M. Béal, A. Bergeron, and M. Raffinot, Gene Teams and Hopcroft's Partionning Framework, 2003.

A. Bergeron, S. Corteel, and M. Raffinot, The Algorithmic of Gene Teams, Workshop on Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes in Computer Science, pp.464-476, 2002.
DOI : 10.1007/3-540-45784-4_36

H. Bodlaender, A tourist guide through treewidth, Acta Cybernetica, vol.11, issue.12, 1993.

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, vol.13, issue.3, pp.335-379, 1976.
DOI : 10.1016/S0022-0000(76)80045-1

A. Cardon and M. Crochemore, Partitioning a graph in O(??A??log2??V??), Theoretical Computer Science, vol.19, issue.1, pp.85-98, 1982.
DOI : 10.1016/0304-3975(82)90016-0

URL : https://hal.archives-ouvertes.fr/hal-00619512

D. G. Corneil, S. Olariu, and L. Stewart, The ultimate interval graph recognition algorithm?, Proceedings of the ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.175-180, 1998.

G. A. Dirac, On rigid circuit graphs, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.13, issue.1-2, p.25, 1961.
DOI : 10.1007/BF02992776

A. Gai, M. Habib, C. Paul, and M. Raffinot, Identifying Common Connected Components of Graphs, 2003.
URL : https://hal.archives-ouvertes.fr/lirmm-00269551

P. Galinier, M. Habib, and C. Paul, Chordal graphs and their clique graphs, Theoretic Concepts in Computer Science, WG'95 21st Internationnal Workshop WG'95, pp.358-371, 1995.
DOI : 10.1007/3-540-60618-1_88

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Habib, R. Mcconnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Science, vol.234, issue.1-2, pp.59-84, 2000.
DOI : 10.1016/S0304-3975(97)00241-7

J. Holm, K. De-lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, Journal of the ACM, vol.48, issue.4, pp.723-760, 2001.
DOI : 10.1145/502090.502095

J. E. Hopcroft, AN n log n ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON, The Theory of Machines and Computations, pp.189-196, 1971.
DOI : 10.1016/B978-0-12-417750-5.50022-1

C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math, vol.51, pp.45-64, 1962.