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Bias Windowing for Relational Learning

Frédéric Koriche !

Abstract. A central issue in relational learning is the choice of an In the later approach, the idea is to restrict the dimension of the
appropriate bias for limiting first-order induction. The purpose of thisspace in order to obtain tractable forms of induction. For this pur-
study is to circumvent this issue within a uniform framework inspired pose, a wide variety of representation biases have been proposed,
from the paradigm of windowing. Aias windowis a restricted sub- and range from standard syntactic parameters to complex grammars
class of the relational space determined by some parameters. Tlhigat model relational languages [5]. Based on a bias that efficiently
idea is to learn a theory in a small window first, and iteratively adjustnarrows the hypothesis space for a given domain, the learner can
the window in order to find the optimal bias from which to choose perform a systematic search in this space. Recent experiments have
the final theory. To this end, our model integrates a logical notion ofshown that the resulting theories are often stable and effective [2].
window-based induction, a learning algorithm that implements thisHowever, a key issue, which is often deferred to the user, is to select
mechanism, and a windowing technique that monitors the learninghe “appropriate” representation bias for the problem. Since differ-
process using a metric-based criterion. Experiments on the Muteent domains typically require different biases, it is important to make
genesis dataset show that, after a period of underfitting, windowindurther steps in the direction to automated methods of bias.

converges on hypotheses which are stable and very effective. In this setting, the purpose of the present study is to investigate the
paradigm ofwindowing a technique primarily due to Quinlan [14]
1 INTRODUCTION and which has recently been generalized by Fiirnkranz in [7]. The

main concern of this paradigm is to provide a trade-off between ef-
The relational learning problem [11] seems to be caught between ficiency and effectiveness by enabling the learner to concentrate on
rock and hard place. On the one hand, relational domains typicallgifferent subparts of its data and/or hypothesis space. Regardless of
involve multiple objects and relationships between them. To this endthe specificity of the search space, the idea is to maintain a subclass
first-order logic provides a very expressive language which enablesf this space, the so-calledndow from which a theory is learned.
the learner to induce structural patterns in the observed sample, atitthe quality is estimated insufficient, the window is adjusted by in-
to represent this knowledge into a compact form. On the other handireasing the search space, and a new theory is learned.
first-order induction is very much demanding from a computational Most existing approaches to windowing aaga-orientedand aim
point of view. Even in the finite, function-free case, the learner isat reducing the size of large databases. Yet, windowing may also be
confronted with hypothesis spaces which are generally much largdsias-orientedby reducing hypothesis spaces. Actually,iCr [12]
than concept classes usually addressed in propositional learning. and NNA [1] have adopted a similar idea by enabling the learner to
This dilemma is exacerbated still further by the statistical evidenceshift its bias from a predefined sequence of languages. Preliminary
that induction in large hypothesis spaces can substantially reduaesults are encouraging and state that using a sequence of biases and
both the accuracy and stability of classifiers. As explained by theshifting the bias can be more economic and effective than learning in
Bernoulli's theorem in [18], the difference between the empirical er-the union of the languages in the sequence.
ror made by the learner on the training set and the generalization In this paper, we develop a model of bias windowing for relational
error measured on a separated set of test data grows with the sizelefirning. The basic building block lies in the notionbiéis window
the concept class. This stems from the fact that large spaces contaivhich determines a restricted subclass of the relational space. Based
many descriptions that behave similarly on the observed sample arh this notion, the model integrates three key components:
yet behave quite differently in larger populations, thus diminishing
the ability to distinguish relevant hypotheses from irrelevant ones. ® A logical notion of robust induction which enables the learner to
In the ILP literature, two main approaches have been investi- infer a theory giveranybias window available. In particular, the
gated to handle these issues: trauristic-basedapproach and the ~ learner may induce hypotheses even if they are not perfectly con-
representation-baseapproach. As to the former, the idea is to limit ~ Sistent with the training examples.
exploration in hypothesis spaces by using strong procedural biases. A learning algorithm that attempts to find, in time polynomially
The blueprint is the top-down greedy search algorithm governed by bounded by the bias parameters, a solution in the window which
appropriate heuristics. However, although greedy-based learning is IS @s consistent as possible with the examples.
very efficient, it is generally bound to miss relevant theories, espe® A Windowing algorithm that monitors the learning progress. The
cially in relational domains that lie in the phase transition [8]. Sev- Method uses a metric-based selection principle, inspired from
eral strategies have been proposed to address this myopic limitation, [15], which attempts to identify the best window for the domain.
including pruning methods [6] and genetic techniques [3]. Yet, these

strategies clearly cannot scale up beyond a limited context. The paper is organized as follows. In section 2, we introduce the

logical part of the model. Sections 3 and 4 are devoted to the algo-
1 LIRMM, 161 rue Ada 34392 Montpellier Cedex 5, France email: ko- fithmic aspects. Experiments on the mutagenesis dataset are reported
riche@lirmm.fr in section 5. Finally section 6 concludes the paper.




A bias window [z, k] is called consistentwith a sampleFE if

2 BIAS WINDOWS

. L . . . . H.r(E) is nonempty, andnconsisteniotherwise. The consistency
Thls. section introduces the !ogl_cal settlng of W'”?’OW'r!g- As Sta.tedcriterion cannot always be guaranteed especially in presence of
earlier, the key component lies in the notion of bias window which

; the hvbothesis ¢l ilable to the | = ke of strong representation biases. In factaif ] is inconsistent withZ,
captures the hypothesis class avariable to the learmer. For Sake ot 96He , e version space collapses and induction fails into triviality. So,

erality, we need a corresponding form of induction that enables th'\?ve need to make appropriate formal steps in this direction
learner to infer theories given any bias window available. The main '

motivation here is to allow the learner to robustly induce hypothese .
which, albeit not necessarily consistent with the training data, cal .3 Robust Induction

capture enough important patterns to be accurate on test data. Wepresence of inconsistency, we need to introduce a metric in the hy-
thus begin to review the standard notion of induction, and then, weyothesis space in order to select the theories which are as consistent

extend this notion to robust induction.

2.1 Basic Terminology

as possible with the observed sample of examples given the available
representation bias. To this end, the standard empirical error measure
meets our requirements. Given a hypothdgiand a training sef,

the distance betweeH andE is defined by:

Our framework basically addresses two-class learning problems. In

this setting, relational theories are usually represented in first-order

DNF, i.e., disjunction of conjunctive formulas.
In this paper, aelational vocabularyconsists in a set of predi-

_Hee E:H() # ce}
|E]
It can be shown that this measure induces a total pre-ordeting

d(H, E)

cates and a set of constants. For sake of simplicity, we shall assuniatween hypotheses, whefe <z H’ iff d(H,E) < d(H',E).
throughout that the sets of predicates and constants, and all the aritig#gus, the aim of robust induction is to retain those hypotheses in the
are finite. Furthermore, we suppose that the maximum of the aritiegindow space which are minimal according<g;.

in the set of predicates is fixed. A term is a variable or a constan
An atom is a predicate whose arguments are terms. A literal is a

atom or its negation. Aule is an existentially quantified conjunction
of literals and ahypothesiss a disjunction of rules. In following, we
represent rules as sets of literals and hypotheses as sets of rules.

Now, we need to formalize the notion of bias window. As stated
earlier, several bias languages have been proposed in the literatu
In this paper, we exploit a simple bias scheme inspired from the so-

calledzk-DNF concept class introduced by Valiant in [16].béas
windowconsists in a paifz, k] wherez andk are positive integers.
Thewindow spacef [z, k], denotedH., is the space of all hypothe-
ses composed of rules which contain at mesistinct variables per
rule and at mosk literals per rule. In the following, any rule gener-
ated from the window bia, y] is called azk-rule. Intuitively, the
parameter is used to limit the complexity of the covering test, while
k is used to reduce the dimension of the relational space.

2.2 Standard Induction

tE)efinition 2. Given a training sef and a bias windowz, k], the

robust version spaasf £ w.r.t. [z, k] is given by:
Hiw(E) = min(Hyp, <g).

We now examine several semantical properties that clarify the in-
rt.grest of this model in the setting of windowing. In the following
résult, the first property assures that a robust version-space is always
nonempty and well-defined. The second property suggests that, if
possible, the result of robust induction is simply the standard version
space. The third property embodieg@asi-decomposabilitgrinci-
ple which is particularly useful for covering algorithms. Intuitively,
if we could find two subgroups of examples which agree on at least
one hypothesis, then the result of robust induction will be exactly
those hypotheses the two groups agree on. The last property captures
a notion ofquasi-monotonicityvhich advocates the use of specific-
to-general windowing techniques. Namely, it states that if two bias
windows, a small one and a large one, agree on at least one hypothe-
sis, then any solution returned by the small window is guaranteed to

Various formalizations of relational induction have been proposed irP€ & solution for the large window.

the ILP setting. Our framework uses the learning from interpretation$roposition 3. Let E, F, G be sets of examples such than G = @
principle. An expression is called ground if it does not contain anyand ¥ U G = E, and letz, =1, =2 and letk, k1, ko be representa-
occurrence of variable. A ground substitution is a mapping from varition biases such that; < x5 andk; < k.. Then window-based

ables to constants. Ainterpretationis a set of ground atoms. Given
a ground substitutiory, an instancedy of an atomA is true in an
interpretation! if Ay € I. A negative literal-A~ is true in[ is
A~ & I. Arule R is true in[ if there exists a ground substitution
such that all literals inR~ are true inl. Finally, a hypothesid#? is
true in if there exists a rul&R € H such thatR is true in1.

induction satisfies the following properties:

2 1f How (E) £ @ thenHzy (E) = How(E)
3 ML, (F) N HL(G) # @ thenHy, (E) = Hyp(F) N HE . (G)
4 1 HL y (B) NHE ke, (B) # @ thenHy () € Hy ok, (E)

Let Z denote the set of all possible interpretations generated fronfProof. Property 1 follows from definition 2 and the fact thdt,, is

the vocabulary. Alassifieris an assignment froth to {0, 1}, where
0 is the negative class andthe positive class. Any hypothesi$

can be extended to a classifier, also dendfeduch that (1) = 1

iff I is true inH. An exampleis a paire = (I, c.) wherel. is an
interpretation and.. € {0,1}. An examplee is called positive if
c. = 1 and negative otherwise.

Definition 1. Given a set of examplds and a bias windowz, k],
thestandard version spacé E w.r.t. [z, k] is given by:

How(E) = {H € Hor : H(I:) = c. for everye € E}.

never empty (even when = 0 andk = 0). Property 2 stems from
the fact thati(H, E) = 0 forany H € H,..(FE). For property 3, we
only prove that}, (F) N H;,(G) C H,,(E) since an analogue
strategy holds for the dual part. Suppose tHae LHS andH ¢
RHS. Then, there must exid’ € H},(E) such thatd(H', E) <
d(H,E). Sinced(H',E) = d(H',F) + d(H', G) it follows that
eitherd(H', F) < d(H, F) ord(H',G) < d(H,G). In both cases,
this contradicts the initial assumption. Finally, for property 4 Het

wky (B) N H ok, (E). Then, for anyH' € H;, ., (E), we have
d(H',E) = d(H, E). Hence, it follows thaf?’ € H;,,,(E). O



3 WINDOW-BASED LEARNING

In the previous section, we examined window-based induction at tﬂm
logical level: a process that determines the set of possible theori
given the available data and bias. In this section, we examine this n
tion at the algorithmic level. The problem can be formulated as fo
lows: given a sampl& and a bias windov, &, find a hypothesi$!
such thatd(H, E) is minimal. Interestingly, this problem is closely
related to theagnostic learnind9] issue, in which no assumption is
made on the target function. An important point is that, for most in
teresting classes, agnostic learning is known to be intractable. Ev)
the class of monotone monomials is not efficiently learnable unles
RP = NP. Using similar arguments (i.e. reduction to “Set-Cover”)

b

D

o- L.setd = &;

en E=FE — (P(R,E)UN(R, E)) and return to step 2;

€ Input: A training setE and a window biasr, k).
s
2.if P(FE) = @ then goto step 5;

3. find azk-rule R that minimizes the quotie ng_’gl‘; in
case of tie, také? which maximize§P(R, E)];

4.if IN(R,E)| < |P(R,E)| then setH = H U {R}, set

S 5.returnH;

the window-based learning problem can be shown NP-hard.
This computational barrier incites us to seek &pproximation

algorithmsthat run in polynomial time and yet guarantee a bound on
the suboptimal solution for the problem. In light of this approach, we

develop an approximation algorithm for the window-based learnin

method used to find the simplest theories in Occam learning.
To this end, we need additional definitions. LRtE) (N (E)) be

the set of positive (negative) examples which occur in the samplg<? (%)

E. Given aruleR, let P(R, E) (N(R, E)) be the set of all positive
(negative) examples in E such thatR is true inI.. Given a bias
window [z, k] and a training sefF, thepositive costx of [z, k] w.r.t.
E is the maximum number of positivé® (R, F)| covered by any
zk-rule R. The negative cosp? of [z, k] w.r.t. E is the maximum
ratio of negative$N (R, E) N N(R2, E)|/|E| which are mutually
covered by two distinctk-rules Ry andRs.

The algorithm is shown in figure 1. It is important to remark
here that the method performs a greedy search in the spack- of
hypotheses, yet a systematic search in the spack-afiles. Despite

Yi

problem which can be seen as a generalization of the greedy cove

Figure 1: LEARN(E, z, k)

Let R be any member oR and lett = max{7(e) : e € P(R)},
be the iteration when the last positive Bfis covered by the algo-
Fhm. Letp; = |P(R) — (P(R1)U---UP(R;-1))|. We have

t
Z c(e) = Z Z{c(e) :e€ Pe),r(e) =i}
i=1
~ |N(Ri) = (N(R1)U- - -UN(Ri—1))|
|P(Ri)—(P(R1)U---UP(Ri-1))|

(Pz' *Pz‘+1)

=1

t
Pi — Pi+1
SIN(R) B
i=1 v

< IN(R)[In(a)

Notice that the first inequality arises from the heuristic of the greedy
algorithm chosen in step 3. Now |& = {R},--- , R}, } be an opti-
mal solution and leHH* = H U {R,+1} be an extension off such

its apparent simplicity, the algorithm embodies the property that ithat R, | ; is the set of positives not covered B¥. We have

tends to approximate the optimal error to within a logarithmic factor
plusan additional inclusion-exclusion penalty.

Theorem 4. Let|[z, k] be a bias window, leE be a set of examples,
and leta and 3 be the positive cost and the negative cosfof]
w.r.t. E. Now, letG be the hypothesis returned bfARN(E, z, k).
Then for any hypothesH € H;, (F)

d(G, E) < In(a) (d(H, E) + g(w)>

Proof. The demonstration closely follows the “weighted set cover
approximation” proof [4], with two important variations: (1) the cov-
ers can be incomplete and (2) the weights can be dynamic. Part 1
handled using a simple completion method. Part 2 is circumvente
using an inclusion-exclusion approximation technique [13].

We assume here that is clear from the context. Thu®(E) is
abbreviated a®, P(R) is abbreviated a®, and so on. LeR be the
smallest set defined by the following conditions: (1) akyrule R
is an element oR and (2) any subsef of P is an element oRR. By
definition, we setP(S) = S andN(S) = S.

Now, letG = {R1,-- -, Ry} be the solution found by the greedy
algorithm and leG* = G U {Ry+1} be an extension a¥ such that
Ry+1 is the set of positives not covered 1By, For each positive:

g+1

>

IN(R:) = (N(R1) U~ - UN(Ri—1))|
|E|

(e) : 7(e) =i}

d(G, E)

< In(a) (d(H, E)+ ﬁ”<¢ﬁlla<w)>

TEhe last inequality uses the inclusion-exclusion approximation tech-
digue. Notice that if3, the ratio of false positives shared betwegn
rules, is small then the inclusion-exclusion term is close to zefro.

A second important aspect of this algorithm is that its complexity
is polynomially bounded by the window parameterandk. Let p
be the total number of predicateghe total number of constants, and
a the maximum of the arities in the set of predicates. duebe the
number of examples ik andg the maximal number of ground atoms
in any example. Notice thatis in O(pc®). For anyzk-rule R and
any example:, one can test whethét is true ine by enumeration in

in P, let 7(e) be the iteration where is covered the first time. Each fime O(kg“‘).al\/llcoreover, the total number of zk-rules is bounded
positive is assigned a cost only once, when it is covered the first time?y (P(z + ¢)*)". If we assume that is very small by comparison

Letc(e) be the cost ok. If e is covered the first time by, (. then

_IN(Reo) = (N(B1) U+ U N(Rye)-1)
[P(Ro (o)) — (P(Ra) U+ U P(Byo )]

c(e)

with ¢, thenr is in O(g*). Thus, using onlyO(myg) space, step 3
requires at mosP (mrg®*t*) time. Step 4 requires onlp(m) time.
Finally, since there are at moSt(m) iterations in the main loop, the
overall time bound is therefor@(km?2g*+*).



4 WINDOWING

Based on the learning algorithm developed in the previous sectig
we now turn to the main windowing scheme. The idea is to start frof
a small window[zo, ko] and to induce a hypothesis from this bias. We
then adjust the window by modifying the parameterand k, and
induce a new theory from this window. This process is iterated unt
the best current hypothesis is judged satisfying or a maximal bour
[n, kn] is reached. In formal terms, thveindow selectiorproblem
can be stated as follows: given a set of examples and a collection
windows|[zo, ko] < [z1, k1] < - -+ < [zn, k. Organized in a lattice,
identify the optimal window from which to choose the final theory.
This setting is the realm afnodel selectiortechniques used to
find the optimal hypothesis class for a given problem. These met

=

il ,
hd 3.setG

Input: A training setE, an unlabeled séf, a minimal window

n [0, ko] and @ maximal windovi,,, k]

)

1.set[z, k| = [z0, ko], E' = E, G’ = @ anddpin = 00;
2.setG = G’ ULEARN(E', z, k) andd, = d(G, E);
G’ UEXTRACT(G) andE’ = E' — P(G');
4.if dy < dumin then setd = G anddumin = d;
of 5, lexicographically incremeritz, k;
6.if P(E') # @ and[z, k] < [zn, ks] then return to step 2;
7.returnH;

ods can broadly being divided into three categori2ata-oriented

Figure 2: Relational Bias Windowing

methodslike cross-validation, use separate data to learn and validate
hypotheses. Yet, they are often computationally intensive and redud® EXPERIMENTS

the available data for learninGomplexity penalization methoslsek

to avoid this problem by using the same data for training and valida¥/e have evaluated the windowing algorithm by performing experi-
tion, but penalize the hypotheses which are likely to overfit using d"€NtS on the Mutagenesis dataset, a well-known ILP problem used
complexity parameter, such as the VC dimension. However, they typaS & benchmark test [10]. In the dataset, each exam_ple consists of a
ically produce overly broad bounds especially in relational learning structural description of a molecule, and some numerical information

Finally, metric-based method45] lie in-between by taking advan-
tage of theunlabeledexamples, in order to introduce a complexity
penalty. Since real-world databases typically contain large amoun
of unlabeled data not used by supervised learners, this technique
worth to be investigated in relational learning.

In our framework, a metric-based method can easily be conceivef
by taking opportunity of the metric introduced in window spaces.

Given two hypothese#, H’ and a set of examples, let
_ HeeE:H() # H'(I)}|
|E|

Now, suppose we are given a training &#and a selU that con-
tains E anda nonempty set of unlabeled interpretations. Hef, be
the hypothesis induced by the learning algorithm@rand [z, k.
Theadjusted distancbetweenH ., andE (w.r.t. U) is defined by

max dU(Hack7 HCLLkL)

[z, kol <[z ki]<[z,k] dE(H:ck'7 bekl)
Intuitively, the method attempts to penalize complex hypothese

dg(H,H')

d(Hek, E) = d(Hzx, E)

describing its biochemical properties. The available data consists of
233 molecules of which 188 are “regression-friendly” and used for
dcaining and validation, and 45 are “regression-unfriendly” and gen-
egally not used by ILP learners. In our setting, the first pool is viewed
as a labeled set of examples, which have to be classified into muta-
enic and non-mutagenic ones, while the second pool is an unlabeled
set examples used by the metric-based selection heuristic.

Four different sets of background knowledge have been identi-
fied for this problem and range frofd; which uses only informa-
tion on atoms and bonds t8, which involves high-level informa-
tion on the molecules. We have focused on descripti®nsBs and
By. For numerical data we have employed an “equal-width binning
method” and for estimating predictive accuracy we have used the 10-
fold cross-validation suggested by the authors.

Figure 3 reports the accuracy and run-time results obtained by
the windowing algorithm. The times are measured on a Pentium IV
1GHz. For each experiment, the maximal windpw, k] is pro-
gressively incremented until reaching a upper bound wériables
Per rule and literals per rule. In light of these results, we remark

which have an erratic behavior by comparison with simpler theorieghat bias windowing provides a natural trade-off between accuracy
generated previously. The windowing algorithm, presented in figureand efficiency. Indeed, the learner is able to return accurate theories
2, is based on this principle. It operates a lexicographic search in theven for strong biases. Furthermore, we observe that after a period
lattice of windows and iteratively attempts to identify the best currentof underfitting the algorithm converge on hypotheses which are sta-
theory using the notion of adjusted distance. TherigacT proce-  ble and effective. Interestingly, the length of this period is correlated
dure implements the quasi-monotonicity property of window spaceswith background knowledge. For poorly informed domains sBeh
Given a hypothesigl = {Ri,---, Rx}, the procedure returns the the algorithm needs large windows to provide accurate learners. On
maximal subsequenc®,, --- , R; of rules which contain no false the other hand, foi34 the algorithm quickly converges on small
positive (i.e.N(R;, E) = @,1 < j <1). windows that lead to very accurate hypotheses. This phenomenon is

A key feature of metric-based selection is to provide a guaranteelosely related to phase transition effects reported in [8]. In particular,
on the performance of the algorithm. L&) be thegeneralization  the variance of underfitting periods observed in windowing corrobo-
error of H. Then, under some reasonable assumptions, the algorithmates the evidence that an appropriate use of background knowledge
cannot overfit the optimal error by a factor much greater than tends to limit phase transition effects.

The table below compares the performance of windowing with the
standard learnersdiL and RROGOL, a recent greedy-based learner
IcL [17] and the genetic learner GEY [3]. Note that L provides
a multi-class theory that combines the hypotheses learned from each
separate class. From this table, it can be concluded that windowing
generates theories which are stable and very accurate. Notably, for
descriptionsB3 and B4, windowing finds in few seconds theories
for which effectiveness encompasses the best current techniques.

Theorem 5. Let H,x be the optimal theory in the sequence gener-
ated by the algorithm and |dt,.,/ be the hypothesis selected by the
algorithm. If [z, k] < [2/, k'] andd(H .k, E) < e(Hi) then

d(Hz’kH E)
iy ) )

Proof. By specialization of proposition 2 in [15].

e(Hyzr) < (2 +
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Figure 3: Results in the Mutagenesis domain
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of the window is enlarged. Finally, the notion of bias window could
be extended by incorporating the atoms which are relevant for the
application domain (see e.qg. [2]). In this setting, forward selectior{18]
approaches such as feature selection would be particularly interest-
ing for governing exploration in the lattice of windows.
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