecificChild(rn;), and common subtrees (i.e., containing
leaves from T},,), whose roots are stored in a list called CommonChild(rn;). For each node n,, € Ty, there is a twin
node in T4, denoted Twin, (n,,, ), and a twin node in T5, denoted Twin,(n.,,), in the sense that these three nodes are the
least common ancestors (in their respective trees) of the same set of leaves from L(T,,).

The algorithm proceeds by a simultaneous postorder recursive traversal of T,,,, Ty, T, (coordinated by T;,, and the
Twin; and Twin, data structures), during which specific subtrees of T and T are grafted to a copy of the backbone
tree. The data structures Twin; and Twin are initialized for leaves of T;,, during a first traversal of the trees (line 15 in
pseudo-code COMPSMASTTREE ), and are completed before being used for other nodes during the joint traversal of
the three trees performed by the procedure GRAFTSPECIFIC: though the algorithm uses a top-down recursive approach,
the joint traversal is post-ordered, i.e., subtrees of a node will be processed before the node itself. The processing of
the children n. of a node n,,, € T}, determines the twins of n,, (line 25 in call issuing from line 20) before we need
to refer to them (lines 21,23).
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Algorithm 2: COMPSMASTTREE (T}, T»)
Input: Two rooted trees T1, T> on overlapping sets of leaves
Result :AtreeT := SMAST (T, T»)
Determine Ln, £(T1), £(T%), T{ := T1|Ln, T3 := T»|Ln
13 Ty + MAST(T1,T3), Ti' + T1|(L(T) U L(T1)), Ts' + To|(L(Tm) U L(T?))
/* Add a common root to handle specific subtrees branching above r(T’,) */
14 Ty (I, T), T1 < (I*,T7), Ty «+ (I*,T4'), where [* is a new leaf
15 Traverse T7', T4 in postorder to compute for each I € L(T.,) and n; € T;
Twiny (1), Twinz (1), CommonChild(n;) and SpecificChild(n;)
16 T’ < GRAFTSPECIFIC(1(T}))
17 return (T) where T iss.t. T = (I*,T)

Note that COMPSMASTTREE adds an artificial root and an artificial leaf [* to the trees T4, T», T, before the
initial call to GRAFTSPECIFIC (this operation is described on line 14 using the parenthetical notation to code trees).
This enables specific subtrees branching above the original root of 7', to be handled by GRAFTSPECIFIC. The artificial
node and root are removed at the end of the algorithm (line 17, also using parenthetical notation).

The algorithm computes 7),, in O(N), then perform a constant number of traversals of the trees, during which
each of the O(n) edges gives rise to a constant number of operations. Hence:

Theorem 3 Let 7 be a collection of two rooted trees with overlapping leaf sets drawn from a set of n labels. The
algorithm COMPSMASTTREE (T7,T5) returns a tree T := SMAST(T) in time O(N + n), where N is the time
needed to compute M AST (Ty,T») on two n-leaf rooted trees.

Currently, N = min{O(n'-5) , O(v/dnlog” 2)}, where d is the maximum degree of the input trees [21, 22].

Algorithm 3: GRAFTSPECIFIC(n,)
Input: A node n,, € T,
Result : the subtree corresponding to St(n.,) inatree T := SMAST (11, T>)
18 if ny, isaleaf i then T + {I}
else
/* Computing recursively subtrees sharing common leaves then grafting specific subtrees hanging from the twin nodes
of Nm in Tl, T */
19 T < anew node having as child subtrees:
20 1 - subtrees resulting from GRAFTSPECIFIC(n.), Vn. € Children(n,,)
21 2 - subtrees SpecificChild(Twin; (n,,)) and SpecificChild(Twinz (1, ))
if n = r(Th) then return (7')
[* Graft specific subtrees branching above n,, in 71 and T */
22 for i+ 1to2do
23 n; < Twin;(ny) ; ps <parent(n;)
while #CommonChild(p;) < 2 do
24 T <« anew node having as child subtrees 7" and SpecificChild(p;)
p; <parent(p;)
25 TWin; (nm) < pi
return T

Minor Modifications for Solving Related Problems. The case of unrooted input trees is handled in the same way,
as lemma 6 is still valid in that setting. An unrooted MAST is then necessary (line 13) and the rooting at an artificial
leaf is replaced by a rooting at a leaf in L(T7,,). This gives an O(N' + n) algorithm for computing SM AST for two
unrooted trees. Currently, N’ = O(n'-%) [21].

In a similar way, replacing the call to MAST (line 13) by a call to McT, allows COMPSMASTTREE to solve the
SMcCT problem in time O(N" + n), where N'' is the time required to solve McT on two O(n)-leaf trees. Currently,
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N"is O(min{2%n?,3Pn, H + n®}) [16, and this paper] for rooted trees. Considering unrooted trees adds an extra n
factor.

When aiming at producing an estimate of a phylogeny underlying the input trees, it is not satisfactory that the
supertree can contain some arbitrary edges. This happens whenever a same edge in T, corresponds to paths in T} and
T, from which specific subtrees are hanging in both trees. Instead of grafting subtrees of T, above those of T (loop 22),
we can transpose the lack of information of the input collection concerning the relative order of these subtrees by
connecting them (or their leaves?) to a single multifurcating node m in T'. This implies a minor modification of
algorithm 3 which does not change its running time. Note that the produced tree might not be a maximum agreement
supertree anymore, as some internal edges of the input trees can be collapsed to m in 7.

4.2 Intractability of SMAST and SMCT

The algorithm of the previous section cannot be extended to collections of & > 2 input trees. This stems from the fact
that L(7") now also hosts leaves belonging to several but not all input trees. There are cases where no M AST (T |Lq),
resp. MCT (T |Lq) tree can be completed to obtaina SM AST(T), resp. SMCT (T ), tree (see Fig. 3 of appendix 4.11
for an example). Indeed, there is an important gap in complexity between the case of 2 input trees, and an arbitrary
number of trees as we now show. If not specified, trees in this section are to be considered rooted. Formulating SMAST
as the following decision problem:

Maximum Agreement Supertree (SMAST)
instance: A collection 7 = {T1, ..., Ty} of trees on overlapping sets of leaves and an integer p > 0.
question: Is there an agreement supertree T" of 7 with at least #L(7) — p leaves?

we prove, by reduction to the general HITTING SET problem (Hs), that SMAST is NP-complete and W{2]-hard for
the parameter p, even for instances consisting only of rooted triples Note that MAST on rooted triples is solved in
time O(k) and is FPT for parameter p in the general case. As MAST is the special case of SMAST where input trees
have identical sets of leaves, the NP-hardness result for only three input trees obtained by [1] for MAST also holds for
SMAST. Similarly, SMcT in NP-hard for 6 trees from the result of [20].

Definition 7 ([2,9,28]) Let T be a collection of trees with leaves in .S, define [T, S] to be the undirected graph with
vertices S and with edge set {(u,v) | 3T; € T with z|uv € ¢r(T;)}.

Lemma 7 If [T, S] is connected then there exists no agreement supertree of 7 on L(T).

Proof. A direct consequence of theorem 2 of [9]. O

Definition 8 We recursively define the function rake associating a tree to an non-empty ordered sequence of trees with
non-intersecting leaf sets:

— rake(T') = T for any tree T' and
- rake(Ty,Ts,...,Ty) = (Ty,rake(Ts,...,Ty)) for any sequence of trees Ty,T5,. .., T of length & > 2 st
L(T;) N L(T;) = 0,Vi,j € [1,k],i # j.

The second item above uses the parenthetical notation for trees. Appendix 4.10 includes a figure illustrating this
definition.

Definition 9 (Gadget) Letm > 1and asetofdistinct labels z*, 22, ..., 2™, y', ¢2, ..., y™, we define G(at, 22, ..., 2™,y , 92, ...

to be the following collection of rooted triple trees:

{yh |yh+1mh+l, yh |.’L’h+11‘h+2 }he[l,m]

where we set ™! = gt a™+2 = 22 et y™mH = ¢l

2 though, when aiming at a seed tree for the A/ RP method, we guess it might be better to conserve the topology of the specific
subtrees.
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The following lemma shows that there is no agreement supertree of G on L(G), however removing any =7 element
leads to the existence of such a tree, thus to the existence of a maximum agreement supertree on leaves L(G) — {z’}.
Moreover, the restriction of this tree to leaves {z',z?,...,2™} — {z7} is indifferent.

Lemma8 LetG := G(z',22,...,2™, yl, 9%, ...,.y™).

1. there is no agreement supertree of G on L(G)
2. the following tree is an agreement supertree of G:

rake(y’, ',y 0P,y T T
where j € [1,m] and T* is any tree with leaves {z',2?,..., 2™} — {27}.

Theorem 4 The SMAST problem is NP-complete and W{[2]-hard for the parameter p, even for instances were trees
in 7 are rooted triples.

The proof (Appendix 4.10) relies on a reduction to Hs. As this is an L-reduction, considering SMAST-OPT and Hs-
OPT, the optimization versions of problems SMAST and Hs, and using the result of [4] for Hs-OPT we obtain:

Theorem 5 SMAST-OPT is not approximable within a constant factor unless P = NP.

The two above results of intractability and inapproximability also hold for SMCT, as the reduction uses binary trees,
case in which SMcT is equivalent to SMAST. These results hold as well for the unrooted versions of SMAST and
SMCT, to which the rooted versions can be easily reduced (see Appendix 4.10).
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Appendix

4.3 Finding three leaves implied in a hard or soft conflict in algorithm CHECK-1SOMORPHISM-OR-FIND-
CONFLICT

Letv; beacherry of Ty, 1 € L(v1), v the parent of [ in T». If vy is not a cherry or L(vy) # L(v2) then the trees are in
conflict. First consider the case where v, is not a cherry and let v; be non-leaf child of v,. There are three alternatives:

1. L(v;) N L(vy) = @: pick ' € L(vy),l' # land I" € L(v;) (thus " ¢ L(v1)), then ,1',1" is a conflict (soft or
hard depending on !’ € L(vs));

2. L(v;) C L(vy): choose I',1" € L(v;), thenl,1',1" is a soft conflict;

3. L(v;) N L(vy) # @ and L(v;) € L(vq): pick " € L(v;) N L(v;) and " € L(v;) — L(wv1), then 1,1',1" is a hard
conflict;

If vy is acherry but L(vq) # L(vs) then there are also three alternatives:

1. #L(v1) < #L(v9): Pickl' € L(v1),l" € L(vg) — L(vy) s.t. 1" #£ 1" # I then 1,1',1" is a conflict (soft or hard
dependingon !’ € L(vy));

2. #L(v1) > #L(v2): symmetrical of the preceding case;

3. #L(v1) = #L(v9): pick ' € L(v1) — L(vs) and " € L(vy) — L(v1), then 1,1',1" is a hard conflict.

Let n be the number of leaves in T; and T5. In each case above we identify a set of three leaves on which T, T
conflict by only comparing L(v;) to L(wvs), which requires O(n). Collecting L(v;) and L(v2) at first is also in O(n)
as it involves the search of a subtree of T4 and a subtree of T5.

4.4 Finding three leaves implied in a hard conflict in algorithm FIND-REFINEMENT-OR-CONFLICT

Given a cherry vy € Ty and vy := lcar, (L(v1)), there is a hard conflict iff there is a child subtree S, (v;) of v, that
contains both a leaf [ € L(v;) and a leaf I" ¢ L(v;) (Lem. 3). Indeed, there exists at least one leaf ' € L(v;) in a
subtree of v, different from St (v;) (by definition of v;) and 11"|l' € ¢r(T%) conflicts with [I'|l" € tr(T}). Note that
ifx € {I,I',1"} isnotalabel in L, (i.e. is an artificial label I* resulting from the removing of a previous cherry), then
we replace z by a leaf of L found in the tree of 7" with root labelled 7*.
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4.5 Proof of Theorem 2

Correction of the algorithm results from Lem. ?? and ??. The O(n) running time can be shown by a successive
examination of data structures and operations they support:

— Trees Ty and T are stored by usual pointers.

Each edge of 77 is processed once, when its higher node is the cherry v, processed by the algorithm. Its higher
node is either a cherry at start, either becomes a cherry because of the repeated process of replacing cherries of T,
by a new leaf each.

Edges of T are each examined a constant number of times: when considering a node v-, the edges of each subtree
ST, (v;) containing leaves in L(v; ) will be considered once when traversing it (line 6), plus once for some of them,
when v; has to be identified (line 5: edges of the path from leaf f to the first ascendant v; that is a child of v5).
In case of conflict, edges of a subtree can be traversed a final time to identify a leaf I’ (line 7) before stopping the
algorithm. That’s the reason why subtrees S, (v;) are not readily removed from T when processed (hence the
reason for list R).

Edges of other subtrees will be considered only in case of conflict (for finding I'), i.e. before stopping the algorithm.
When all leaves of L(v1) have been processed successfully, each edge of a subtree S, (v;) has been traversed
twice and will be traversed a last time (before being removed, line 11) to make a copy of the subtree in T" (line 9.

— The forest T' consists of a set of nodes arranged in a set of non-overlapping trees that are subtrees of the finally
output tree on n leaves. Thus, at any step the forest contains O(n) nodes.

Assembling some trees in T' (line 11) consists in identifying nodes with labels corresponding to leaves in a subtree
of St, (v2), and connecting them according to the topology of this subtree of T5. For this purpose, an additionnal
array can be easily maintained to find in O(1) each needed node of T'.

Creating a new node v with a given label (line 1) is done O(n) times and costs O(1) each time.

In case of conflict, at most three different trees of T', i.e., O(n) nodes, are traversed (line 8) for finding leaves of
L (i.e., leaves of trees in T').

— List R is a simple linked list of root nodes of child subtrees of v, to be removed from T> after all leaves of P have
been processed. Each element is added in O(1) and removed in O(1) when the list is emptied (line 11). Actuallyu
removing each subtree from the list of child subtrees of v, is performed in O(1) when coding its children as a
bidirectionnal linked list.

— The list P of leaves is managed as an array of 2n — 2 bits, one for each possible label (the » original leaves, plus
the at most 2n — 2 corresponding to internal nodes of the final tree %), Initially, all entries are zeroed, indicating
the absence of any leaf in P. When considering leaves L(wvy) of a cherry v; € Ti, only the bits corresponding
to these labels are set (line 2). Then successively taking leaves put in P (line 4) until none remains (loop line 3)
is done in listing all leaves that are child of v; from left to right, finding for each execution of the loop, the next
one that has its bit set to 1 in P. When a leaf is removed from P when traversing a subtree S(v;) of T5, then the
corresponding bit in P is set to 0. Thus, using P to know readily which leaves of L(wv;) must be used to identify
new subtrees of v, that are to be removed, costs a time corresponding to # L(v1), hence O(n) over the whole
execution.

— For lca queries, we use the dynamic structure of [12], which enables to obtain the Ica of any two nodes in O(1)
worst case time, and is updated in the same time when a leaf is deleted from the tree.

Globally, O(n) Ica queries issue from line 1: queries issue from set of leaf labels L(v;) taken from a cherry in
v; € Ty and concern nodes in vo € Ts. To identify vy := lear, (L(v1)), we need #L(v1) — 1 queries. But then
these leaves are removed from the trees and v, becomes a leaf, that will be implied in a cherry at a latter step (if
no conflict arise) and thus give rise to one Ica query in turn. Thus, each node of T'; will be used in at most one Ica
query, hence the algorithm performs O(n) Ica queries, each in O(1).

The data structure maintaining Icas relationships has also to be updated during the algorithm, but this requires
O(n) insertions and deletions of leaves, hence O(n) globally: the number of leaves inserted (line 12) is bounded
by the number cherries v; € T processed , hence is O(n). Removing a subtree from T (line 11) costs a number
of leaf deletions proportionnal to the number of its nodes (performing a postorder traversal). There O(n) nodes
initially in T and O(n) will be added (line 12), thus O(n) deletions are performed, each costing O(1). Hence,
deletions will cost O(n) time to update the Ica structure.
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4.6 Proof of Corollary 1

Proof. Given a collection T = {T1,..., T} and an integer p, the algorithm to solve MAST, resp. McT, follows the
description given in [13]: recursively explore the different possible sets L’ (initially L' = () of leaves to remove from
L in order for T|(L — L") to have an isomorphic subtree (MAST), resp. a refining subtree (McT). Given a set L',
algorithm 1 is applied to two input trees. If this gives a tree, the tree is reused in another run of algorithm 1 with
another input tree. This process is repeated until either all k£ input trees have been considered (incorporated), in which
case the last tree obtained is returned, either a set of leaves {a, b, c} responsible for a conflict between some input
trees is identified. In this case, branch in the search tree according to the three possibilities, i.e., adding a, b, or c to L',
and proceed recursively with 7|(L — L') and p’ = p — 1. The exploration of a branch stops at worst when p’ = 0.
This brute-force algorithm either outputs a tree T' on L — L' in agreement with 77, resp. compatible with 77, and s.t.
#(L—L") < p, either answers that no such tree exists. There will be at most 37 nodes in the search tree, each requiring
k executions of algorithm 1, which costs O(kn), and the removal of a given leaf from the & input trees, which is clearly
O(kn). Hence this algorithm requires O(3Pkn) time.

The other term in the complexity bound comes from the use of 3Hs as a subproblem. Indeed, in time O(kn?) it
is possible to know the triples and fans induced by all input trees, hence the set C of three-leaves sets on which the
conflicts arise. C can be seen as an instance of 3HsS. Each hard conflicts will give rise to a set in C, both in the case
of MAST and McT. Soft conflicts will add sets to C only in the case of MAST. Any hitting set of C is a set of leaves
whose removal eliminates all conflicts. Thus, McT and MAST can be solved in this way in time O(H + kn?), where
H is the complexity needed to compute a hitting set of C. O

4.7 Proof of Lemma5

Proof. We consider the case where T' := SM AST(T), the proof for T' := SMCT(T) is similar. Suppose 3l €
L(T)—-L(T)and let T; € T s.t. 1 € L(T;). Case (i): if L(T) N L(T;) < 2 then consider the tree T obtained in
grafting a leaf with label [ as a new child of »(T").

Otherwise (L(T) N L(T;) > 2), let T} := T|L(T;) and T}' := T;|(L(T) U {l}). Since T'|L(T;) C T;, T}’ differs
from T only in the fact that is has [ as an extra leaf connected by an external edge to the rest of the tree. There are two
cases depending on where this external edge (leading to leaf /) could be grafted in 77/ to obtain T}': (ii) by grafting it at
anode v € T7; (iii) by grafting it in the middle of an edge (u,v), and in this case, let v denote the lower extremity of
the edge. In both case (ii) and (iii), if we define L' := L(v), the node v is s.t. v = lcar (L"), with L' € L(T') N L(T3)
(note that L' can be a single leaf). Let v' = lcar(L').

We now consider the tree 7" obtained by grafting [ via a new external edge in T': if case (ii) applies, the new edge
is grafted at o’ (which then has a new leaf-subtree), else in case (iii) it is grafted on the edge above v’ (which is then
split into two edges).

In the three cases above, the tree T" is s.t. L(T') = L(T) U {l} C L(T) and VI; € T,T; # T; we have
T'|\L(T;) = T|L(T;) C T; (by definition of 7' and 1) and we have T"|L(T;) C T; (in cases (ii) and (iii) we have
T'\L(T;) = T’ C T;), thus T" is a maximum agreement subtree of 7 of size greater than T, a contradiction with the
definition of 7.

m|
The same lemma is valid for unrooted trees. Proceed by first rooting both T; and T' on the edge leading to a leaf in
L(T) n L(T).

4.8 Proof of Lemma 6

Proof. (i) Add all leaves I € £(7) to T" as in proof of Lem. 5 to obtain a tree T' that is an agreement supertree of
T. We claim that 7" is a maximum agreement supertree of 7 otherwise there is an agreement supertree 7" of T s.t.
#T" > #T. Since L(T) C L(T") (Lem.5) and £L(T) C L(T) by construction, this implies that

#(T"|Ln) > #(T|Ln) )

(as L(T) is partitioned into L and £(7)). By definition of 7", we have T"|L(Ty) C Ti, thus T"|L~ C T1|Ln and,
similarly, T"|Ln C T»|Ln. Then T"| Ln is an agreement subtree of {T%|Ln, T2|Ln}, as is T' by definition. But then
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(1) implies that T"'| L, is of larger size than T" = T'| L, a contradiction with the definition of 7. (ii) is proved in the
same way. O

49 Proof of Theorem 3

Proof. The correctness of the algorithm results from Lem. 6 and the fact that 7" is built from T.,,, := M AST (T |Lqn) in
away ensuring that T'|L(T},) = T, T|L(T1) € Ty and T'|L(T>) C T5. Specific subtrees of Ty (resp. T») are always
added to their respective place in the input trees: line 21, n,, has a twin node in 77 and T5, thus the specific subtrees
hanging from these twin nodes are added to the corresponding node in T'; line 24, if specific nodes branch above the
twin node of n,,, in Ty (¢ = 1), thenin T3 (i = 2), they are grafted above the corresponding node in 7', and in the same
order. Note that subtrees of T} are arbitrarily grafted before those of T (no constraint is given in the input trees for
the respective order of these specific subtrees).

Concerning the complexity bound, the algorithm relies on a backbone tree T',,, computed in O(N), the time
required for solving the MAST problem on two rooted trees having O(n) leaves (in the worst case all leaves of T, T
are common). All other operations performed by COMPSMASTTREE and GRAFTSPECIFIC cost O(n), because they
rely on a constant number of traversals of the trees, during which each of the O(n) edges gives rise to a constant
number of operations. The following shows in detail that the running time is O(N + n):

— T, is computed in O(NN), the complexity of MAST on two O(n)-leaf trees.

— COMPSMASTTREE : determining the sets of leaves and performing the required tree restrictions is clearly linear
in n, the total number of labels. Handling the artificial root and leaf (lines 14,17) requires O(1) pointer operations.
Initializing Twin; and Twin, for leaves (traversal on line 15) is O(1) for each leaf encountered. The subtrees of
a node n; € T; are easily split into the lists CommonChild(n;) and SpecificChild(rn;) in O(1) depending on
the fact that they contain or not a leaf from L(T,,). This is handled easily by examining a flag returned by the
recursive call issued for each subtree during the postorder traversal.

— GRAFTSPECIFIC: this procedure performs a recursive joint traversal of T, and (a restriction of) 73,75, during
which each of the O(n) edges of the three trees is examined once and supports O(1) operations: (i) edges of
T, just guide the traversal; (ii) edges of T4, T corresponding to a path between two twin nodes (of some node
n.,, € Ty, and its parent), are examined only once: in the whi | e loop of the recursive call corresponding to n,,
(the f or loop handles successively the case of T and T3); edges leading to a specific subtree, or in a specific
subtree, are examined during the only traversal of a subtree of this kind that copies its topology in the constructed
tree T' (lines 21, 24). Concerning T the built tree, its O(n) nodes and edges are created directly from those of T,
and by adding copies of specific subtrees (whose total size is O(n)) of the input trees.

4.10 Proofs of intractability results

Proof of Lemma 8:

Proof. The graph [G, L(G)] associated with G is connected (cf Fig. 5). Hence applying Lem. 7 shows assertion 1.
To prove assertion 2 assume w.l.o.g. that j = 1 (G is not altered by a common circular permutation of the two
sequences zt, z?,...,z™ and y!,y? ..., y™). Fixing an arbitrary tree 7* on {z?, 3, ..., 2™}, we have to show that
the tree T := rake(y!,y?,...,y™,T*) on leaves L(G) — {x'} is an agreement supertree of G. For this purpose, we
distinguish trees in G that do not contain z! from those who does:

- Vh € [1,m — 1], let T}, := y"|y"*tlzh+! € G, by definition of T it is easily seen that T'|L(T},) C Ty (in fact
T|L(Ty) = Ty). The same results holds VA € [1,m — 2] for trees T}, := y”|zh+1zh+2 € G.

- ol = g™ lisaleafintree T}, := y™|y™ 2™t € Gandintrees T}, := y" |z 1zh*2 € Gforh € {m—1,m}.
Hence, restricting these trees to L(G) — {=!'} reduces them to only two leaves, belonging to 7', hence T'|L(T}) C
Ty, and T|L(T}) C T},
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We have shown that VT, € G, T|L(Ty) E Tp. Remarking that L(T') C L(G), this shows assertion 2. |

Proof of Theorem 4:

Proof. Given an instance (7, p) of SMAST and a tree T', checking whether T is an agreement supertree of 7 of size
at least #L(7) — p is done in polynomial time (by taking appropriate restrictions of trees, then resorting on a tree
homeomorphism algorithm [19, 32] this takes polynomial time O(nk)). This shows that MAST is in NP.

We now reduce SMAST polynomially and preserving the parameter p to the hitting set (Hs) problem:

Hitting Set (HS)
instance: A finite collection C of finite non-empty sets and an integer p > 0.
question: Does the collection C admit a hitting set of cardinal at most p?

Hs is an alternate formulation of SET CovER and is NP and W{[2]-hard for parameter p [15, Prop. 10].Let (C, p) be
an instance of Hs,

C = {Xl,XQ,...,Xc}
= {{z1,23,...,27"} {3, 23,..., 252}, ... {=l, 22, 2} ).

where ¢ := #C and m; := #X;. Then, let (yf) be an injective family of labels not appearing in X; U X, U ... U X,
indexed on the set of couples (7, j) with i € [1,¢],j € [1,m;]. We build an additional collection of non-intersecting
sets

{{yiayfa "7y1n1} ’ {yéayga "7y;n2} Ittt {ygayg7 7yznc}}
which is similar to C and whose elements are distinct from those of C. Let G; := G (=i, 22,..., 27"yl y2,...,y")
forall i € [1,c] and consider the collection of trees 7 := Gy UGa U ... U G.

From the definition of gadgets (Def. 9), the transformation of instance (C, p) of Hs to instance (7, p) of SMAST
can be seen to take a polynomial time (7 is of cardinal 2(m; + m2 + - - - + m.)) and is parameter preserving for p.
By construction, all trees in 7 are on three leaves only. It remains to be proved that the following two assertions are
equivalent:

(1) C admits a hitting set of size at most p
(2) there exists an agreement supertree of 7" whose size is at least #L(7") — p.

(2) = (1). LetT := SMAST(T) of size at least #L(7) — p. Thus H := L(7) — L(T) is a set of size at most p.
Moreover, forany i € [1, c], we know that L(G;) € L(T') because of assertion 1 of Lem. 8. Thus, at least one element
of L(G;) is not a leaf in T', hence is in H. This shows that H is an hitting set of {L(G1), L(G2), ..., L(G.)}. Now
change H in the following way: replace each y € H (which only hits the set L(G;)) with any element in X;. H is
then an hitting set of C of size at most p.

(1) = (2). Foranyi € [1,¢],j € [1,m;] we denote a{ the sequence corresponding to the (j — 1)th cyclic shift of
sequence ¥}, yZ, ...,y

of =yl oyl
Let H be a hitting set of C of size at most p. For each ¢ € [1, ¢], H contains at least an element of X;, written xﬁ with
Ji € [1,m;]. Concatenate sequences to define

T :=rake(o]',0%,...,00,T").

where T is any tree on leaves (X; U X, U ... U X,) — H. By construction, T is a tree on L(7) — H and thus of
size at least #L(7") — p. Moreover, for each i € [1, ¢], T' (consisting of leaves of the kind 7 hanging one by one from
internal nodes on the path from the root of T to the root of subtree 7*) is s.t. T'|L(G;) = rake(ag" ,T* | X;), which is
an agreement supertree of G; by assertion 2 of Lem. 8 (remark that m{ € Hisnotaleaf in T, hence notin T* | X;).
Thus, T is an agreement supertree of 7 of size at least #L(7") — p. O
This results hold as well for the unrooted versions of SMAST (and SMCT), as the rooted versions can be easily reduced
to the unrooted ones: let T, be a binary subtree made of #L(7) new leaves, a collection 7' of unrooted trees is
obtained from the rooted trees of 7, unrooting each by grafting T, to its root. This forces T, C T forany T :=
SMAST(T'), resp. T := SMCT(T'). Then rooting T at the internal node to which T, is connected in T' ensures
that T'|L(T) is a (rooted) maximum agreement supertree, resp. a (rooted) maximum compatible supertree, of 7.
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4.11 Figures

a xtbcde a dbycey a x ypyc e yo ax byic e Y

Fig.2. Acollection 7 = {T1, T>} of input trees (Ln = {a, b, ¢, d, e}), the trees T := M AST(T|Ln) and T := MCT(T|Ln)
(in bold lines) and the supertrees SM AST (T) and SMCTy(T).

a b de f d e f b ¢c a a c b

c

The3 MAST(T|Ln) = MCT(T|Ln) SMAST(T) = SMCT(T)
a b b c a c d R y

Fig. 3. A collection 7 = {T1,T»,Ts} of input trees for which the MAST and McT problems cannot be used as a way to obtain
SMAST(T)and SMCT(T). Here, Ln = {a, b, c}.
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Fig.4. The tree rake(11, T, ..., Tk) for a sequence 11,75, . .., T} of trees.

Fig.5. The graph [G, L(G)] induced by the gadget G.
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