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Abstract. This paper investigates the problem of conservation of com-
binatorial structures in genome rearrangement scenarios. We give a char-
acterization of a class of scenarios that conserve all common intervals,
called commuting scenarios, and a characterization of permutations for
which commuting scenarios exist. We show that measuring conservation
of common intervals can be useful tool in assessing the quality of rear-
rangement scenarios, by investigating in detail three specific scenarios
involving the mouse, rat and human X chromosomes.

1 Introduction

The reconstruction of evolution scenarios based on genome rearrangements has
proven to be a powerful tool in understanding the evolution of close species,
especially mammals. For example, in the last two years, several very interesting
evolution scenarios have been proposed between the mouse and the human [15],
and the between human, the mouse and the newly sequenced Norway rat [7,10],
using the MGR and GRIMM software [6,17].

MGR relies heavily on sorting signed permutations by inversions and the re-
lated median problem [14]. However, the number of parsimonious sequences of
inversions can be exponential [3]. It is then natural to ask for some additional
criteria that can help to select putative scenarios. We are interested in scenarios
that do not break combinatorial structures, defined in terms of genomic seg-
ments, that are conserved in both chromosomes. Indeed, if two genomes share
a common feature, it is likely that their common ancestor did too, which makes
evolution scenarios that conserve this feature interesting.

In this work, the combinatorial structures that we consider are common inter-
vals [18,12]. We give a characterization of a class of evolution scenarios between
two chromosomes that are both parsimonious and do not break any interval of
genomic segments that is common to the two chromosomes. We call this class
of scenarios commuting scenarios, and we describe a linear time algorithm to
decide if a commuting scenario exists, and compute it if it does exist.

Sections 2 and 3 present the basic concepts and definitions. In Section 4,
we discuss results on human, mouse and rat chromosomes X [10], highlighting
the role of common intervals in assessing the quality of evolution scenarios. The
main theoretical results are presented in Section 5.



2 Rearrangement Scenarios

A signed permutation is a permutation on the set of integers {0,1,2,...,n} in
which each element has a sign, positive or negative. An inversion of an interval
of a signed permutation inverts the order of the elements of the interval, while
changing their signs. In the following, we will assume that genomes are modeled
by signed permutations, and that rearrangement operations are restricted to
inversions. A rearrangement scenario between two or more genomes is given by
an unrooted tree whose nodes are labeled by permutations and such that each
of the given genomes labels a leaf, and the permutations labeling two adjacent
nodes differ by one inversion.

The number of vertices of the tree is one more the number of rearrange-
ments of the scenario. A scenario with a minimum number of rearrangements
is called an optimal scenario. For example, given the three permutations G; =
(123456), G =(132546), Gz = (15214 3 6), two rearrangement
scenarios for G;, G2 and G5 are proposed in Fig. 1, each of them having 6
rearrangements.

G G2(1§§546)
(132456 (13245 6)
(132156)

(1342586)
G3®(152436)

(a) (b)

Fig. 1. Two rearrangement scenarios between permutations G1, G2 and G3.

With two permutations, there exist polynomial algorithms to compute an
optimal scenario [11,13,2,16], but the problem becomes NP-hard for more than
two permutations [8], although good heuristics are available [14].

Usually, there is more than one optimal scenario, even with different tree
topologies. For example, Fig 1(b) gives an alternate scenario for genomes Gy,
G2 and (3, that yields a different median, or common ancestor, for the three
species. Is one scenario “better” than the other? When dealing with real genomes,
only further insight from biology and evolution history will allow to completely
settle this question. However, we will show that tracking some combinatorial
structures along different scenarios can help to partially assess the quality of a
scenario. For example, using data from chromosomes X of the mouse, human and
rat [10], we were able to detect a major difference between two mouse assemblies
— a transposition of two blocks of more than 300k base pairs.

3 Common Intervals and Commuting Inversions

A point p - q in a permutation is defined by a pair of consecutive elements in the
permutation. When a point is of the form i-4+1, or —(i +1) - —4, it is called an
adjacency, otherwise it is called a breakpoint.



An interval of a permutation is defined either by giving its endpoints, or by
giving the set of its (unsigned) elements {|p;|,. .., |p;|}. A non-empty interval of
the identity permutation can also be specified by giving its first and last element,
such as [¢..5], in which case it is then understood that all elements between 7 and
7 belong to the interval.

The notion of common interval was studied among others in [12] in order to
model the fact that a group of genes can be rearranged in a genome but still
remain connected.

Definition 1. A common interval of two signed permutations P and @ is a set
of two or more integers that is an interval in both permutations.

For example, the common intervals of permutations Go = (1 3 2 5 4 6) and
Gs = (1 5243 6) are {2,5}, {2,4,5}, {2,3,4,5}, {1,2,3,4,5}, {2,3,4,5,6},
and {1,2,3,4,5,6).

Definition 2. Two distinct sets of integers A and B are said to commute if
they trivially intersect, that is, AC B, or BC A, or ANB = .

The above definition, together with the fact that both intervals and inversions
can be represented as sets of integers, is central in the links we establish between
inversions, commutation and conservation of intervals. Indeed, an inversion that
commutes with an interval does not change the composition of this interval,
while it may change the order of the elements within the interval.

Definition 3. The score of a scenario between two signed permutations P and
Q is the ratio of inversions that commute with all common intervals of P and @Q
over the number of inversions in the scenario.

For example, each of the rearrangement scenarios of Fig. 1 induces three
scenarios with two permutations. The scores are given in Table 1, and show that
the second scenario is slightly better, in terms of conservation, than the first.

Scenario (a)|Scenario (b)
G1 to Gs 0/3 4/4
G1 to G3 2/5 2/4
G2 to G3 2/4 2/4
| Total | 4/12 [ 8/12 ]

Table 1. Conservation scores of the two evolution scenarios of Fig. 1.

Efficient computation of scores is based on the notion of irreducible intervals.
A common interval I between P and @ is an irreducible interval if there is an
adjacency of P contained in I, and I is the smallest common interval between P
and @) that contains this adjacency. For example, irreducible intervals between
G1 and G, of Fig. 1 are: {1, 2,3} (for adjacency 1-2), {2,3} (for adjacency 2-3),
{2,3,4,5} (for adjacency 3 - 4), {4,5} (for adjacency 4 - 5), and {4,5,6} (for
adjacency 5 - 6). Any common interval is the union of a sequence of irreducible
intervals such that two consecutive intervals intersect. This implies:



Proposition 1. An inversion breaks a common interval if and only if it breaks
an irreducible interval.

Since, there are at most n irreducible intervals between two signed permutations
of {1,2,...,n}, and they can be identified in linear time [12], Proposition 1
implies that computing scores can be done efficiently.

4 Reconstructing the Ancestral Chromosome X

The scenario proposed in [10], that attempts to reconstruct a putative chromo-
some X for the common ancestor of man, mouse and rat, motivated our investi-
gations in conservation of common intervals. The data, based on the conservation
of synteny blocks, yields permutations on 16 integers for each species.

This scenario, displayed in Fig. 2, has a remarkable feature: there is a common
interval between the three species, {5,6}, that is not conserved in the interme-
diate permutations!

Human 2 3 9 10 11 12 13 14 15 16
2 3 9 10 11 12 13 14 15 16

3 2 9 10 11 1213 14 15 16

3 2 9 10 11 12131415 16

3 2 §741314E16

Median 39 8 7|6|4 131415 16
Mouse 6 3 9 101112 7 8 2
E 391011127 82

E 39 101112 7 8 2

12 574 13 1785

1 3 51413 1(6]7 8 2
Median 1 3 5_4 13 14 15 16
Rat 13 1 [5] 13 9 1011141516
EZ 13 9 1011141516

31 |6] 13 9 1011141516

3 1 [6] 13 9 1011141516

3 1 [6] ITT0 9 3 T 1471516
Median 1 3 9 101112287413141516

Fig. 2. The evolution scenario for human, mouse and rat X Chromosome of [10]

The first column of Table 2 gives the scores for the three corresponding
pairwise scenarios, which are very low, even as low as 2/10 in the scenario trans-
forming the rat chromosome X into the human chromosome X. The loss of the
common interval {5,6} in the intermediate species clearly has a damaging effect
on the scores. It also induces three independent reconstructions of this interval
along the three branches that go from the median ancestor to the human, to the
mouse, and to the rat.



In such a situation, it is possible to question several hypothesis of the model:
the parsimony assumption, the evolutionary model, that considers only inver-
sions, or, more simply, the data. Questioning the data was the easiest experiment,
since the positions of the blocks were available. We soon realized that the mouse
assembly used to construct the data, (assembly 30 of UCSD), differed from a
more recent version, (assembly 32 of UCSD) notably on the respective position
of synteny blocks 5 and 6, that are transposed?.

Using the same synteny blocks in the order given by assembly 32 of mouse,
and MGR we obtained an alternate scenario, with much better scores, as the
second column of Table 2 shows: the total score increased from 10/30 to 18/30.
Finally, we defined our own data set, that resulted in three permutations on
22 elements, as follows: we considered the genes of chromosome X in human
(assembly 35.1 of NCBI), mouse (assembly 33.1 of NCBI) and rat (assembly
2.1 of NCBI), and we identified the genes common to the three genomes on
the basis of their functional annotation, by using both confirmed and predicted
annotations. The scenario we computed on this data set, described in Appendix
A, is displayed in Figure 3, and the corresponding scores in the third column of
Table 2

Human 14121315 4 3 2 5 6 161110171819 9 8 71 20 21 22
141213715 2 3 4 5 6 161110171819 9 8 71 20 21 22
14121315 2 3 4 5 6 101116171819 9 871 20 21 22
14121315 2 3 4 5 6 101116171819 9 8 71 20 21 22
14121315 2 3 4 5 6 101116171819 9 8 71 20 21 22
14131215 2 3 4 5 6 101116171819 9 8 71 20 21 22
14131215 2 3 4 5 6 101116171819 9 871 20 21 22
14131215 7 8 9 191817161110 6 5 4 321 20 21 22
14131215101116 171819 9 8 7 6 5 4 321 202122
14131211101516171819 9 8 7 6 5 4 321202122
14131211101516171819 9 8 7 6 5 4 321202122

Median 10 11 1213141516 171819 9 8 7 6 5 4 321 20 21 22

Mouse 13101211 8 9 19181716 1514 7 222120123 4 5 6
13101211 8 9 191817161514 7 222120123 4 5 6
13101211 8 9 191817161514 7 222120123 4 5 6
13101211 8 9 191817161514 7 6 5 4 32120 21 22
13101211141516171819 9 8 7 6 5 4 321 20 21 22
10131211141516171819 9 8 7 6 5 4 3212021 22
10111213141516171819 9 8 7 6 5 4 3212021 22

Median 10 11 1213141516 171819 9 8 7 6 5 4 321 20 21 22

1 2 345 6 7 8 910111213 141516 17 18 19 20 21 22
1 23 45 6 7 8 91011121314 151617 18 19 20 21 22
123 45 6 7 8 91011121314 151617 18 19 20 21 22
5 4 3 2 1202122

3 2 1202122

19181716 151413121110 9 8 7 6
Median 10 11 1213141516 171819 9 8 7

Fig. 3. The scenario from our 22 blocks data set

The conservation score we proposed and illustrated in this section is a first
attempt to measure the conservation of combinatorial structure in evolution

3 The mouse assembly 33 of UCSD agrees with the positions given in assembly 32.



scenarios, but raises many interesting questions. For example, the possibility to
weight inversions that break common interval with respect to the position of the
corresponding edge in the tree, or with respect to the number of broken intervals,
should be considered. The interpretation of scores on permutations of different
sizes, as we have in our example, is another interesting question.

Mouse 30|Mouse 32|Mouse 32 + 22 blocks
Human to Mouse| 4/10 8/10 15/18
Human to Rat 2/10 6/10 13/15
Rat to Mouse 4/10 4/10 5/11

| Total | 10/30 | 18/30 | 33/44 |

Table 2. Conservation scores of the scenario presented in [10], of a new scenario using
the assembly 32 of the mouse, and of the scenario based on our gene blocks.

5 DPerfect Scenarios

A perfect scenario is a scenario in which no inversion breaks a common interval.
The construction of perfect scenarios is discussed in [9], where the problem is
shown to be computationally difficult. Perfect scenarios always exist between two
permutations, but are not necessarily optimal. They can even be trivial when the
two permutations have few common intervals. For example, any scenario between
permutations (1 2 3 4) and (3 1 4 2) is perfect. However, permutations that
arise from genomic data of relatively close species share lots of common intervals,
and some rearrangement scenarios have striking features in terms of structure
conservation.

In this section, we study a class of perfect scenarios, called commuting sce-
narios, and we show that deciding the existence of optimal commuting scenario,
and constructing them, can be done in linear time.

5.1 Commuting scenarios

Definition 4. Let ry,...,r be a sequence of inversions that transforms a per-
mutation P into a permutation Q). The sequence r1,...,T is a commuting sce-
nario if, for every i,j € [1..k], the inversions r; and r; commute and are distinct.

A beautiful example of a commuting scenario, is given in [7] where a region
on human chromosome 17 (denoted by H below) is compared to a region on
mouse chromosome 11 (denoted by M). The resulting permutations are:

H=(12345678910111213 14151617 18 19),
M=(786543121001112T131615 14 17 18 19),

The mouse chromosome M can be obtained from chromosome H by the com-
muting scenario of Fig. 4, in which all the inversions are identified by underlining
the set of inverted integers. Note also that we choose to represent the scenario
by inversions applied to the identity permutation. This will be helpful in proving
and understanding properties of commuting scenarios.



1234567891011 12 13 14 15 16 17 18 19

Fig.4. A commuting scenario transforming H into M.

The fact that one could simultaneously underline all inversions in Fig. 4
is a direct consequence of the fact that all inversions commute, and implies
the following lemma. This example highlights many properties of commuting
scenarios. For example, applying the inversion from the largest to the smallest
transforms H into M by always inverting segments of H composed of consecutive
integers. More important for us is the following lemma.

Lemma 1. Let S be an optimal commuting scenario between two permutations
P and Q. An interval I is a common interval of P and Q if and only if all
inversions of S commute with I.

Proof. First, it is immediate that if each inversion of S commute with I, then
is a common interval between P and Q.

On the other hand, since § is a commuting scenario, one can first apply all
inversions that commute with I, which leads to a permutation P’ in which I is
an interval. Let R be the set of remaining inversions, those that do not commute
with 1. If all inversions in R are disjoint, there are at most two of them, and it
is easy to see that applying them to P’ yields a permutation in which I is no
longer an interval.

Suppose R contains at least two non-disjoint intervals, and that these inter-
vals intersect I at its right extremity — the argument is completely symmetrical
if we consider the left extremity. Let r be the largest interval that intersect I at
its right extremity, s the second largest, and I’ the non-empty set of elements of
I that are at the left of 7. Since the scenario is optimal, s is strictly contained in
r. Therefore, r can be partitioned into disjoint intervals, u, s and v, such that u
is contained in I, v is disjoint from I, and at least one of 4 and v is non-empty.

Applying both r and s to P’ exchange the intervals 4 and v, leaving s in
the middle. By the choice of r and s, this structure will remain unchanged for
the rest of the sorting procedure, except for possible inversions within s. Note
also that all elements of I’ will remain to the left of . If u is not empty, the
elements of s that are not in I will end up between I’ and w. If v is not empty,
the elements of v will end up between I' and s N I. Thus I is not an interval in
@, and cannot be a common interval of P and Q.

O

Proposition 2. Optimal commuting scenarios between two permutations P and
Q conserve all common intervals of P and @ in all intermediate permutations.

Proof. This follows immediately from Lemma 1. O

The scenario of Fig. 4 is also an optimal scenario. It is not true, in general,
that if an optimal commuting scenario exists, then all optimal scenarios are
commuting. An example is again given by data from human and mouse. Consider
the first 8 segments of H and M: one can transform H into M with the sequence
of inversions of Fig. 5, that is an optimal scenario, but not a commuting one.
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Fig. 5. A non commuting scenario transforming the first 8 segments of H into M.

Deciding whether an optimal commuting scenario exists is therefore not a
trivial question. We give, in the following section, a characterization of permu-
tations that admit optimal commuting scenarios.

5.2 Existence of Optimal Commuting Scenarios

The results of this section rely on many of the concepts that have been developed
around the sorting by inversion problem. The terminology and conventions we
follow are presented in [5].

Note. In this section we consider signed permutations of {0,1,...,n} that start
with 0 and end with n.

A first remark is that, since an optimal commuting scenario does not break
any common interval by Proposition 2, such a scenario can only exist for permu-
tations that can be optimally sorted component by component. We first settle
the case of oriented components in Theorem 1 that relates three fundamental
types of intervals: common intervals, inversions of a commuting scenario, and
the elementary intervals of the sorting by inversion theory, that appear here as
the vertices of the overlap graph.

Theorem 1. Let C be an oriented component of a permutation. The three fol-
lowing statements are equivalent.
1. C can be sorted by an optimal commuting scenario.
2. The overlap graph of C is a tree.
3. C can be sorted by an optimal scenario in which each inversion is a common
interval.

Before proving Theorem 1, we establish some properties of overlap graphs.

Lemma 2. Any leaf of an overlap graph is an oriented interval, and a common
interval.

Proof. A leaf is an interval that overlaps only one other interval. Let m and
M be the minimal and maximal values of a non-empty interval I,. Then I,
always overlaps both I, and In. If I, is a leaf, we must have either p = M or
p=m — 1, implying in both cases that the interval is oriented, since it contains
exactly one of its extremities. If I, is not a common interval, then |[I,| > 2
and I, does not contain all the integers between m and M. Let m' and M' be,
respectively, the smallest and largest missing integers. Note that one can have
m' = M'. Then I, overlaps I,,_1 and Ipp, and therefore can not be a leaf. O

Lemma 3. FErasing a leaf of an overlap graph that is a tree is always a sorting
1NVersion.



Proof. Erasing a leaf never disconnects a tree, and we only have to check that
the tree contains at least another oriented interval after the leaf has been erased.
If a leaf I, overlaps I, and I, is unoriented, then applying I, orients I,. If I,
is oriented and is the only other leaf (i.e, the graph contains only two vertices
I, and I,), then I, = I,, and the component is sorted after erasing I,. If I,
is connected to exactly one other node, I, would become an unoriented leaf in
the new tree, which is impossible by Lemma 2. Thus I}, is connected to at least
two other nodes, implying at least two other leaves, therefore two other oriented
intervals. O

Proof (Theorem 1).

(1) = (2). Suppose that an oriented component can be sorted by an optimal
commuting scenario. We will show, by induction on the length of the scenario,
that it must be a tree. It is certainly true for scenarios of length 1, since the
overlap graph has two nodes. We will show that there always exists an inversion
r that does not contains any other inversion of the scenario, and that necessarily
creates an adjacency. Since r can be applied first, this implies that r is an
elementary interval and a leaf in the overlap graph, and the result follows by
induction. If all inversions are disjoint, then the leftmost certainly creates an
adjacency. Otherwise, let r be a smallest inversion, in terms of the number of
elements it inverts, included in another inversion, and s the smallest inversion
containing r. As the inclusion of r in s is strict, then r creates an adjacency
between one of its elements and an element of s not included in 7.

(2) = (3). It follows immediately from Lemmas 2 and 3: erasing a leave
always yields a tree.

(3) = (1). Let S be a set of reversals that transforms permutation P into
perrmutation @, and such that all inversions of S are common intervals of P
and Q). Apply to P a maximal subset R of commuting inversions from § yielding
permutation P'. By Lemma 1, all common intervals of P and P’ commute with
all inversions of R. Let R’ be the set of remaining inversions. If R’ is not empty,
there is at least one inversion s that is an interval of P’, and that does not
commute with an inversion of R. Therefore, s cannot be an interval of P, and is
not a common interval of P and Q.

O

In order to have a characterization of all permutations that admits optimal
commuting scenarios, we must next deal with unoriented components. In this
case, one inversion is allowed to orient the component, but, as we saw in The-
orem 1, the overlap graph of the resulting component must be a tree, which
restricts severely the structure of the overlap graph of the original unoriented
component: it must contain only one cycle. This imposes to unoriented compo-

nents the following reduced form 4.

4 A component is reduced if all the smaller component contained in it have been sorted,
and all the resulting adjacencies collapsed into single elements [3].



Theorem 2. An unoriented component admits an optimal commuting scenario
if and only if it can be reduced to a permutation of the form

02k 26—1 ... 321 2k+1).

Proof. Let P be a positive permutation P with n breakpoints and one com-
ponent. If P can be optimally sorted with a commuting scenario S, then each
inversion of S can be applied first, and must create a permutation whose overlap
graph is a tree. We will show that the inversions of S are either single elements,
or all the elements of the interval [1..n — 1], implying that P is of the form
(0 n—1n—-2 ...3 2 1 n), and that the length of a commuting scenario is n.

Let r be an inversion of S, with minimum element m and maximum element
M, then applying r to P creates the oriented elementary intervals I/, ; and
I}, that are leaves of the resulting overlap graph. By Lemmas 1 and 2, those
intervals must commute with r, implying that r also commutes with I,,,_; and
Iy

If r commutes with I,,,_;, then either m — 1 is immediately to the left of
interval r, or m is the first element of . Similarly, if » commutes with I;, then
either M + 1 is immediately to the right of interval r, of M is the last element
of r.

If m is the first element of r, and M the last, interval r will be a component
unless m = M. This case produces the inversions consisting of a single element.
If m — 1 is immediately to the left of r, and M + 1 is immediately to the right,
then [m — 1..M + 1] is a component, thus m —1 = 0, and M + 1 = n. This case
produces the inversion of the interval [1..n — 1].

Finally, if m — 1 is immediately to the left of r, and M the last element of
r, then [m — 1..M] is a component, implying that M = n, which is impossible.
Similarly, M + 1 is immediately to the right of r, and m the first element of r,
implies m = 0, which is also impossible.

Applying all the possible n commuting inversions to the identity permutation
yields the permutation: (0 n—1 n—2 ...3 2 1 n). If n is odd, the inversion
distance is n, thus the permutation can be sorted by an optimal commuting
scenario. However, if n is even, the permutation has two cycles, and there exists
an optimal scenario of length n — 1. O

5.3 Algorithm

We now have all the elements needed to construct a linear time algorithm that
will decide if a permutation P of size n can be sorted with an optimal commut-
ing scenario, and that will compute the necessary information to obtain such a
scenario, if it exists.

General overview. The overlap graph can be processed component by compo-
nent, and Theorem 2 addresses the case of unoriented components.

In the case of an oriented component, whose overlap graph C has k vertices,
the algorithm given in Fig. 6 decides, in linear time, if C' can be sorted by a

10



commuting scenario. If such a scenario exists, the algorithm computes, in linear
time, the order in which the vertices of the overlap graph must be erased to
produce a commuting set of inversions.

1. Build iteratively the edges of C as long as there are at most k — 1.

If C has at least k edges, then C is not a tree.

3. Else, remove iteratively the leaves of C, which produces the sequence of inver-
sions necessary to sort C.

N

Fig. 6. Algorithm 1 (Main algorithm).

As one can see, the core of this algorithm is step 1., that ensures that one
can decide if the component can be sorted with a commuting scenario after
considering at most k edges. The last step, that produces the scenario, can
clearly be done in a single traversal of the overlap tree, and thus in O(k) time.
So we need to describe how we identify at most & edges of the overlap graph in

time O(k).

Computing edges of the overlap graph. Let (¢;,r;) be the indices, respectively, of
the left point and right point of the elementary interval I; of C'. The first step is
to compute a sequence S of the 2k £;’s and r;’s in such a way that the following
property holds: two intervals I, and I, overlap if and only if in S ¢, appears
between £, and r, and r, appears after r,. This can be done in (k) worst-case
time.

Once the sequence S is built, the following algorithm computes at most m
edges of the overlap graph during a single pass on S. One denotes by S; the it*
element of S and m the maximum number of edges one wants to produce.

1. Let ¢ = 1.
// Invariant: there are only £4’s at the left of S;, and all of them have their
corresponding rq’s at the right of S; or at S;.
2. While ¢ < 2n and less than m edges have been computed do
3. If S; = rp, for some p then
4. Let S; = ¥p.
5. For every ¢, located between S; and S; do add an edge (p,q).
6. Remove from S the elements ¢, and rp.
/] This last step ensures the invariant still holds

Fig. 7. Algorithm 2 (Computing edges of the overlap graph).

Using the appropriate data structures to encode S, such as a double-linked
list, one can implement this algorithm in order that instruction 6, that removes
elements of S, is done in ©(1) time, and that instruction 5, that visits all elements
between £, and rp, is done in time proportional to the number of these elements.
The invariant ensures that the elements visited between £, and r, are exactly
the £,’s such that the corresponding r,’s are located after r,. This leads to the
following lemma:

11



Lemma 4. For every m, Algorithm 2 computes at most m edges of C' in O(m+
k) worst-case time.

Theorem 3. It can be decided, in ©(n) time and space, whether a signed per-
mutation P onn elements can be sorted by an optimal commuting scenario. If an
optimal commuting scenario exists, one can compute the corresponding sequence
of oriented inversions in ©(n) time and space.

Proof. Given P, we can process it component by component. The case of unori-
ented components, that can be detected in @(n) time [4], has been addressed
in Theorem 2 and can be solved in ©(n) time. Next, one needs to compute the
set of vertices of each component of the overlap graph, and this can be done in
linear time using [4,1]. Then we apply Algorithm 1, where step 1 is done with
Algorithm 2, and step 3, if necessary, is done during a depth-first traversal of the
overlap graph of C where each leaf is processed — the corresponding inversion
is added to the scenario — during its first visit. Steps 1 and 3 take O(k) time
if the current component has k vertices, by definition of a depth-first traversal
and Lemma 4, which leads to a total ©(n) time complexity to build the forest of
trees that composes the overlap graph and iteratively remove the leaves of this
forest. O

6 Conclusion

We described in this paper a class of perfect scenarios, the commuting scenarios,
and we showed that one can decide in linear time whether a signed permuta-
tion can be sorted by an optimal commuting scenario. However since a perfect
scenario is not necessarily commuting, it is still an open question to decide in
polynomial time if a permutation can be sorted by an optimal perfect scenario.
It would also be interesting to have more information on how large is the class
of permutations that can be sorted by commuting scenarios. This would help in
assessing the significance of optimal commuting scenarios with respect to other
optimal scenarios. Here, we focused on optimal commuting scenarios, and the
class of non-optimal commuting scenarios should be investigated. Indeed, every
permutation can be sorted by a perfect scenario, but it is not true that every
permutation can be sorted by a commuting scenario. Finally, it should also be
noted that the best time complexity for computing an optimal scenario for a
general permutation is currently (ny/nlog(n)) [16]. Our algorithm is the first,
as far as we know, that achieves linear-time complexity for a non-trivial class of
signed permutations.
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Appendix A. The 22 gene blocks of the new human/mouse/rat scenario

We give here the list of the first gene of the 22 blocks of genes we used in
our study of the human/mouse/rat X chromosome evolution. The below table
has the following format: the first column gives the integers associated to the
22 genes we consider, the next three columns present the rat data (gene/locus
name, orientation and position) followed by three columns for the mouse and
three columns for the human (assembly 34.3 for the human genome, assembly
32.1 for the mouse genome and assembly 2.1 for the rat genome).

1 [[Bircd -] 3013140|[Birc4 +] 33413632[[BIRC4  |+]121691803
2 |[Synl +[ 12517799][Syn1 - 19413738[[SYN1 - | 46478245
3 |[Sytl5 -] 24886677|[Sytl5 - 8475502|[SYTL5  |+| 36924044
4 [[Cybb -1 25568041]|Cybb Z| 7985479|[CYBB  |+| 36670221
5 |[Ebp +| 26384668|[Ebp - 6745931|[EBP +| 47426239
6 |[Gdf-9b -1 29057402||Bmpl5 - 4973481|[BMP15  |+| 49570590
7 ||Pls3 -1 29923507|[Pls3 -1 65568249([PLS3 +[113559762
8 |[TI13ra2 -1 30559317|[T13ra2 - [135823846([ILI3RA2 |- |113002791
9 |[[Dex +| 34649731]|Dex - [132129216][DCX - 109300978
10|[Ragb -1 38406475|[LOC245670] +|141432864]RRAGB  |+| 54711109
11|[Pfkfbl +] 39892044 Pfkfbl +]138292880|[PFKFB1 |- | 53926381
12|[LOC317435|+| 42360000([APXL +(140920000{[APXL -1 9250000
13[[Midl - | 44805419|[Mid1 +|157816113|[MID1 -1 9827653
14][LOC302711]+| 63450000([Thlix +| 67700000|Thlix +| 8845000
15/ Dmd +| 71574635/|Dmd +| 73462214|[DMD - 30498771
16][Magedl |- | 82127336|[Magedl |- | 84274362|[MAGEDI |+| 50553552
17|[Athgefd |- | 82667648|[Arhgefd |- | 84771512||ARHGEF9|- | 61721639
18[[Slc16a2 |- | 91773989|[Slc16a2 |- | 93602023[|SLC16A2 |+| 72507876
19([Atrx -1 93979545[[Atrx - 95705534|[ATRX - | 75517065
20[Xpnpep2  |+|134548393|[Xpnpep2  |+| 39428571|[XPNPEP2 |+|127578549
21|[LOC367956|+|147367900||Gm366  |+| 51313500|[LDOCI | - |138963500
22||Frrl +(154829464||Fmrl +| 58282553|[FMRL  |+|145661196

M
Hu

This data set induces the three following permutations (repectively, from top
to bottom, for the rat, the mouse and the human), where the mouse chromosome
X is represented reversed, in order to correspond to the evolution scenario given
in Appendix C:

Rat= ( 1
ouse = ( 131
man= ( 141
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