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ABSTRACT

In this paper we propose an architecture for the im-
plementation of fault-tolerant computation within a
high throughput multirate equalizer for an asymmet-
rical wireless LAN. The area overhead is minimized
by exploiting the algebraic structure of the Modulus
Replication Residue Number System (MRRNS). We
demonstrate that for our system the area cost to cor-
rect a fault in a single computational channel is 82.7%.
Generalized results for single error correction showing
significant area savings are also presented.

1. INTRODUCTION

Distortion within the transmission channel in a wireless
system, such as multipath interference and frequency
selective fading, is typically corrected using an adap-
tive equalizer which includes a programmable Finite
Impulse Response (FIR) filter. As the target data rate
for the system increases, the FIR filter becomes more
and more difficult to implement. The filter must have a
high clock frequency to match the symbol rate and the
number of filter taps must be significantly increased in
order to suppress the added multipath interference in
a high bandwidth system. The filter should also make
use of fault-tolerant computations in order to provide
a high level of reliability. These are requirements for
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Fig. 1. Post-equalization operation.

a next generation wireless LAN [1], patented and de-
veloped at TRLabs Calgary, which is capable of data
rates greater than 1Gb/s. This system requires a 128th

order complex adaptive filter with 8-bit complex inputs
and a 400MHz clock frequency.

This wireless LAN is an asymmetric system where
the major portion of the signal processing occurs within
the base station, allowing the remote terminals to be
simple RF transceivers. The post-equalization opera-
tion for the uplink from a terminal to the base station
is shown in Figure 1. The transmitted symbols travel
through a variable expander, ↑2R, the wireless channel,
C(z), which includes the RF transceiver, the adaptive
filter, E(z), and the variable decimator, ↓2R. A dig-
ital signal processor (DSP) is used to compute E(z)
for both the in-phase (I) and quadrature (Q) channels,
such that E(z) approximates the inverse of C(z).

Finite ring processors have been proposed, used,
and extensively researched for several decades, with
most of the work originating from the Residue Num-
ber System (RNS) [2]. Using two versions of the RNS,
the MRRNS in conjunction with the Quadratic RNS
(QRNS), it is possible to construct a complex FIR filter
using identical, replicated channels [3, 4]. The MRRNS
architecture also allows fault tolerance to be efficiently
implemented through the addition of redundant com-
putational channels [5].

The underlying number system for the FIR filter



is reviewed in Section 2, and the fault-tolerant tech-
nique used with the MRRNS is reviewed in Section 3.
Section 4 describes the initial architecture for the fil-
ter, and introduces the modifications required to im-
plement fault-tolerant computation. Generalized re-
sults for adding single fault correction capability are
presented in Section 5.

2. NUMBER SYSTEM

Four mapping operations are required to map real and
imaginary data into the number system used in the
FIR filter. These operations are presented below in the
order that they are performed. A complete background
on the concepts involved can be found in [2, 3, 4, 6, 7, 8].

2.1. Polynomial Map

The first mapping operation for the MRRNS represents
numbers as polynomials of indeterminates which are
powers of two. The nth order polynomial representa-
tion of a complex number in terms of a single known
indeterminate, x, can be expressed as follows:

a + jb =

n
∑

k=0

(ak + jbk)xk (1)

2.2. RNS Map

The polynomial coefficients ak and bk are mapped into
finite rings, R(mi) = {S : ⊕,⊗}, using the set of rela-
tively prime moduli, M = {m0, m1, . . . , mL−1}, where
S = {0, 1, . . . , mi − 1}, and the symbols ⊕ and ⊗ rep-
resent addition and multiplication modulo mi, respec-
tively. Thus, a coefficient can be written as an L-tuple
of residue digits, ak = (ak,0, ak,1, . . . , ak,L−1), where
ak,i is ak modulo mi. The result of a computation,
modulo the product of the elements of M, can be recov-
ered using the Chinese Remainder Theorem (CRT) [6].

2.3. QRNS Map

For prime moduli of the form 4K + 1, where K is an
integer, there exists a solution, x = ji, and its addi-
tive inverse, −ji, to the monic quadratic x2 + 1 = 0
in the modular quadratic ring, QR(mi) = {S : ⊕,⊗},
such that ji is an element of R(mi). Both ji and its
multiplicative inverse will belong to QR(mi) [9]. Al-
though an extension field cannot be built based on
a solution of the monic quadratic, an extension ring
can be generated. The extension element can be writ-
ten as AQi = (A◦

i , A
∗

i ), with A◦

i = ri ⊕ ji ⊗ ii (nor-
mal) and A∗

i = ri ⊕ (−ji) ⊗ ii (conjugate). The real
and imaginary components are ri and ii, respectively,

where ri, ii, A
◦

i , A
∗

i ∈ R(mi). Addition and multiplica-
tion over the quadratic ring are computed as:
Addition:

AQi ⊕ BQi = (A◦

i ⊕ B◦

i , A∗

i ⊕ B∗

i ) (2)

Multiplication:

AQi ⊗ BQi = (A◦

i ⊗ B◦

i , A∗

i ⊗ B∗

i ) (3)

The real and imaginary results, Ri and Ii, of a compu-
tation can be recovered from the normal and conjugate
components of the result, C◦

i and C∗

i , as:

[

Ri

Ii

]

=
1 − mi

2

[

1 1
−ji ji

] [

C◦

i

C∗

i

]

(4)

where (4) is computed over R(mi).
In this system, the moduli in the set M for the

RNS map are chosen such that each complex coeffi-
cient ck,i = ak,i + jbk,i can mapped into normal and
conjugate components, c◦k,i and c∗k,i. This allows com-
plex multiplication to be performed without interaction
between the two components, requiring only two inte-
ger multiplication operations, compared to four integer
multiplication and two integer addition operations that
would be required to perform the same computation
directly with the real and imaginary data [7]. Further-
more, the normal and conjugate components may now
be handled in independent, identical channels.

2.4. Polynomial Evaluation Map

The nth order polynomial for a QRNS channel can be
represented by evaluating the polynomial at a set of
points, X = {x0, x1, . . . , xp−1}, where p ≥ n + 1. This
can be implemented as a matrix multiplication against
the Vandermonde matrix of all the possible roots of the
ideal [10]. The condition that p ≥ n+1 ensures that no
actual reduction occurs during the interpolation phase
(multiplication against the inverse Vandermonde ma-
trix). Note that the multiplication of two polynomials
results in an output polynomial that is of higher degree
than the input polynomials. As such, the minimum
number of points needed to represent an nth order in-
put polynomial, p = n + 1, may not be sufficient to
represent the output polynomial of a system. Thus, p

must be chosen based on the order of the output poly-
nomial [11].

The MRRNS representation of the normal channel
polynomial can be written as the following p-tuple:

n
∑

k=0

c◦k,ix
k =

n
∑

k=0

(c◦k,ix
k
0
, c◦k,ix

k
1
, . . . , c◦k,ix

k
p−1

) (5)



This allows computations for each polynomial coeffi-
cient to be performed independently using the same
set of moduli. The dependence of the system’s dy-
namic range on the chosen moduli set is thus reduced,
as the restrictions on the dynamic range in an RNS
system now apply to individual coefficients rather than
the entire system [4].

3. FAULT TOLERANCE

Fault tolerance within a MRRNS architecture is imple-
mented through the addition of redundant channels.
Since this is accomplished by increasing the number of
points in the set X , the redundant channels are iden-
tical to those in the original system. This is an ad-
vantage over the Redundant RNS (RRNS) [12], where
the redundant channels must compute over additional
moduli.

Consider an output polynomial of degree d, which
can be uniquely represented by d + 1 points. If the
computation is performed over d + 2 channels, it is
possible to detect a fault in single channel. The in-
terpolation of the polynomial using d+2 points results
in a polynomial of degree d+1. However, the expected
result is of degree d, which implies that the highest or-
der coefficient must be zero if no errors occurred in the
computation. It is proved in [5] that a fault in a single
channel will always result in a non-zero value for the
highest order coefficient.

If a second channel is added, the ability to detect
a single error in d + 2 channels can be used to correct
an error occurring in one of the d + 3 channels. The
polynomial interpolation can be performed using the
d + 3 unique subsets of d + 2 channels. If an error is
present in only one channel, then one of the subsets
will contain only those channels which were error free.
Since it is possible to detect a single error using d +
2 channels, the interpolation which yields the correct
result can be identified. This is generalized in [5], where
it is shown that a system with d + 2e + 1 channels can
detect and correct up to e errors.

As with many other algorithmic implementations
of fault tolerance [13], this technique does not provide
coverage for all hardware in the system. Faults oc-
curring in the mapping stages prior to the polynomial
evaluation map and in the corresponding reverse map-
ping stages are not detected in this implementation. It
also does not guarantee that errors in the interpolation
maps will be detected, as the highest order coefficient
may not be affected. However, these components re-
quire relatively little area in comparison to the com-
putational channels for a large inner product, and a
general technique such as Triple Modular Redundancy

Fig. 2. Fermat ALU.

(TMR) [14] could be used to provide fault tolerance for
these sections without incurring a large area overhead
in the context of the entire system.

4. ARCHITECTURE

Since the implementation of fault tolerance only af-
fects the polynomial evaluation map, computational
channels, and polynomial interpolation map, only these
components of the FIR filter are discussed. All three
of these components are constructed using a simplified
Multiply-Accumulate (MAC) cell, which performs the
function A⊗B ⊕C. Previous research has shown that
an efficient MAC structure can be constructed using
moduli which are Fermat primes, of the form 22

t

+ 1,
where t is an integer [3, 15]. This is known as the half
index domain MAC, or the Fermat ALU, and exploits
the properties of the Fermat primes with index calculus
for the multiplier and diminished-1’s [16] for the non-
index modulo accumulator. Figure 2 shows a modulo
257 MAC cell, where the inputs α and β are A and B

mapped into the index domain.
Based on input and dynamic range requirements

for the FIR filter in the gigabit wireless LAN, we have
chosen the order of the input polynomial to be n = 1
and the moduli set to be M = {17, 257}. We base our
analysis on a modulo 257 QRNS channel as it contains
the timing critical paths in the system, and will there-
fore give more pessimistic results than the equivalent
modulo 17 hardware. Figure 3 shows the structure of
a modulo 257 QRNS channel before (a) and after (b)
the addition of fault-tolerant capability. The input and
output of the system shown is either the normal or con-
jugate component of the QRNS polynomial coefficients.



(a) Original QRNS channel

(b) QRNS channel with error correction

Fig. 3. Modulo 257 QRNS channel.

The modulo 257 MAC cell will be used as the basis
for our area comparison. Note that the inputs to each
chain of MAC cells must be mapped for index calculus
multiplication. The area required to perform this oper-
ation can be approximated as 1.3 MAC cells per MAC
chain. It is also necessary to implement programmable
filter coefficients in the computational channels, which
incurs an area overhead of approximately 30% over a
simple MAC chain.

The result of an inner product computation taking
first degree polynomials as inputs will be a second de-
gree polynomial, which requires three computational
channels to represent. The polynomial evaluation can
be computed by multiplication against a 3× 3 Vander-
monde matrix. However, since the x2 coefficient of the
input polynomials is known to be zero, one row of the
Vandermonde matrix may be discarded. Thus, this op-
eration requires a 2 × 3 array of MAC cells. Similarly,
the polynomial interpolation map is a 3 × 3 array of
MAC cells. The total area for one modulo 257 QRNS
channel in the 128th order FIR filter can thus be ap-
proximated as 524.6 MAC cells.

In order to detect and correct a single fault, two re-
dundant computational channels are added to the sys-
tem. The evaluation map is now a 5× 5 Vandermonde
matrix, which is reduced to a 2× 5 array of MAC cells
using the same optimization as in the above case. The
interpolation map requires five 4 × 4 inverse Vander-
monde matrices, which correspond to the 4 × 4 Van-
dermonde matrices which may be generated from each
subset of four points. Each of these 4×4 arrays of MAC
cells operates on a unique subset of four computational
channels. An additional component is required to se-
lect the correct result by checking the x3 coefficients of
each interpolated polynomial. Since it is expected that
either all x3 coefficients are zero (no faults), or only
one x3 coefficient is zero (single fault), all other cases

result in the error checker indicating that a fault has
occurred which cannot be corrected. For this system,
the area of this component is approximately equal to
1.5 MAC cells. The total area is thus 958.6 MAC cells,
which is an increase of 82.7% from the original system.

5. GENERALIZATION

We generalize the results for single error correction for
an hth order FIR filter which maps its inputs to nth

order polynomials. A QRNS channel in this system
requires 2n+1 computational channels, which results in
a (n+1)×(2n+1) array of MAC cells for the polynomial
evaluation map, and a (2n+1)× (2n+1) array for the
interpolation map. The area of the original system can
thus be approximated as follows:

AO = 6n2 + 13.5n + 5.9 + 2.6hn + 1.3h (6)

To correct up to one error, 2n + 3 computational
channels are required. The polynomial evaluation map
is expanded to be a (n + 1) × (2n + 3) array of MAC
cells, and the interpolation map will use (2n+3) arrays
consisting of (2n + 2) × (2n + 2) MAC cells. Synthesis
of the interpolation stage for values of n in the interval
[1, 4] show that the additional area required to deter-
mine and select the correct result can be approximated
as 0.4n3 − 2.5n2 + 6.6n− 3 MAC cells. Note that this
approximation is based on the 400MHz clock frequency
for our system, and that a lower clock frequency may
allow the logic to be optimized for area, while a higher
clock frequency may incur addition area costs in or-
der to meet timing constraints. This becomes more
of an issue for larger values of n, where the logic is
more complex. However, the effect of inaccuracy in
this term is minimal, as the total area for the system
is dominated by the computational channels and poly-
nomial maps. Thus, the percentage increase in area to
implement fault tolerance is approximated as follows:

AI = 100×
8.4n3 + 26.7n2 + 47n + 19.1 + 2.6h

AO

% (7)

Equation (7) is graphed for several values of n in
Figure 4. It can be seen that when h � n, this ap-
proach to implementing fault tolerance offers signifi-
cant area savings when compared to a general tech-
nique such as TMR, which has an area overhead of
200% [12].

6. CONCLUSION

This paper has presented a detailed analysis of the cost
of implementing single fault correction capability in a



Fig. 4. Area cost of single error correction.

FIR filter using the MRRNS. The fault-tolerant archi-
tecture makes use of the algebraic properties of the
MRRNS, and has been shown to provide significant
area savings when compared with general techniques.
This architecture also requires few additional compo-
nents to be designed, as identical redundant channels
are used, and the polynomial mapping stages are sim-
ply expanded from the original components.

A case study has been presented for a 128th order
FIR filter which maps its inputs to first order polynomi-
als, and it has been shown that the area cost associated
with correcting a single fault in this system is 82.7%.
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