
HAL Id: lirmm-00108790
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108790v1

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Configuration of Red Parameters
Tigist Alemu, Alain Jean-Marie

To cite this version:
Tigist Alemu, Alain Jean-Marie. Dynamic Configuration of Red Parameters. GLOBECOM’04, Nov
2004, Dallas, United States. �lirmm-00108790�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108790v1
https://hal.archives-ouvertes.fr

Dynamic Configuration of RED Parameters
Tigist Alemu

LIRMM - University of Montpellier II
161, Rue Ada

34392 Montpellier Cedex 5, France
Email: tigist@lirmm.fr

Alain Jean-Marie
LIRMM - University of Montpellier II

161, Rue Ada
34392 Montpellier Cedex 5, France

Email: ajm@lirmm.fr

Abstract— Our work focuses on an adaptive approach of
RED namely ARED (Adaptive RED) that performs a constant
tuning of RED parameters according to the traffic load. ARED
requires no hypothesis on the type of traffic, which diminishes its
dependency on the scenario parameters such as the bandwidth,
the round-trip time and the number of active connections. Our
goal is to find a simple extension to ARED in order to improve
the predictability of performance measures like queueing delay
and delay jitter without sacrificing the loss rate. To achieve this
goal, we propose a new algorithm that sets the RED parameters
and evaluate it by extensive simulations. Our results show that
compared to the original ARED, our algorithm can stabilize the
queue size, keep it away from buffer overflow and underflow,
and achieves a more predictable average queue size without
substantially increasing the loss rate.

Keywords : Adaptive RED, Simulations, Quality of Service.

I. INTRODUCTION

In order to prevent the Internet congestion collapse, the
Internet Engineering Task Force (IETF) has recommended the
use of RED [1], [2], an active queue management scheme
which is able to achieve high throughput and low average
delay (for TCP traffic) by spreading randomly packets drops
between flows.

The most important drawback of RED is the difficulty of the
tuning of its parameters Maxp, Minth and Maxth. This is
the topic of the present paper. Works investigating this issue
are numerous : [3]–[7] showed that RED performances are
sensitive to the level of congestion and to the settings of its
parameters. This lead Feng et al. in [8] to the conclusion
that there is no single set of RED parameters that works
under different traffic scenarios and to the claim that the
correct tuning of RED implies a “global” parameterization.
Consequently, efforts have been made in order to reduce the
sensitivity of RED towards its parameters.

The first approach is to build quantitative models as in [7],
[9], [10] allowing the prediction of RED parameters based
on network variables like the round trip time, the number of
flows and link bandwidth. This approach provides a better
understanding of the dependency of RED on traffic conditions.
However, it is still difficult to retrieve or infer accurate
informations about network variables from local observations.
In practice, network load characteristics are not known from
RED nodes and practical implementation of schemes like the
PI controller [10], [11], and other works as [11]–[14] rely on
values set a priori. Therefore, several works like [6], [8], [15]

have advocated an adaptive approach named ARED (Adaptive
RED) which can be deployed in the current Internet since it
does not rely on hypotheses on the type of traffic because it
infers the traffic load from measurements of the queue size.

This paper adopts this point of view. It differs however from
previous works in the way parameters are adjusted. Our goal is
to achieve a performance improvement over adaptive RED for
the queueing delay and the delay jitter without sacrificing the
loss rate. ARED adapts the value of Maxp, but uses fixed
adjustment factors that do not reflect the effective change
rate of the traffic load. Note that if the traffic load shows
a slight change there is no need of applying a sharp change
on Maxp. Clearly, using more elaborate dynamic adjustments
and allowing for modifications of all the three parameters
should offer the possibility of performance improvements on
ARED. To this end, we propose a scheme which adapts
RED parameters by using target-oriented adjustments which
are a function of the distance to the performance objective.
Simulations results show that our scheme can stabilize the
queue size, keep it away from buffer overflow and buffer
underflow independently of the number of connections and
can also achieve a more predictable and lower average queue
size without substantially increasing the loss rate.

We describe in Section II a new algorithm that adjusts
dynamically RED parameters. We evaluate this algorithm
in Section III by extensive simulations under ns [16]. We
conclude and propose future works in Section IV.

II. ADAPTING RED PARAMETERS

We present an adaptive algorithm (named PSAND) that
aims at minimizing the variance of the instantaneous queue
size and improve the stability of ARED under the following
constraints:

• achieve a specified target average queue size chosen a
priori by the network operator as a trade-off between
link utilization and delay.

• avoid an excessive increase of the packet loss rate as
compared to the original RED and ARED.

To achieve this goal, we adapt Maxp with a multiplicative
factor which is computed dynamically as a function of the
changes in the average queue length making it more or less
aggressive. Our approach differs from the algorithms of [6],
[8] in the following points:

• An increase (resp. a decrease) in the average queue size
by a certain factor is directly translated into an increase
(resp. a decrease) of Maxp by the same multiplicative
factor. This multiplicative factor is the ratio of the value
of the weighted average queue size in the current interval
(denoted by K̂cur) over the value of the weighted average
queue size in the previous interval (denoted by K̂prev).
We denote by change rate this ratio that measures the
queue length change:

change rate = K̂cur / K̂prev .

• In addition, we follow the approach of Floyd et al. in [6]
that tends to bring the average queue size to a specified
target value. Our aim is to bring it closer to its target
value more quickly. For this purpose, we measure the
gap between the current average queue size and its target
value and increase or decrease Maxp proportionally so
as to reduce this gap. Hence Maxp is adapted by a
multiplicative factor which is a ratio of the weighted
average queue size in the current interval (K̂cur) over the
target average queue size (denoted by K̂T). We denote
by prox rate this ratio that measures the proximity of
K̂cur as compared to K̂T :

prox rate = K̂cur / K̂T .

An average queue size lower (resp. larger) than its target
value triggers a decrease (resp. an increase) of Maxp.

• We adapt Maxp using a rate which is a function of
these two ratios representing a trade-off between the two
increasing/decreasing trends. We denote this rate by r and
compute it as follows:

r = prox rate×change rate = K̂2
cur/(K̂T×K̂prev) .

As illustrated in Fig. 1 these two ratios are measured once
every time interval at which Maxp is adapted (0.5 seconds).
change rate measures the queue length change by comparing
the weighted average queue size in the current interval (K̂cur)
to its value in the previous interval (K̂prev). prox rate mea-
sures the gap between K̂cur and K̂T (10 packets).

According to the results of our experiments, if we used
directly r as a multiplicative factor of Maxp, our mechanism
would not be aggressive enough in case of a severe congestion.
In order to make the change rate more or less aggressive and
perfect our model, we modified the influence of r by using a
simple functional form. We set:

β = coef × rγ ,

and let the adaptive scheme be:

Maxp = Maxp × β . (1)

Indeed, the queue length does not allow alone to determine
the severity of congestion that is the number of flows [17]. For
instance a single highly active source can cause a persistent
queue as well as large number of flows can. Hence, since the
mechanism that uses directly r, measures the queue length

^^ ^

gap representing prox_rate

gap representing change_rate

8.5

11

8 8.5 9.5

cur prev T

Time (s)

10.5

10

9.5

9

9 10

KK

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(P
ac

ke
ts

)

11.5

K

Fig. 1. Measuring the Traffic Change.

change, it can not be able to detect efficiently the degree
of severity of the congestion and can not therefore respond
aggressively enough. Moreover, as stated in [8], congestion
notification does not directly depend on the number of con-
nections multiplexed across the link. Nevertheless, congestion
notification should be given at a rate which is high enough
to avoid packet loss due to buffer overflow and low enough
to avoid underutilization of the link. The functional form
(1) should be able to adapt Maxp with the aim of sending
congestion notifications at a rate that reflects better the change
of the congestion level.

Algorithm 1 summarizes our scheme. The setting of the
parameters Minth, Maxth, coef and γ used by this algorithm
is discussed briefly in Section III-C.

Algorithm 1 PSAND Algorithm.

Set K̂T as a function of the delay target.
INTERV AL← 0.5 seconds.

/* Adaptation of Maxp. */
for each INTERVAL do

prox rate← K̂cur / K̂T .
change rate← K̂cur / K̂prev .
β ← coef × (prox rate× change rate)γ .
Maxp ← max(Maxp,min(Maxp × β,Maxp)).
K̂prev ← K̂cur.

end for
/* Upper Maxp : Maxp = [0.5, 1]. */
/* Lower Maxp : Maxp = 0.01. */

III. STABILITY AND PERFORMANCE MEASURES

A. Simulation Settings and Metrics

For a better comparison with [6], [8] respectively denoted
AREDFloyd and AREDFeng , we used the network topology
they proposed in order to evaluate our scheme through simu-
lations. Refer to Fig. 2 for the topology and link settings. The

TABLE I

SETTING OF THE SIMULATIONS PARAMETERS.

Minth Maxth InitialMaxp K̂T α β coef γ Interval

AREDFeng 5 15 0.02 – 3 2 – – –
AREDFloyd 5 15 0.1 10 0.01 0.9 – – 0.5s

PSAND 0 20 0.1 10 – – 1.75 1.5 0.5s
RED 5 15 0.1 – – – – – –

1.5Mbps, 20ms 10Mbps, 4ms

10M
bps, 2ms

10
M

bp
s,

3m
s

RED (buffer size = 35 packets)
R1

S2

R2 S3

S1

Fig. 2. Network Topology.

configuration uses TCPSack connections that generate long-
lived FTP traffic from node S1 to S3 at time 0 second, from
node S3 to S1 at time 1 second and from node S2 to S3 at time
3 seconds. The TCP congestion window size is 15 packets
and the packet size is 1600 bytes. We added a number of
connections from node S1 to S3 according to the simulation.
For these additional connections, we set the TCP window size
to 20 and the packet size to 1000 bytes. For AREDFeng and
AREDFloyd, we took the values of the simulation’s parameters
they recommended in [6], [8]. The upper bound of Maxp for
PSAND is set to 0.75 and for AREDFloyd it is set to 0.5. For
all simulations, we follow the approach of [6], [7], [18] to set
the average queue size weight (ωq) as a function of the link
bandwidth, according to the formula ωq = 1 − exp(−1/C),
where C is the link capacity in packets/second. Refer to Table I
for the other parameters settings.

B. Performance Results

1) Qualitative observations: The experiments conducted in
this section use one simulation lasting 100 seconds where 20,
70 and 100 additional flows started every 0.1 seconds from
node S1 at time 50 seconds. We make a visual and qualitative
comparison of the evolution of the instantaneous and weighted
average queue size through Fig. 3 and 4. These figures allow
us to observe not only the behavior of each mechanism in
presence of a high and a low traffic load but also how each
mechanism reacts in response to a change of the congestion
level.

We can observe in Fig. 3(c) that our mechanism responds
more quickly to a rapid change in the congestion increase
and shows a better adaptation to this change. Indeed, after
a sharp change at time 50 seconds, it needs less than 5
seconds to bring the average queue size back down to its
target value (10 packets) whereas AREDFeng in Fig. 3(a)
takes roughly 15 seconds and AREDFloyd in Fig. 3(b) takes

10 seconds. For a higher traffic load increase (70 additional
flows) observed in Fig. 4, AREDFeng and AREDFloyd are
unable to control the average queue size. Moreover, it displays
a reduced amplitude of queue size oscillations. It also shows
less frequent occurrences of an empty queue, and also less
frequent occurrences of a queue size close to the maximum
buffer capacity.

2) Statistical observations: To consolidate all these obser-
vations, we conducted more rigorous statistics by measuring
the following metrics:

• the delay jitter represented by the variance of the instan-
taneous queue size (Fig. 5(a)).

• the average queueing delay inferred by the true average
queue size, i.e. the average of the instantaneous queue
size (Fig. 5(b)).

• the packet loss rate (Fig. 5(c)).
• the distribution of the instantaneous queue size (the

probability that the queue is empty, full or very close
to the target queue size (Fig. 6)).

One point on each curve of Fig. 5 and 6 is the average of 100
independent simulations where additional flows start at time
3.5 seconds every 0.1 seconds from node S1. For instance, for
20 additional flows, the first additional flow starts at time 3.5
seconds and the 20th at 5.4 seconds.

As shown by Fig. 5(a) and Fig. 5(b), PSAND reduces the
queueing delay and the queue size variance, which increases
the stability of the queue size, independently of the number of
flows as compared to RED and the other versions of ARED.
We also observe in Fig. 5(c) that PSAND did not sacrifice
the loss rate for this performance gain. We rather observe a
slight reduction of the packet loss rate as the number of flows
increases. Moreover, as illustrated by Fig. 6(a) and 6(b), as
the number of flows increases, the probability that the queue
might be empty (P (X = 0)) and also that the probability that
the queue might be full (P (25 < X ≤ 35)) is reduced as
compared to the other mechanisms. Since the link utilization
can be computed as 1−P (X = 0), our scheme increases the
link utilization rate. In Fig. 6(c), we also observe that under
PSAND, the probability that the queue size is close to its target
value is generally larger. For a small load, this is not true, but
then the average queueing delay is less than the target delay,
which is more interesting than having a delay close to the
target one as long as this is not payed in return by an increase
of the packet loss rate.

Finally, the qualitative and statistical analysis of all the
results show that our approach offers a desirable overall
improvement of ARED performances and achieves our goal

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(a) AREDFeng .

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(b) AREDFloyd.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(c) PSAND.

Fig. 3. Evolution of the Instantaneous and the Weighted Average Queue Size (for 20 additional flows).

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(a) AREDFeng (70 additional flows).

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(b) AREDFloyd (70 additional flows).

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100
 0

 5

 10

 15

 20

 25

 30

 35

N
um

be
r

of
 P

ac
ke

ts

Time, Seconds

Instantaneous Queue Size Weighted Average Queue Size

(c) PSAND (100 additional flows).

Fig. 4. Evolution of the Instantaneous and the Weighted Average Queue Size.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

Q
ue

ue
 S

iz
e

V
ar

ia
nc

e

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND with coef = 1.75, γ = 1.5

(a) Queue Size Variance.

 6

 8

 10

 12

 14

 16

 18

 20

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 6

 8

 10

 12

 14

 16

 18

 20

T
ru

e
A

ve
ra

ge
 Q

ue
ue

 S
iz

e

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND with coef = 1.75, γ = 1.5

(b) True Average Queue Size.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 0

 0.05

 0.1

 0.15

 0.2

 0.25

P
ac

ke
t L

os
s

R
at

e

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND with coef = 1.75, γ = 1.5

(c) Packet Loss Rate.

Fig. 5. Comparison of Performances for Different Numbers of Flows.

of reducing the queue size variance while keeping the average
queue size close to its target value without sacrificing the
packet loss rate.

C. Configuration of Minth, Maxth, coef and γ

We investigated the influence of Minth, Maxth, coef
and γ on our adaptive scheme through the experiments fully
reported in [19]. The results suggest to choose a range of
values of coef and γ which is appropriate to small and large
number of flows. Hence, based on extensive simulations, we

set coef = 1.75 and γ = 1.5 as this setting brings about
reasonable overall improvement on ARED. The results showed
also that by using an automatic configuration of coef and γ
according to the traffic load, the performance of our adaptive
scheme can be further improved. In addition, the results
showed also that by starting the random drop earlier (very
small Minth) at a rate which reflects closely the evolution of
the queue length, our scheme scatters the packets drops over
time and maintains a slower and gradual build up of the queue

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

P
(X

 =
 0

)

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND (coef = 1.75, γ = 1.5)

(a) P (X = 0).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 0

 0.05

 0.1

 0.15

 0.2

 0.25

P
(2

5
<

 X
 ≤

 3
5)

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND (coef = 1.75, γ = 1.5)

(b) P (25 < X ≤ 35).

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103
 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

P
(5

 <
 X

 ≤
 1

5)

Number of Flows

RED
AREDFeng
AREDFloyd

PSAND (coef = 1.75, γ = 1.5)

(c) P (5 < X ≤ 15).

Fig. 6. Distribution of the Instantaneous Queue Size.

reducing the oscillations of the queue length as well as the
average queue size. The results showed also that large values
of Maxth increases highly the queueing delay and overall
good performances are obtained for Maxth = 2 ∗ K̂T . Based
on these results, we configured Minth and Maxth so as they
remain symmetrical about the target queue size (K̂T) while
being as far apart as feasible depending on the value of K̂T

as compared to the buffer capacity. For B representing the
buffer capacity, we set these two parameters as follows:

• If K̂T > B/2 then Minth = 2K̂T −B and Maxth = B.
• If K̂T ≤ B/2 then Minth = 0 and Maxth = 2K̂T .

IV. CONCLUSION AND FUTURE WORK

This paper has described a mechanism for RED parameters
setting in order to enhance the effectiveness of RED. Our work
is based on the adaptive approach of RED described in [6],
[8] since this approach does not require any hypothesis on the
type of traffic and therefore reduces the dependency of RED on
traffic scenario input parameters. We do not claim to present
an optimal setting of RED parameters but rather show among
other possible alternatives, a way to improve the performances
of Adaptive RED. Unlike in [6], [8] where a constant factor
is used, our mechanism adapts Maxp with a dynamic rate
which is a function of the change in the average queue size
and the distance of the average queue size to the specified
target queue size. In addition we conclude from simulations
that Minth should be set as small as possible, whereas Maxth

should be set as large as feasible. Indeed, the results showed
a reduction of the variance of the instantaneous queue size as
well as the average queue size independently of the number
of flows, without increasing and even in some cases (for large
number of flows for instance) while decreasing the loss rate.
Moreover, our mechanism keeps the queue size away from
buffer overflow and buffer underflow.

We are currently investigating a way to choose dynamically
some of the parameters of our algorithm for a further im-
provement. In particular, selecting a value of coef and γ that
gives a best performance is an important issue. In addition,
we are comparing our scheme with other mechanisms such as

[11]–[14] and also studying its stability by using the models
proposed in these papers.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, August 1993.

[2] B. Braden and al., Recommendations on Queue Management and
Congestion Avoidance in the Internet (RFC 2309), IETF, April 1998.

[3] M. May, T. Bonald, and J. Bolot, “Analytic evaluation of RED perfor-
mance,” in Proc. IEEE INFOCOM’00, 2000.

[4] T. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized RED,” in Proc.
IEEE INFOCOM’99, 1999.

[5] V. Misra, W. Gong, and D. Towsley, “Fluid-based analysis of a network
of AQM routers supporting TCP flows with an application to RED,” in
Proc. SIGCOMM’00, 2000.

[6] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: an algorithm for
increasing the robustness of RED’s active queue management,” August
2001, available at http://www.icir.org/˜floyd.

[7] T. Ziegler, S. Fdida, C. Brandauer, and B. Hechenleitner, “Stability of
RED with two-way TCP traffic,” in IEEE ICCN, October 2000.

[8] W. Feng, D. Kandlur, D. Saha, and K. Shin, “A self-configuring RED
gateway,” in Proc. IEEE INFOCOM’99, March 1999.

[9] V. Firoiu and M. Borden, “A study of active queue management for
congestion control,” in Proc. IEEE INFOCOM’00, Tel Aviv, Israel, 2000.

[10] C. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic
analysis of RED,” in Proc. IEEE INFOCOM’01, 2001.

[11] ——, “On designing improved controllers for AQM routers supporting
TCP flows,” in Proc. INFOCOM’01, Anchorage, Alaska, April 2001.

[12] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management,” in Proc.
SIGCOMM’01, San Diego, CA, August 2001, pp. 123–134.

[13] S. Athuraliya, V. Li, S. Low, and Q. Yin, “REM: Active queue manage-
ment,” in IEEE Network, vol. 15, May/June 2001, pp. 48–53.

[14] C. Wang, B. Li, Y. Hou, K. Sohraby, and Y. Lin, “LRED: a robust
active queue management scheme based on packet loss ratio,” in Proc.
INFOCOM’04, Hong Kong, March 2004.

[15] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Techniques for eliminating
packet loss in congested TCP/IP networks,” University of Michigan,
Tech. Rep. CSE-TR-349-97, November 1997.

[16] “Ns simulator homepage,” 2003, http://www.isi.edu/nsnam/ns.
[17] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: a new class of active

queue management algorithms,” University of Michigan, Tech. Rep. UM
CSE-TR-387-99, 1999.

[18] V. Jacobson, K. Nichols, and K. Poduri, “RED in a different light,”
Cisco system, Tech. Rep., 1999.

[19] T. Alemu and A. Jean-Marie, “Dynamic configuration of RED pa-
rameters,” LIRMM, University of Montpellier II, Tech. Rep. 03-042,
December 2003, http://www.lirmm.fr/˜tigist/papers/RR01-LIRMM.pdf.

