
HAL Id: lirmm-00108792
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108792

Submitted on 23 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agents Communicating for Dynamic Service Generation
Clement Jonquet, Stefano A. Cerri

To cite this version:
Clement Jonquet, Stefano A. Cerri. Agents Communicating for Dynamic Service Generation. GLS’04:
1st Workshop on GRID Learning Services at ITS’04, Aug 2004, Maceio, Brazil. pp.39-53. �lirmm-
00108792�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108792
https://hal.archives-ouvertes.fr


Agents Communicating for Dynamic Service Generation

Clement Jonquet and Stefano A. Cerri

LIRMM, CNRS & University Montpellier II
161 Rue Ada, 34392 Montpellier Cedex 5, France

{cerri,jonquet}@lirmm.fr

Abstract

This article proposes both an agent representation and an agent communication model based on a social
approach. By modelling Grid services with agents we are confident to be able to realise the interactive, dynamic
generation of services that is necessary in order to have learning effects on interlocutors. The approach consists
of integrating features from agent communication, language interpretation and e-learning/human-learning into
a unique, original and simple view that privileges interactions, yet including control. The model is based on
STROBE and proposes to enrich the languages of agents (Environment + Interpreter) by allowing agents to
dynamically modify them – at run time – not only at the Data or Control level, but also at the Interpreter level
(meta-level). The model is inscribed within a global approach, defending a shift from the classical algorithmic
(control based) view to problem solving in computing to an interaction-based view of Social Informatics, where
artificial as well as human agents operate by communicating as well as by computing. The paper shows how the
model may not only account for the classical communication agent approaches, but also represent a fundamental
advance in modelling societies of agents in particular in dynamic service generation scenarios such as those
necessary today on the Web and proposed tomorrow on the Grid. Preliminary concrete experimentations illustrate
the potential of the model; they are significant examples for a very wide class of computational and learning
situations.

Keywords: Interaction, Agent Communication, Grid Services, Service Generation, Partner Model, e-learning,
Multi-Agent Systems, Grid, STROBE model, Social Informatics

1 Introduction

1.1 Learning, interaction and language

Assuming that the purpose of e-learning is to create/generate the conditions enabling and facilitating to improve
human knowledge, we do not propose in this paper an Intelligent Tutoring Systems (ITS) able to directly do this
job. Rather, we propose to reflect on interactions between entities, humans or computers, considering that these
interactions are the ”the key of arch” of the knowledge construction occurring in e-learning scenarios. When
humans use a computer they interact with a system. But could we really speak of ”interaction”? An interaction
between two entities is a process that implies an action to occur on the interacting entities. That means that
interactions have some consequence on these entities, i.e. a change of state. For humans, this change can be
”learning”, the definite purpose of ITS. In e-learning scenarios, it is quite unlikely that human learning occurs on
the simple basis of interacting with a static system. Real interactions modify both entities, including the artificial
one. We believe that the learning process is a co-construction of knowledge (social constructivism). If we want
this process to be cumulative/unlimited in knowledge production, the two entities have to learn from each other
during this process and re-inject what they learned into the loop. Consider, for example, an interactive CD-Rom
on a special domain. The knowledge that the user of the CD-Rom would get is inevitably finite and limited due to
the fact that the CD-Rom is a fixed support unable to change and to evolve to acquire new knowledge to offer to
the user. Today this support is more or less obsolete; however its principles are still quite diffused, and e-learning
supports are most often content centred: little effort is reserved in e-learning to the evolution of knowledge, in the
system, as a consequence of interactions with the users. Dynamic, evolving systems apt to improve their capacity



to stimulate human learning, should be modelled accordingly. Interactions of these systems with humans – as well
as with other systems in the network – should produce improvements of their ability to serve humans to learn.
Probably the most advanced experiences on interactive, adaptive and evolutionary software entities come from the
Distributed Artificial Intelligence (DAI) community where these entities are called agents. This paper deals with
agents. In the rest of the paper, for the sake of simplicity, we will consider two types of agents: humans as Human
Agents (HA) and computers as Artificial Agents (AA).

Therefore, the interest of this work for the e-learning/ITS community is justified by the assumption that mod-
elling and making possible AA-learning helps to improve HA-learning (e-learning). Learning, for any kind of
agents, is dependent from interactions.

The bi-directional interactions we are interested in are direct messages sent from an agent to another one and
are called communications. In order to communicate, agents need a communication language understood by all the
interlocutors. Therefore the problem of the common, shared, language appears. Most efforts both within the agent
community and in research on Web or Grid Services assume a standard communication language to be adopted. We
rather weaken this constraint, assume just a kernel common communication language to be adopted and propose
to enrich the communication language at run time (dynamically). We propose a model which helps agents to build
their own languages while communicating.

A language is basically a pair consisting of: i) a language expression evaluation mechanism and ii) a mem-
ory to store this mechanism and abstractions construct with the language. We call them the interpreter and the
environment (as in the classic tradition of programming languages). In our model, agents are able to interpret mes-
sages in a given environment1, with an interpreter both dedicated to the current conversation2. We will show how
communication enables to dynamically change ”values” in an environment, and particularly how these interpreters
can dynamically adapt/change their way of interpreting messages. We call these evolutionary structures Cogni-
tive Environments and Cognitive Interpreters.Our agents therefore develop, while communicating, a language
(Cognitive Environment + Cognitive Interpreter) for each of their interlocutors .

This paper deals with learning for communicating agents. In a distributed system such as the Web and the
Grid, three types of interaction between entities exist, and all of them may imply learning: i) HA-HA, via special
devices such as for example enhanced presence as presented in [EKD03]. ii) HA-AA – the classical human-
machine interfaces – when an agent requests another one for something, a service or a product (performing a task,
answering a question, solving a problem). iii) AA-AA, when autonomous and intelligent AA collaborate with
each others (e.g. by delegating a sub-task to another). In this paper our focus is on AA-AA as well as HA-AA
interactions in dynamic service generation, but the model is generic with respect to any agent to agent interaction.

1.2 Grid services as agents

Current advances in agents and ”agenthood” are reported in the MAS (Multi-Agent Systems) literature, for example
[Fer99]. However, most of MAS literature, is concerned mainly with MAS consisting of AA. Our ambition goes
beyond, includes HA within what we may call MAHAS (Multi Artificial and Human Agents Systems). A MAHAS
is a system where AA and HA could interact and exchange information and knowledge easily, with no constraining
limitation related to the nature of an agent. Questions (problems to solve) and their solutions emerge from this kind
of system through interactions. Some should say that Internet could be considered as the first rudimentary, yet
quite impressive, MAHAS in history. It is only partially true due to the product delivery aspect of the Internet
network: HA and AA on the Internet deliver each other ”ready made informational products”, more than real
services. Basically, Internet allows for the moment to store and retrieve ”products” (e.g. pages, software, images)
but not yet to participate to an agent dynamic society. Actually, surfing on the Web is equivalent to ask to another
computer (on the network) to execute a calculus specified by an algorithm, or to give an answer to a question.
The classical and most widespread Web architecture, the Client/Server one, represents this view.We think that
in order to become a real MAHAS, the Web should provide services instead of products, what is the aim
of the Grid. We further think that the Grid [FK99, FKT01, RJS01] can be seen as the evolution of both Web
and agent research. For example, you cannot pass from a Client/Server model based network (as the Web) to a
distributed resource sharing system (as the Grid) without considering autonomous and intelligent entities on this
network. Even the simplest functionality claimed by the Grid – the availability of information resources, including
computer power, in a way transparent to the Grid user – needs the user to fully delegate to the Grid the generation

1The term environment is here used with its programming language meaning, that is to say, a structure that links variables and values. It
does not means the world surrounding an agent as in MAS community. This meaning will be used by default in the rest of the paper.

2A conversation is a set of communications, each consisting of at least two messages.



of the service, by accepting at the same time that the Grid adapts dynamically to the run time conditions in order
to offer the best service to the user. This delegation is absent in classical Client/Server architectures.

The essence of the Grid concept is nicely reflected by its original metaphor: the delegation to the electricity
network to offer me the service of providing me enough electric power as I need it when I need it even if I do not
know where and how that power is generated. In [FKT01], Foster used the metaphor in the context of computing
power: if I have a resource demanding application, I connect to the Grid; it will be the last that dynamically
distributes the workload among the available computing power suppliers, returning to me just the outcome of the
heavy computation and the bill for the consumed computational resources. This view considers:

a. Just one service, the computing power for heavy computations;
b. The concept of full delegation of the identified service to the Grid;
c. The concept of dynamically allocating and reallocating processes among available computing resources;
d. The concept of billing.

The subsequent refinement of Grid [RJS01, FKNT02] extendsa. to any services. Particularly to services
requiring to identify the semantics of message exchanges. Further, notice that in the initial concept of Grid, the
interactive behaviour of Grid software concerns mainly the service delivery phase (the dynamic allocation of Grid
resources is realised by a continuous interactive monitoring of the workload on the Grid). The service definition
phase being quite simple (the request for power is clear and known straight ahead by the customer and by the Grid).

However, the notion of Grid Services such as described in [FKNT02] do not fully correspond to the service
requirements of the Grid. Grid Services are quite the same as Web Services3, but adapted to the Grid. Web
Services are based on the four XML-like standard languages: i) WSDL (Web Services Description Language)
to describe software components, ii) SOAP (Simple Object Access Protocol) to describe methods for accessing
these components, iii) UDDI (Universal Description, Discovery and Integration) to identify the service provider
in a service registry, iv) WSFL (Web Services Flow Language) to describe Web Services compositions. Besides,
due to the emergence of Grid architectures, an evolution of Web Services to Grid has been proposed with OGSA
(Open Grid Services Architecture) [FKNT02] and more recently WSRF (Web Services-Resource Framework).
Web Services denote both an already used and a promising approach under one simple important viewpoint: it has
facilitated the integration of various heterogeneous components. However, the concept of ”service” as outlined
above is hardly to be recognised. The practice of current Web Services is still currently influenced by RPC-like
(Remote Procedure Call) and CORBA4 (Common Object Request Broker Architecture) approaches. Therefore,
it has some well recognised weaknesses, as dynamic interoperability, composition, user adaptation, memory. For
example, it does not take into account the autonomy of components, or it does not use a high level interaction
language. Web Services do not care about persistency of the service. The notion of conversation (and its history)
is absent in the Web Services approaches. For all these reasons, we think that Web Services is the first step of a
service based network, but it can not be the last.

Foster et al. call service:a (potentially transient) stateful service instance supporting reliable and secure
invocation (when required), lifetime management, notification, policy management, credential management, and
virtualization [FKNT02]. We actually believe such a service to be better called an ”agent”. The notion of service
on the Web has to surpass HTTP protocols and XML standards being enriched by DAI research and especially
by agent communication progress/improvement simply because the agent paradigm differs from the object one for
three important ambitions of agents: autonomy, intelligence and interactive behaviour. Agents on the Grid have
not simply to provide services; they must allow dynamic service generation.

1.3 Dynamic service generation

We mentioned above that today the Web may be considered an excellent mean for delivering informational prod-
ucts, but a quite limited tool for service generation. One of the fundamental differences between a product and a
service is that when a client asks for a product, (s)he exactly knows what (s)he wants. A typical procedure call
(with good parameters) is then realised just like in the RPC paradigm. In other words, the client asks a fixed algo-
rithm (procedure) to be executed. At the opposite, when a client requires a service5, (s)he does not exactly know

3http://www.w3.org/2002/ws/
4CORBA is a very general and open industry standard for working with distributed objects, it is to object oriented computing what the Web

is to documents.
5This is a language abuse because we can not say that we require a service. The service is the result of the service generation process. We

would have say ”when an user ask a service to be generated” or ”when a service is generated for a user”.



what (s)he wants and his/her needs and solutions appear progressively with the dialogue with the service provider
until (s)he obtains satisfaction. The service generation approach does not assume the user know exactly what the
service provider can offer him/her. The client finds out and constructs step by step what (s)he wants as the result
of the service provider’s reactions during the definition phase of the service. In fact, the service generation is a
nondeterministic process (as we will see in section 4.2) depending on the conversation between two agents. As an
example in current life, when somebody looks for clothes,buying ready-to-wear clothesis analogue to asking for
a product, whereashaving clothes made by a tailoris analogue to requiring a service to be generated.

Of course, the service generation approach does not aim to substitute product delivery. Most of the times,
the latter gives satisfaction to the user. However, many scenarios such as, for example, planning a travel, looking
for a job, learning a skill etc. cannot be modelled within this approach. One needs to adopt the dynamic service
generation one. Actually, a product can be considered as the result of a one-shot interaction process between
a pair: {customer, service provider} while a service generation might be viewed as the result of the activation
and management of a process defined by the triplet:{customer, service provider, conversational process}. In the
former, the process is in principle deterministic, in the latter it is not: conversations are not a priori determined.
Therefore, we need an open and dynamic communication model able to generate these conversational processes
occurring between agents: AA-AA, AA-HA, and also HA-HA.

We will not go into more details about the generation of services now since we wanted, for the moment, to
present the purpose of our work and the context of the paper: to build a model that represents a realistic progress
toward thedynamic service generation by conversational agents.

1.4 Organisation of the paper

The proposed model is the result of research in three domains: i) the ITS or AI in Education, with its historical
weight as a major source of inspirations for advances in computing and human learning, ii) agent communica-
tion, with ACLs (Agent Communication Languages) and their semantics, fundamental for conversation modelling,
iii) language interpretation and applicative programming languages, in particular work on reflection and meta-
evaluation. The goal of communication is certainly to change the interlocutor’s state. This change is done after
evaluating (3rd domain) new elements brought by the communication (2nd domain) in order for agents to learn
(1st domain). We propose in this article a learning-by-being-told model that allows to carry out this change. The
rest of the paper is organised as follows: Section 2 is a brief overview of the above three domains, presenting them
and gluing them together. We also present here the foundations of our work (i.e. the STROBE model). Section
3 formalises our model, presenting agents as interpreters, introducing the concept of Cognitive Interpreter, and
explaining how the representation of the other is realised. Section 4 presents some experimentation, simple, but
significant, which aim to illustrate: i) the major feature of the model allowing in a quite simple way meta-level
learning by communicating, ii) the utility of the model for dynamic service generation. A discussion on the poten-
tial effect of our choices with respect to the service generation concepts is presented in section 5. A conclusion, in
section 6, rounds off the paper.

2 Agent communication, learning in MAS and language interpretation

2.1 Communication in MAS

Simply grouping together several agents is not enough to form a MAS. It is communication between these agents
that makes it. Communication allows cooperation and coordination between agents [Fer99]. In the rest of the
article we will deal with asynchronous direct mode communication. That means, a communication throws directly
messages (that can be buffered) between agents.

Modelling communication has always been a problem. The traditional communication model of Shannon is
not sufficient because in real communicative situations we can not consider communication as simple information
transmission; we have to consider the whole of the dialogue. In order to model dialogue, we need first a commu-
nication language and a structure to model sets of communications, what is called conversations. Communication
languages were firstly studied by Cohen, Perrault and Levesque [CP79, CL90] highly inspired from the speech act
theory of Searle [Sea69] and Austin [Aus62]. These works on mental states, intention and performatives prefigured
the apparition of agent architectures (or policy or theory of agency) based on mental states representation, such as
BDI (Believe Desire Intention) and ACL such as KQML (Knowledge Query and Manipulation Language) [LF97]



and FIPA-ACL (Foundation for Intelligent Physical Agents - ACL) [Fip02]. Concerning conversation modelling
the main approach in the agent community is the interaction protocol/conversation policies approach [GHB00].
These protocols represent the interaction structure and specify interactions that should be respected during con-
versation. A famous example of interaction protocol is the Contract Net protocol proposed by Smith. Interaction
protocols are often represented with Finite State Machine or Petri Nets [CCF+00] and more recently with AUML,
UML extension to agent.

From the agent communication literature we can extract two requirements that an agent communication model
should provide, with respect to which our proposal is compliant:

• If we consider the communication effects on interlocutors, then we must consider that agents can change
their goal or beliefs while communicating. Thus, they must be autonomous and should adapt during commu-
nication. Agents need a language to communicate assuming, as we do, that agents share a minimal common
language, what is important is to allow language enrichment. Section 3.1 will explain how the concepts of
Cognitive Environment/Interpreter may help us to dynamically modify and adapt our agent knowledge and
behaviour by enriching the communication language at run time.

• Agents should interact with other agents (AA or HA) following the same principles, the agent interaction
model should be generic with respect to the type of the communicating agents. What is important is the
agent representation of each of its interlocutors, the partner model. Section 3.2 will detail how we deal with
this point in our model.

2.2 The STROBE model

Our model can be viewed as the follow up of the STROBE model described in [Cer96b, Cer96a, Cer99]. STROBE
shows how generic conversations may be described and implemented by means ofSTReamsof messages to be
exchanged by agents represented asOBjectsexerting control by means of procedures (and continuations) and
interpreting messages in multipleEnvironments. These three primitives are supposed to be first class objects6

giving to the model an important dynamicity. The STROBE model is influenced by traditional ACLs such as
KQML but goes beyond them as a consequence of lying on three main concepts adopted:

Agents as interpreters. While communicating, an agent executes a REPL (Read - Eval - Print - Listen) loop
waiting for messages, selecting one, interpreting it and sending an answer. This loop is quite similar to the cycle of
language interpreter. This principle is important because it regards agents as autonomous entities whose behaviour
and interactions are controlled by a concrete evaluation procedure. You can notice that the role of the interpreter is
both to interpret the message and its content. We will callevaluate, the procedure which emphasises the agent
and interprets the message contents, andevaluate-kqmlmsg, the sub-procedure able to interpret messages.
Notice that the choice of interpretation – as opposed to compilation and execution – is important in order to ensure
the run time dynamicity of agents.

Cognitive Environments. Multiple environments are simultaneously available within the same agent. These
environments represent the agent knowledge – for example, the value of a variable, the definition of a procedure
– they embody the agent Knowledge Base (KB) as they represent the languages known by an agent. Actually, for
the representation of each partner, STROBE proposes to have a partner model to be able to reconstruct as much as
possible, the partner’s internal state. It proposes to interpret each dialogue in a specific environment. Agents have
two types of environments: i) the first one is unique – global and private – it belongs to the agent, representing
its own beliefs, ii) the other ones – local – are dedicated to the interlocutors, each of them represents a partner
model as it evolves during conversations. An agent can choose in which environment it can interpret a message.
The concept of Cognitive Environments was firstly presented in [Cer96a, Cer96b] and we propose in section 3.2 to
complete it.

6This notion is due to Strachey, first-class objects may be named by variables, may be passed as argument to procedures, may be returned
as results and may be included in data structures.



Streams processing. STROBE messages are represented by streams. Streams lie on lazy evaluation mechanism
(also called delayed evaluation) [ASS96]. Streams are ”lazy lists” (i.e. the natural representation of sequences
that are partially instantiated (evaluated), during conversations). Agents used it to operate on incoming streams of
messages, i.e. they generate the next message to send only after having received the last interlocutor answer. This
allows to remove the necessity of global conversation planning (i.e. the classic interaction protocol) substituting it
by history memorisation and one-step, opportunistic planning.

2.3 Learning in MAS

Learning and knowledge communication is very important in MAS, it provides evolution and adaptation of these
agent societies through time. Learning was firstly limited to AI, but is nowadays extended to DAI and MAS. Here
we will simply detail our overview of learning in order to bind it with the proposed model.

Learning-by-being-told paradigm. Considering agent learning, i.e. reflecting about what an agent learns on
itself and on its interlocutors, we can, in a first approximation, distinguish three types of learning:

• The first one could be calledmachine learning, as for example reinforcement learning;

• The second one could be calledlearning-by-being-told. It comes from DAI and is issued from the instruc-
tional effect where an agent changes or creates representations according to received messages;

• The third one could be calledlearning as a side effect of communication. It is quite ”serendipitous”7 as it
occurs when an agent learns without being aware of it.

We will describe extensively here just an instance of the second type of learning. Our agents learn-by-being-told
by other agents, they change their representations according to their interlocutors information given by messages.

Levels of abstraction and learning. Humans learn facts, rules (or procedures or skills), and languages necessary
to understand messages stating facts or procedures, as well as necessary for generating behaviour when applying a
particular procedure to arguments. In the same way, facts, rules and languages are such asData, Control andIn-
terpreterlevels in computing. These three abstraction levels may be found in all programming languages. Indeed,
an interpreter is the language evaluation expression mechanism, which defines a language; it is the interpretation
process which gives a value to (evaluate) an expression. Every language provides an abstraction tool8 which allows
to enrich the language. For example, abstraction at the Data level consists in assigning values to already existing
variables, or defining new data (i.e. in Scheme it is done with expressions such as(define weekend 3) or
(set! weekend ’(friday saturday sunday))). Abstraction at the Control level consists in defin-
ing new functions abstracting on the existing ones (i.e. in Scheme it is done with expressions such as(define
foo (lambda ...))). However, the abstraction tool can usually reach only the first two levels. In order to
abstract at the Interpreter level, what we call meta-level abstraction or meta-level learning, we have to modify
the language interpreter itself. This feature is necessary in order, for instance, to add some special forms to the
language. As an example, the special formif must be intrinsically implemented at the interpreter itself, it can not
be defined at the Control level. Changing the Interpreter level must be done as well, in order to change the way
of interpreting expressions, for example, in order to pass from an applicative order evaluation to a normal order
evaluation, or to a lazy-evaluation.

The two first levels can be reached dynamically during execution: new data and procedures are added to the
language each time an abstraction is interpreted. This is done by STROBE agents when modifying a dedicated
Cognitive Environment. The challenge is to allow Interpreter level modifications at run time, in order to generate
dynamic processes. It is what our model does. Our idea is to map these three levels schema into agents, considering
them as set of pairs: environment + interpreter. While enabling its interpreter to evolve, an agent learns more than
simple information, it completely changes its way of perceiving and processing this information. This is the
difference between learning a datum and learning how to process a class of data.

7From serendipity: the faculty of making fortunate discoveries by accident.
8For example, thedefine special form in Scheme.



2.4 Scheme, and the influence of the applicative language community

To solve problems, we need tools that are not more complicated to use than the problem is to solve. The Scheme
language is one of these tools. Scheme (Lisp-like language) is based on lambda calculus, hence it offers a clear
semantics. Further, it is easy to learn and use [ASS96]. Scheme provides especially a powerful and simple memory
model via first class environments as well as a very flexible and dynamic control model via first class procedures
and first class continuations9. Scheme allows representing procedures as data easily enabling to write programs
which manipulate other programs (i.e. interpreters or compilers). Streams, objects and environments are three
Scheme first class primitives, which explain the choice of this language to embody the STROBE model. We also
decided to use Scheme to reach, at run time, the Interpreter level. Scheme offers some devices to allow the dynamic
modification of an interpreter10, by means of:

1. Using a reflective interpreter with the mechanism of reifying procedures such as in [JF92];

2. Using first class interpreters such those present in [IJF92];

3. Using two levels of evaluation in order to apply/use the evaluation function (eval) which is part of the
language and reachable.

3 The model

The extension of the STROBE model described in this paper can be synthetically described by one sentence:
To augment the concept of Cognitive Environments, by including in them Cognitive Interpreters, which can be
dynamically modified, allowing agents to develop a complete language (Interpreter + Environment) for each of its
interlocutors, increasing agent dynamicity and giving to agents an evolutionary representation of the other.

3.1 Agents as a set of Cognitive Interpreters

Cognitive Environments in STROBE provide to agents a global environment and several local environments repre-
senting the others. Our extended model provides to agents not just one interpreter but several interpreters, including
a global one and local ones for each agent they have a representation of. We therefore augment indeed the previous
concept of Cognitive Environments. These interpreters (i.e.evaluate procedures) are stored in environments
as any other usual procedures. We use the terms of: i) Cognitive Environments, because, according to the three
learning levels seen above, the Data and Control levels can be modified by communications; and ii) Cognitive
Interpreters, because the last level, the Interpreter level, can be also modified using devices presented in section
2.4. The three levels are reachable at run time while communicating, allowing agents to dynamically modify their
meta-level knowledge increasing their autonomy and adaptability allowing them ”to change their mind” i.e. their
way of interpreting things. The model is formalised as:

AGENTx = {ENV x
x + {ENV x

j }∗} ∀j interlocutor

ENV i
j = {INT i

j + {BINDi
j}

∗}

INT i
j = λ : EXP → evaluatei

j(EXP, ENV i
j )

BINDi
j = {(var, val)∗}

With, ITEMX
Y =

{

X local item dedicated to Y if X 6= Y

X global item if X = Y

An agent x,AGENTx, is considered as set of environments,ENV x
j , not null, because it unavoidably has its

own global environment,ENV x
x , and eventually a set of environments corresponding to is partner models. An

environment,ENV x
j , is a set of bindings with a least, an interpreter,INT x

j , which is the Cognitive Interpreter
included in the Cognitive Environment, and the rest of the bindings,BINDx

j , which is a set of pairs variable –
value. An interpreter,INT x

j , is a procedureevaluatex
j , which interpret an expressionEXP , in the corresponding

9In programming languages a continuation is the next expression to evaluate with the result of the current evaluation.
10We experiment solution 1 and 3 in our model.



environment,ENV x
j . In fact, our model enriches the STROBE model by adding to it a new first class primitive:

the Interpreter11.

3.2 Representation of the others

In our model, the Cognitive Environment and its included Cognitive Interpreter, emphasise the partner model.
Therefore, message interpretation is done in a given environment and with a given interpreter both dedicated to
the conversation (we deal with conversations because Cognitive Environment modifications12 are persistent along
communications). For instance, Figure 1 points out the representation of an agent,AGENTA which know two
others agents,AGENTB andAGENTC .

AGENTA =







































































ENV A
A =







INTA
A = λ : EXP → evaluateA

A(EXP, ENV A
A )

BINDA
A = {(u, 3)(v, 5)(square, λ : x → x ∗ x)}

ENV A
B =







INTA
B = λ : EXP → evaluateA

B(EXP, ENV A
B )

BINDA
B = {(u, 3)(v, 5)(square, λ : x → x ∗ x)}

ENV A
C =







INTA
C = λ : EXP → evaluateA

C(EXP, ENV A
C )

BINDA
C = {(u, 6)(v, 2)(id, λ : x → x)}

Figure 1: Representations ofAGENTA, with two partner,AGENTB andAGENTC , models

When an agent meets another one for the first time, three cases are possible: i) First, it produces a new envi-
ronment for this agent by cloning its own environment and using it to communicate with this agent. For example,
when two agents meet together for the very first time, and when they do not have any idea of the type of this new
agent (e.g. HA, AA, service provider, etc...). ii) Secondly, it produces a new environment for this agent by cloning
another agent environment it already has. For example, when another agent finishes a conversation (e.g. generate
a service) that a first one has begun. iii) And thirdly, it uses an already existing environment to communicate with
this new agent. For example, when an agent identical, or playing the same role, or belonging to the same group,
replaces another one. The third situation is heavy in consequences, because it shows that several agents can be
represented for another one by the same partner model. Therefore, an agent may have, representation of other
lonely agents, but also representations of groups of agents eventually playing different roles. It brings our model
closer to an organisational structure as it is proposed by Singh in [Sin98].

It is important to notice that the global environment, (i.e.ENV x
x ), is private and changes only for precise

reasons. However, caring readers could have noted that in Figure 1,BINDA
C was different fromBINDA

B and
particularly fromBINDA

A. Which valueAGENTA must use foru or v? WhenBINDA
A must change? It will be

the subject of discussion in section 5.
Let us come back to the REPL loop proposed by STROBE that we still consider. This REPL behaviour is

illustrated by Figure 2. Each time an agentReads a message, it picks up both the dedicated environment and inter-
preter to interpret it, then itEvals it (i.e. apply the selected interpreter on the message in the selected environment,
andPrints the corresponding answer (i.e. send the answer message and/or process the evaluation result), before
Listening the next message.

3.3 Communication language

In this section we go into details of the communication language we use (i.e. message structure and used per-
formatives). This communication language is considered minimal. Messages we use are speech act oriented and

11It is a first class object because an interpreter is a procedure and Scheme procedures are first class.
12We will generally now use the term of Cognitive Environment, or simply environment, but the reader should not forget that it concerns also

Cognitive Interpreters due to the fact that the latter is included in the former.



Agent X REPL loop
LISTEN

Wait for new messages and choose the next messageM to process;

READ
Pick up the Cognitive Environment (EX

Y ) and Cognitive Interpreter (IX
Y ) dedicated to the

interlocutor Y if Y is the sender of M;

EVAL
Interpret the messageM : evaluateX

Y (M ,EX
Y );

PRINT
Send Y the answer message and/or process the evaluation result;

Figure 2: Agent REPL loop

use performatives. They are inspired by the KQML or FIPA-ACL message structure but use only the primordial
parameters; other ones (e.g. ontology, in-reply-to, reply-with, protocol) may easily be added. Their form is:

MSG = {AGENTs, AGENTr, PERFORM,CONTENT}

with PERFORM = {assertion, ack, request, answer, order, executed, broadcast}

The sender (AGENTs) and the receiver (AGENTr), are the two agents concerned by the message. The
CONTENT of the message is an expression written in a content language. Our model uses the same language
both for the message and its content (i.e. Scheme) as we can use the same interpreter to evaluate the message and
its content. In order to construct a minimal agent we propose to process six performatives by default, five presented
in [Cer99] (Table 2) and the latest one, broadcast, that is the subject of one of the experimentations hereafter:

assertion messages modify interlocutor behaviour or some of its representations. Answers areack (acknowledge-
ment) messages reporting a success or an error. For example, in Scheme, content of assertion messages are
define or set! expressions. These messages are used to perform classical Data/Control levels learning.

request messages ask for one interlocutor representation, such as the value of a variable or the closure of a func-
tion. Itsanswerreturns a value or an error. In Scheme, request messages are certainly variables names.

order messages require the interlocutor to apply a procedure. This interlocutor sends the result as the content of
anexecutedmessage. In Scheme, it would correspond to a procedure call,(foo . . .). These messages are
used, for instance, to dynamically modify an agent interpreter.

broadcast messages consist in sending a message with a pair as content(perform, content) that means
that the interlocutor must send a message with the performativeperform and with the contentcontent
to all is current interlocutors. There is no answer defined for the broadcast messages.

4 Experimentations: examples of scenarios

In order to express the potentiality of our model, we propose in this section two examples of scenarios, called
experimentations, which could occur with such a model. They illustrate: i) Meta-level learning by communicating:
agents which modify their interpreters while communicating. ii) How our model enables the dynamic specification
of a problem by means of communication, which is necessary for service generation as presented in section 1.3.
Even if these experimentations are ”toy examples”, they are significant as they represent a solution for a large class
of problems.



4.1 Meta-level learning by communicating

A teacher-student dialogue. The first experimentation shows how an agent can learn-by-being-told a new per-
formative, thus dynamically modifies its message interpretation procedure (i.e.evaluate-kqmlmsg). It is a
standard ”teacher-student” dialogue. An agent teacher (AT ) asks to an agent student (AS) to broadcast a message
to all its interlocutors using a special performative,broadcast. However, student does not initially know the
performative used by teacher. So, teacher transmits two messages (assertion andorder) clarifying to the
student the way of processing this new performative. Finally, teacher formulates once more its request to student
and obtains satisfaction. After the last message process,evaluate−kqmlmsgS

T procedure is modified. Thus a part
of its interpreter (INTS

T ) was dynamically changed and the corresponding definition in its dedicated environment
(ENV S

T ) is changed. It is thus a meta-level learning. Then student agent can processbroadcast messages. Fig-
ure 3 describes the exact dialogue occurring in the experimentation. The paper [JC03] details this experimentation
and shows it using the reifying procedures mechanism cited in previous section.

Teacher (AT ) Student (AS)
Here is the definition of the square procedure: Ok, I know now this procedure:
{AT , AS , assertion, {AS , AT , ack,

(define square (lambda (x) (* x x)))} (*.*)}
Broadcast to all your current interlocutors: Sorry, I don’t know this performative:
{AT , AS , broadcast, {AS , AT , answer,

’(order (square 3))} ’(not-such-performative broadcast)}
Ok, here is the method to add this performative to those you
know:

Here is the code you have to generate and add to your
evaluate-kqmlmsg procedure:

Ok, I have added this code in a binding of my environment:

{AT , AS , assertion, {AS , AT , ack,

broadcast-code} (*.*)}

Run this procedure: Ok, I have just modified my interpreter:
{AT , AS , order, {AS , AT , executed,

(set! evaluate-kqmlmsg with-broadcast)} (*.*)}
Broadcast to all your current correspondents: Ok, I broadcast
{AT , AS , broadcast, {AS , . . . , order,

’(order (square 3))} (square 3)}

Figure 3:broadcast learning teacher-student dialogue.

Remark — Note thatbroadcast-code variable contains the code thatAS must integrate to its procedure
evaluate-kqmlmsg. The term integration is important, becauseAS does not simply replace its procedure by
theAT one, it integrates this code to its previous procedure yet conserving as valid the previous modifications on
it. This is thus a constructivist method. Generated code is stored in a lambda-expression (i.e. procedure in Scheme)
calledwith-broadcast and after the assignment (set!) message evaluation, this lambda-expression becomes
evaluate-kqmlmsg.

4.2 Enabling dynamic specification by communication

If we consider the agents as interpreters, then we can consider them as nondeterministic interpreters. The key idea
is that expressions, in a nondeterministic language, can have more than one possible value. With nondeterministic
evaluation, an expression represents the exploration of a set of possible worlds, each determined by a set of choices.
Nondeterministic evaluation is very useful for Constraint Style Programming (CSP). We invite the reader to refer
to [ASS96] (chapter 4) for more details on nondeterministic evaluation.

An e-commerce scenario. It is interesting for our agents to be considered as nondeterministic interpreter to solve,
for instance constraint based programs. But above all, the most interesting thing is that our agents can progressively
build such programs while communicating with other agents and then apply these programs to generate a solution
(to achieve a task) for another agent. The constraints, defining a nondeterministic program, can be determined



progressively with the conversation using our model to dynamically change procedures and the way of interpreting
them. Let us consider, a standard e-commerce dialogue for a train ticket booking. A ticket is characterised by a
departure city, a destination city, a price, and a date. A SNCF13 agent dialogues with a customer agent which tries
to book a ticket. A realistic dialogue could be:

a. Customer:I want a ticket from Montpellier to Paris

b. SNCF:Ok, what are your conditions?

c. Customer:Tomorrow before 10AM. Please, give me a proposition for a ticket!

d. SNCF:Ok, train 34, departure tomorrow 9.30AM, from Montpellier to Paris, 150e

e. Customer:Is it possible to pay less than 100e?

f. SNCF:Ok, train 31, departure tomorrow 8.40AM, from Montpellier to Paris, 95e

g. Customer:Another proposition please?

h. SNCFOk, train 32, departure tomorrow 9.15AM, from Montpellier to Paris, 98e

i. Customer:Ok, I accept this one

We can notice that the interactionsa, b, c andedeal with the constraints on ticket selection. The interactionsd,
f andh are result of application of ticket research function, with various constraints. The interactiong corresponds
to a request of the customer to get another answer, that means to explore another branch of the solution tree. Figure
4 illustrates how this dialogue can be represented into Scheme expressions in order to be realised by our agents.

The customer agent (AC), which represents an HA as the user of the service, transmits its requests with
require andtry-again expressions. At the beginning of the conversation, SNCF agent (AS) starts a new
find-ticket function construction which is dynamically modified and built progressively during the conversa-
tion. These modifications consist in changing a value in the SNCF agent environment dedicated to the customer
agent,ES

C . This idea is interesting because it is the dialogue that builds the computation to be carried out and not
the opposite. It is a typical scenario that we could find in many e-commerce applications or other ones of the same
kind where agents must build a program to find a solution together. The classical approach of program construction
(which can be found in traditional software engineering) that specifies the problem before coding it, is changed into
a dynamic specification approach during coding. That is to say, specification and realisation are, with our model,
carried out at the same time (in one step).

The above constraints are quite simple ones, but with such a system we can have constraints as complex as:
conjunction and disjunction of predicates, or conditionals which bind constraints together. Therefore, this approach
enables the user to explore a large possibility in its own constraint definition. In fact, in this experimentationAS

does not want to know values of variables (i.e. departure city, price, etc...), it simply exposes toAC the variables
on which it can express constraints, and it allow it to communicate its ideas. The travel agency example is often
used in Web research community (Semantic Web, ontology building, Data mining etc...), but seldom associated to
a dynamic interaction with the user as our approach presents.

5 Discussion

About the experimentations. The first experimentation shows how to add a new performative to the ones already
known by an agent, thus how to modify an agent messages interpretation procedure (i.e.evaluate-kqmlmsg).
The same principles can be used to modify any part of an agent interpreter. We can imagine a prelude to the
second experimentation with a scenario where an agent teaches to another one how to transform its interpreter into
a nondeterministic one. With this model, our agents have a set of environments and interpreters that represent their
knowledge and its evolution through time. Indeed, these pairs correspond to their recognised sub-languages and
thus to their faculties to carry out a task. Agents can process programs for others or even exchange their interpreters
just like in Grid architectures where it is more interesting to move program than data. Their interpreters can also
be transmitted before a conversation, just like an ontology.

13Due to the French acronym Sociét́e Nationale des Chemins de Fer.



Customer SNCF
I want a ticket from Montpellier to Paris Definition of a newfind-ticket function:
(require (define (find-ticket)

(eq? depart ’montpellier)) (let ((depart (amb *city-set*))
(require (dest (amb *city-set*))

(eq? dest ’paris)) (price (amb *price-set*))
(date (amb *date-set*)))

(require (not (eq? depart dest)))
(require (eq? depart ’montpellier))
(require (eq? dest ’paris))
(list (list ’depart depart)

(list ’dest dest)
(list ’price price)
(list ’date date))))

Ok, what are your conditions?
Tomorrow before 10AM find-ticket fonction modification adding a new constraint. Then

procedure execution:
(require (< date *tomorrow10AM*))
Please, give me a proposition for a ticket! Ok,train 34, departure tomorrow 9.30AM, from Montpellier to Paris,

150e
(find-ticket) ((depart montpellier) (dest paris) (price 150)

(date *tomorrow9.30AM*))
Is it possible to pay less than 100e? idem
(require (< prix 100)) Ok, train 31, departure tomorrow 8.40AM, from Montpellier to Paris,

95e
(find-ticket) ((depart montpellier) (dest paris) (price 95)

(date *tomorrow8.41AM*))
Another proposition please? find-ticket function execution:
(try-again) Ok, train 32, departure tomorrow 9.15AM, from Montpellier to Paris,

98e
((depart montpellier) (dest paris) (price 98)
(date *tomorrow9.15AM*))

Ok, I accept this one

Figure 4: Scheme expressions in dialogue between SNCF agent and customer agent.

Learning on Cognitive Environments. Even if our model is an instance of the learning-by-being-told paradigm,
we may consider an internal learning on the different Cognitive Environments. Learning of the first type as it was
presented in 2.3. For instance, the following two processes:

• The first one consists on learning on a particular environment to deduce new knowledge;

• The second learning process concerns the agent global environment,ENV x
x . We have to consider that agents

may transfer the knowledge they learned in the differentENV x
i ∀i 6= x (local environments) toENV x

x (the
global environment). They have to do that in order to take into account what they have learned in a global
way. It is part of their evolution. They definitively have to do that if they want to reuse the knowledge learned
within different conversations.

Towards dynamic service generation. In some aspects, service generation is analogue to information retrieval
with the following properties: i) The database is so large that HA cannot specify a single, simple database query
for which there is one single answer; ii) HA may not necessarily have a definitive set of constraints in mind when
starting the search task, or may change constraints during the message exchange, and iii) There may be multiple
search goals. We believe that service generation will help in Web scenarios such as those related to information
retrieval. The service generation approach does not aim to replace product delivering but rather to improve and
enhance it. Generating a service means understand and construct, by interactions what a user (an agent) needs. If a
user has precise needs or precise ideas of what (s)he wants the system to give her/him, then interactions are simple



and a ”product” may be rapidly delivered. Actually, a system which can generate services, can easily deliver prod-
ucts. As in section 4.2, asking constraints on variables include asking value on these variables, but not the opposite.
For example, in the e-commerce experimentation, constraints expressed by the customer agent can be equalities
(i.e. values) for instance:(require (= price 95)) or (require (= date *tomorrow10AM*))
etc. This is equivalent to fill a Web form what is a current practice in many Web sites. One requirement of ser-
vice generation is that the user does not certainly know what he wants.This statement supports our view that
service generation implies learning. At the end of the process the user has certainly learned something: in the
e-commerce experimentation, the user, communicating with the customer agent, has simply learned what will be
the train he is going to take. Even if the e-commerce scenario is a very simple one, it may be easily extended to
complex ones and therefore imply very complex learning. In this sense, our work is inscribed in a global logic
to provide an e-learning infrastructure based on dynamic service generation.That means that an agent able to
generate dynamically services embody perfectly Learning Services. As our agents evolve on the Grid, they
can realise dynamic generation of Grid Learning Services.

Grid Learning Services. We take the challenge of Semantic Grids by interpreting the role of Grids as societies of
autonomous interacting agents offering dynamically defined as well as dynamically delivered (generated) services
by means of conversations among AA and HA available in the society. This view is not only consistent with current
developments on Grid, but with the above outlined state of the art in agents and agent communication, and with our
own extension to include HA. The feasibility of the approach is ensured by our experimentations, in the sense that
they represent a quite comprehensive class of potential scenarios on future Grids. Learning Grids (i.e. societies of
learning agents) become in this view at the same time societies of agents (HA and AA) supporting human learning.
No doubt that HA are autonomous (what is yet to be realised for AA) and solve problems by interacting (what is
partially realised by AA). No doubt that their own ”internals” are hard to identify (what calls for a social, better
than a mental state based, approach to modelling cooperation in mixed societies of agents).

In the paper we have outlined how far we can go at the moment in modelling and constructing autonomous,
interacting and socially committed AA. The collaboration among the two classes (AA and HA) is based on a clear
commitment on the communication language, that for the moment may be quite limited in its expressiveness but
may become very powerful if the service offering semantics become a practice on the Web and on the Grid. One
fundamental requirement for a progress in the area is conceptual simplicity for the researcher/developer. We are
all aware that the increase in complexity of current proposals around the Grid as well as in the agent world is
uncontrolled, therefore quite threatening. We think that our proposed model is perceived as simple enough to be
not only understood in its potential, but also used and reused in concrete settings, as we are convinced that it may
be the kernel of complex applications, by composition, abstraction and generalisation, yet maintaining its simple
foundations.

6 Conclusion

In this paper we try to convince e-learning community that improving AA-learning improves also HA-learning.
Therefore, we have presented our model of communication and representation of agents. We have thoroughly
adopted the two requirements of section 2.1: the model i) is based on a strong representation of the others (thanks
to the concept of Cognitive Environments) and ii) is highly dynamic, allowing the three levels of learning (Data,
Control, Interpreter) at run time (thanks to the concept of Cognitive Interpreters). Our agents are able to interpret
communication messages in a given environment, including an interpreter, dedicated to the current conversation.
We show how communication enables to dynamically change values in an environment and especially how these
interpreters, which represent the agents, can dynamically adapt their way of interpreting messages. Then, how our
agents can build, dynamically while communicating, languages dedicated to their interlocutors. Besides, the model
was illustrated with experimentations showing its adequateness and the feasibility of its prototypical applications.
The model is also pertinent because it can embody classical approaches in agent communication. Indeed, you can
have a message evaluation function which follows a special interaction protocol using a classical ACL such as
FIPA-ACL.

This model is the result of research in different domains and therefore has the advantage of gluing them together
in a coherent way. Working on agents, the Web, applicative programming languages, technologies supporting
human learning and more recently on Grid, showed usthe importance of considering interactions as the core
concept in future Social Informatics applications. A strong interaction based system might be the only way to



integrate humans, then users, in the loop. Nowadays, interactions seem to become a real issue in computer science.
Actually, we do not really communicate with our computers and they do not communicate together, we simply ask
them to answer some precise questions, to compute some algorithms! However, as Turing himself said, Turing
machines (i.e. nowadays computers) could not provide in principle a complete model for all forms of computation.
Currently some researchers [Weg97]try to find out the way to shift from classical Turing Machines to Interaction
Machines.

We are now facing new kinds of problems that only interaction can help to resolve. For us, a strong interaction
based Grid, sharing any kind of resources, seems to be the key issue for the future, under the hypotheses that one is
so modest to accept that interaction is indeed a new fundamental concept to be explored and modelled, and that any
model (or experimentation, or language application) should try to remain simple enough to allow understanding
and mastering of the complexity in terms of composition of simpler parts.

7 Annex

The presented model has been partially implemented in a prototype developed with MIT Scheme. The above
experimentations have been tested and validated. The Scheme files and information about the model are available
on http://www.lirmm.fr/˜ jonquet.

8 Acknowledgements

Work partially supported by the European Community under the Innovation Society Technologies (IST) pro-
gramme of the 6th Framework Programme for RTD - project ELeGI, contract IST-002205. This document does
not represent the opinion of the European Community, and the European Community is not responsible for any use
that might be made of data appearing therein.

References

[ASS96] Harold Abelson, Geral Jay Sussman, and Julie Sussman.Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, Massachusetts, USA, 2nd edition, 1996.

[Aus62] John L. Austin.How to do things with words. Clarendon Press, Oxford, UK, 1962.

[CCF+00] R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, and Yun Peng. Using colored petri nets for
conversation model. In F. Dignum and M. Greaves, editors,Issues in Agent Communication, volume
1916 ofLecture Notes in Artificial Intelligence, pages 178–192. Springer-Verlag, Berlin Heidelberg
New York, 2000.

[Cer96a] Stefano A. Cerri. Cognitive Environments in the STROBE model. InEuropean Conference in Artificial
Intelligence and Education, EuroAIED’96, Lisbon, Portugal, 1996.

[Cer96b] Stefano A. Cerri. Computational mathetics tool kit: architecture’s for dialogue. In C. Frasson, G. Gau-
thier, and A. Lesgold, editors,Intelligent Tutoring Systems, 3rd International Conference ITS’96, vol-
ume 1086 ofLecture Notes in Computer Science, pages 343–352. Springer-Verlag, Berlin Heidelberg
New York, 1996.

[Cer99] Stefano A. Cerri. Shifting the focus from control to communication: the STReams OBjects Environ-
ments model of communicating agents. In Padget J.A., editor,Collaboration between Human and
Artificial Societies, Coordination and Agent-Based Distributed Computing, volume 1624 ofLecture
Note in Artificial Intelligence, pages 74–101. Springer-Verlag, Berlin Heidelberg New York, 1999.

[CL90] Philip R. Cohen and Hector J. Levesque. Intentions is choice with commitment.Artificial Intelligence,
42(2-3):213–261, 1990.

[CP79] Philip R. Cohen and C. Raymond Perrault. Elements of a plan-based theory of speech acts.Cognitive
Science, 3:177–212, 1979.



[CSCM00] Stefano A. Cerri, Jean Sallantin, Emmanuel Castro, and Daniele Maraschi. Steps towards C+C: A
language for interactions. In S. A. Cerri and D. Dochev, editors,Artificial Intelligence: Methodology,
Systems, and Applications, AIMSA’00, volume 1904 ofLecture Notes in Artificial Intelligence, pages
34–48. Springer-Verlag, Berlin Heidelberg New York, 2000.

[EKD03] Marc Eisenstadt, Jiri Komzak, and Martin Dzbor. Instant messaging + maps = powerful collaboration
tools for distance learning. InTelEduc’03, Havana, Cuba, May 2003. http://www.buddyspace.org.

[Fer99] Jacques Ferber.Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison
Wesley Longman, Harlow, UK, 1999.

[Fip02] Foundation for Intelligent Physical Agents, FIPA ACL message structure specification, December
2002. www.fipa.org/specs/fipa00061/.

[FK99] Ian Foster and Carl Kesselman, editors.The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[FKNT02] Ian Foster, Carl Kesselman, Jeff Nick, and Steve Tuecke. The physiology of the Grid: An Open
Grid Services Architecture for distributed systems integration. InOpen Grid Service Infrastructure
WG, Global Grid Forum. The Globus Alliance, June 2002. Extended version of Grid Services for
Distributed System Integration.

[FKT01] Ian Foster, Carl Kesselman, and Steve Tuecke. The anatomy of the Grid: Enabling scalable virtual
organizations.Supercomputer Applications, 15(3), 2001.

[GHB00] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a conversation policy? In F. Dignum
and M. Greaves, editors,Issues in Agent Communication, volume 1916 ofLecture Notes in Artificial
Intelligence, pages 118–131. Springer-Verlag, Berlin Heidelberg New York, 2000.

[IJF92] John W. Simmons II, Stanley Jefferson, and Daniel P. Friedman. Language extension via first-class
interpreters. Technical Report TR362, Indiana University, Bloomington, Indiana, USA, September
1992.

[JC03] Clement Jonquet and Stefano A. Cerri. Cognitive agents learning by communicating. InColloque
Agents Logiciels, Coopération, Apprentissage et Activité Humaine, ALCAA’03, pages 29–39, Bay-
onne, September 2003.

[JF92] Stanley Jefferson and Daniel P. Friedman. A Simple Reflective Interpreter. InInternational Workshop
on Reflection and Meta-level architecture, IMSA’92, Tokyo, Japan, November 1992.

[LF97] Yannis Labrou and Tim Finin. A proposal for a new KQML specification. Technical report TR-CS-
97-03, Computer Science and Electrical Engineering Department, University of Maryland, Baltimore,
Maryland, USA, February 1997. www.cs.umbc.edu/kqml/.

[RJS01] David De Roure, Nicholas Jennings, and Nigel Shadbolt. Research agenda for the semantic Grid: A
future e-science infrastructure. Technical report, University of Southampton, UK, June 2001. Report
commissioned for EPSRC/DTI Core e-Science Programme.

[Sea69] John Searle.Speech acts: An essay in the philosophy of language. Cambridge University Press,
Cambridge, UK, 1969.

[Sin98] Munindar P. Singh. Agent communication languages: Rethinking the principles.IEEE Computer,
31(12):40–47, 1998.

[Weg97] Peter Wegner. Why interaction is more powerful than algorithms.Communications of the ACM,
40(5):80–91, May 1997.


