
HAL Id: lirmm-00108829
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108829

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Exception Handling in Multi-Agent Systems
Frédéric Souchon, Christophe Dony, Christelle Urtado, Sylvain Vauttier

To cite this version:
Frédéric Souchon, Christophe Dony, Christelle Urtado, Sylvain Vauttier. Improving Exception Han-
dling in Multi-Agent Systems. SELMAS 2003 - Software Engineering for Multi-Agent Systems II, Feb
2004, Portland, United States. pp.167-188, �10.1007/978-3-540-24625-1_10�. �lirmm-00108829�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108829
https://hal.archives-ouvertes.fr

Improving Exception Handling
in Multi-agent Systems

Frédéric Souchon1,2, Christophe Dony2,
Christelle Urtado1, and Sylvain Vauttier1

1 LGI2P - Ecole des Mines d’Alès - Parc scientifique G. Besse - 30 035 Nı̂mes - France
{Frederic.Souchon,Christelle.Urtado,Sylvain.Vauttier}@site-eerie.ema.fr

2 LIRMM - 161 rue Ada - 34 392 Montpellier - France
dony@lirmm.fr

Abstract. New software architectures based on multi-agents or soft-
ware components allow the integration of separately developed software
pieces that interact through various communication schemes. In such a
context, reliability raises new important issues. This paper aims at in-
creasing reliability in multi-agent systems (MASs) and, therefore, focuses
on the study of an appropriate exception handling system (EHS). The
issues specific to exception handling in MASs – preservation of the agent
paradigm and support of cooperative concurrency – are presented and
discussed. This paper analyses existing EHSs according to these issues
and describes our proposition, the Sage system, which integrates various
solutions from existing EHSs and adapts them to the agent paradigm.
Sage is an exception handling system dedicated to MASs that addresses
the stressed issues by providing means to coordinate the collective activi-
ties of agents, to embbed contextualized handlers in agents and to concert
exceptions. It has been implemented and integrated in the MadKit MAS.
It has been experimented with a classical travel agency case study.

1 Introduction

New software architectures (such as multi-agent systems [1] or software compo-
nent based architectures [2]) are based on the integration of numerous software
entities being executed concurrently and, in many cases, communicating asyn-
chronously [3,4]. We are interested in reliability [5] concerns in the context of
these new architectures but this paper chooses to narrow the focus on exception
handling in the context of multi-agent programming. To our opinion, exception
handling capabilities are a must-have to enable the realization of reliable large
scale agent systems. To be adapted to multi-agent systems (MASs), we consider
that an exception handling system (EHS) has to correctly deal with two main
issues:

– preservation of the agent paradigm,
– support cooperative concurrency among agents.

This paper describes an EHS dedicated to multi-agent programming which
addresses both issues and extends the MadKit platform [6].

The remainder of this paper is organized as follows. Section 2 introduces
the terminology and main concepts of both exception handling and the agent
paradigm. Section 3 discusses the issues of exception handling in the context
of MASs and discusses related systems and solutions. Section 4 describes our
proposition: the Sage system which is illustrated through a comprehensive ex-
ample. Finally, Sect. 5 and 6 explain the implementation of Sage in MadKit
and present our first experiments with this implementation.

2 Basic Concepts

2.1 Exception Handling

Exceptional events, often called exceptions [7], allow to signal undesirable sit-
uations that hamper a program standard execution to continue. When such a
situation occurs, a reliable software is able to react appropriately by raising and
treating an exception in order to continue its execution or, at least, to interrupt
it properly while preserving data integrity as much as possible. An exception
handling system [8,9,7,10,11,12,13,14] provides programmers with control struc-
tures that allow him to signal exceptions, to define exceptional continuations
by the means of exception handlers and to put the system back in a coherent
state by coding how some detected exceptionnal situation has to be treated. This
latter objective can be:

– achieved by the handler itself by either continuing the execution where it
was interrupted after having modified the context in which the undesirable
situation occurred (resumption), or aborting part of the standard execution
and resuming at some reliable point (termination),

– or, delegated to another handler by either propagating the exception or sig-
naling a new one.

Signaling an exception provokes the interruption of what is currently being
executed and the search for an appropriate handler. The definition of a handler
(for one or more type of exceptions) results in associating code with program
units which nature can vary from a system to another (e.g. the body of a proce-
dure [8], a class [9], etc.). After an exception has been signaled, an appropriate
handler is searched for among those associated to the program unit in which
the exception has occurred. If one is found, it is executed. If not, the search
carries on recursively in the enclosing program unit. The set of program units
the exceptions of which can be treated by a given handler is called the handler
scope. Depending on the models, this scope can be determined either statically
(on the basis of the lexical structure of the code) or, more often, dynamically
(on the basis of the history of execution contexts). This history is being built
as a program unit (the called unit or the enclosed unit) is activated by another
(the calling unit or the enclosing unit). An execution context is then created
and associated to the called unit; it contains information related to its execution
(local data, return address, parameters, etc.). This way, the calling unit precedes

the unit being currently executed in the history of execution contexts. Systems
that provide handlers with a dynamic scope rely on this history of contexts to
determine the scope of a given handler at runtime. For example, the scope of
a handler associated to a procedure covers the execution of the procedure itself
and the execution of all the procedures it calls (and so on, recursively). This
kind of mechanism is used, for example, in the C++ and Java languages.

2.2 Agent Paradigm

The main characteristic that distinguishes agents from other software compo-
nents is their autonomy [15]. An agent has the ability to independently decide
to realize an activity (among its capabilities) in order to fulfill individual ob-
jectives. Agents therefore execute concurrently in separate threads. However,
agents are not isolated entities. They interact by exchanging messages thanks
to asynchronous communication means. This way, agents are able to collaborate
while preserving their autonomy.

Sending a message to another agent to request a service is a non-blocking
action: the client agent (the sender of the request) does not have to wait for
the response of the provider agent (the recipient of the request) and can carry
on its current activity. The client agent will get the response later, in another
message, sent in return by the provider agent. Conversely, receiving a message
is a non pre-emptive action: the agent can decide to postpone the treatment of
the message in order to achieve more urgent activities first.

Asynchonous communication provides agents with a means to manage ad-
vanced execution schemes such as to redundantly request the same service to
different agents in order to ensure better performance, reliability or quality of
service. For example, a client agent can calculate and consolidate a result with
the different responses it gets from a pool of provider agents and then decide to
stop the process when a given amount of time has been spent to collect infor-
mation (to guarantee some time performance), or that a given ratio of responses
has been received (to guarantee some result representativity). This can also be
used to manage collective activities when agents are structured in social organi-
zations. In Aalaadin (the social organization model used in MadKit) [16], every
agent is member of a group, in which it plays one or more roles that define
the different responsibilities (capabilities) of the agent. The role then acts as a
common interface for a set of agents. Inside a group, a request can be sent to
an individual agent or to a role. In this latter case, the request is transparently
broadcasted to all the agents that play the role. The client agent can therefore
get a collective response from all the members of its group that hold a given
capability, while ignoring both their identity and their number.

Nonetheless, the autonomy of agents should not interfere with the concept
of contract-based collaborations [12], that is a fundamental principle for reliable
software engineering. Indeed, the service requested by a client agent to a provider
agent may be essential to complete some activity. A provider agent is free to
reject a request but when it accepts to provide another agent with a service,
it must fulfill its commitment. Thus, when an agent undergoes a failure that

prevents it from executing any requested service, it must warn the concerned
client agent that it is not able to provide the service it expects. The client agent
will then be able to react to this situation and try some alternate way to obtain
the needed service or to achieve the impacted activities.

In other words, agents need an exception handling system too, in order to
take reliability issues into account in the management of their collaborations. But
because of the principles of the agent paradigm, that imply the use of specific
execution and communication models, exception management in MASs raises
specific issues that cannot simply be addressed by the EHS of the underlying
implementation languages. Section 3 presents these issues and discusses some
related work.

3 Exception Handling in MaSs: Issues and Related Work

In this Sect., we study exception handling in the context of multi-agents plat-
forms and discuss the two main issues we consider to be specific to exception
handling in this context.

3.1 Preservation of the Agent Paradigm

As argued in Sect. 2.2, we consider agents from a software engineering point of
view (we do not consider their cognitive capabilities) and, therefore, think that
multi-agent systems, just as software coded in other paradigms, need exceptional
situations to be dealt with adequate control structures.

A Need for a Specific EHS. Agents are not native concepts of the lan-
guage chosen to implement the MAS. They are higher level entities that use
specific communication and execution mechanisms in order to conform with the
agent paradigm. The management of exceptions at the agent level therefore
requires a specific EHS that is integrated and adapted to these mechanisms: ex-
ceptions should be propagated from provider agents to their client agents thanks
to messages; agents should immediately react to messages signaling exceptions
by searching for handlers associated with the activities that are affected by the-
ses failures. This specific EHS and the EHS of the programming language must
not be mistaken. They handle different categories of exceptions (as classified
by [17,18]): the latter is used to handle low-level exceptions (related to the im-
plementation and the execution environment); the former deals with high-level
exceptions, regarding the execution of the activities of agents, their interactions
or their management within the MAS. But the two EHS are related: an imple-
mentation level exception that causes the failure of the execution of an activity
is to be transformed into an agent-level exception that can then be handled by
the EHS integrated to the execution model of the agents.

Among the existing MASs [19], very few provide a specific EHS. Most of
the MASs limit their exception handling capabilities to those provided by the
programming language. For example, MadKit [6] is a generic MAS coded in

Java that does not prescribe any specific execution model and, as a consequence,
does not provide any specific EHS. The activities of agents are coded as methods
and the exceptions raised during their execution are classically treated by the
handlers associated with blocks of code of these methods. When an exception
cannot be treated by these handlers, it is propagated to the top level of the call-
stack of the thread in which the agent executes. The thread is then destroyed
by the Java virtual machine. From the MAS point of view, this corresponds to
the accidental death of the agent. The lack of an appropriate agent level EHS
implies that no exception can be propagated to other agents or more simply to
the MAS itself, as exceptions are not supposed to be propagated outside the
execution thread1. In such a context, agent level exceptions have to be managed
with ad hoc solutions such as to signal a failure to a client agent by replying to its
request with a message containing special values. But this solution contradicts
software engineering good practices that recommend the management of errors
thanks to a dedicated means like an EHS. Indeed, separately developed agents
are unlikely to have a shared interpretation of those special values and the code
of activities then mixes up the treatments of normal responses – that describe the
standard behavior of the agent – with the treatments of exceptional responses –
that describe the corresponding exceptional behaviors used to deal with critical
situations.

Supervisor-Based EHSs Are Not Sufficient. The specific EHSs designed
for some MASs [20,21] use a supervisor-based approach. Supervisors are special-
ized agents which role is to monitor the activities of other agents, in order to
catch the exceptions they could raise. The supervisors are the entities to which
handlers are attached. We advocate that this approach is more adapted to han-
dle generic problems at the MAS level (such as the death of agents [20]). Indeed,
from the point of view of the monitored agents, supervisors are external enti-
ties created by the MAS. The management of the particular problems related
to the inner activities of an agents requires that specific, contextual handlers
(aware of the precise impacts of the failures signaled by the exceptions on the
current activities of the agents) be defined and triggered. As external entities,
supervisors cannot easily manage such contextual handlers, unless supervisors
have some right to act intrusively on the behavior of agents or unless agents
inform supervisors of specific exception handlers, and thus delegate to supervi-
sors the management and execution of parts of their behavior. In both cases, it
contradicts encapsulation, abstraction and autonomy principles.

We thus propose a different and complementary solution that is more natural
to deal with contextual exception handling: handlers designed to treat the ex-
ceptions regarding activities of agents should be associated with these activities,
and, by the way, encapsulated and managed by the agents themselves, as part
of their behaviors. Exceptions that cannot be successfully caught and treated by
the handlers of an agent are then propagated outside of the agent, whether to
1 MadKit does not use the java ThreadGroup notion, that would be of little help as

it does not support distribution.

agents with which it collaborates as a provider for some service, or to the MAS
(represented by supervisors) for more generic system-level problems.

As a conclusion, we claim that the development of a specific EHS is essential
to exception handling in MASs (the underlying language exception capabili-
ties are not sufficient for agents) and that the EHS must not solely rely on a
supervisor-type architecture.

3.2 Cooperative Concurrency Support

A multi-agent system is made of software entities (agents) that execute concur-
rently. Solutions to handle exceptions in MASs can thus be derived from work on
concurrent programming. This section presents two concepts proposed for con-
current programming that we adopt and adapt in our proposal for agent-based
programming.

A Need for Activity Coordination. [22] proposes a classification that dis-
tinguishes between three kinds of concurrency in object-oriented systems and
studies their impact on exception handling. This classification is provided for
classical concurrent object-oriented systems. In such systems, execution threads
are orthogonal to objects: objects are passive entities that are executed by ex-
ternal threads. Conversely, agents are active (concurrent) entities that hold their
own threads and use this processing power to act as autonomous entities. Thus,
in MASs, threads are not disincarnated: a thread is created for the purpose of
executing a given activity of a given agent and its life cycle follows the life cycle
of this activity. The classification of [22] must thus be adapted to this specificity
of MASs but still applies in our case.

First, disjoint concurrency points out the kind of concurrency supported
by systems that actually provide no way to manage concurrency. Disjoint con-
currency means that each agent is managed as if it is the only active entity
in the system. Exception handling is therefore local to each agent. There is no
need to provide any mechanism to coordinate exeception management between
agents as no collective activities are considered. Second, competitive concur-
rency points out the kind of concurrency supported by systems that manage
the isolation of each active entity. These systems provide mechanisms to avoid
the inconsistencies caused by the concurrent use of shared resources (generally
thanks to lock-based schemes). The goal of such systems is to let every agent act
as if it was the only active entity in the system, but in a disciplined way. Excep-
tion handling is coherent with this concurrency policy: Exception management
is still local to each agent. Finally, cooperative concurrency points out the
kind of concurrency in systems that provide some support to the management
of collaborations between active entities. In a MAS supporting cooperative con-
currency, it should be possible to coordinate the individual activities of the set
of agents that contribute to a collective activity. [22] claims that cooperative
concurrency management requires an execution model that allows these collec-
tive activities to be explicitly represented. An EHS could then be designed that

allows handlers to be associated with a collective activity, in order to express
and manage the impact of the failure of every participant agent in such a global
execution context. Exception propagation schemes can then be elaborated, from
the local execution context of the individual activity of an agent, to the more
global execution context of the collective activity to which it participates, and
recursively, to the even more global execution context of an enclosing collective
activity.

To summarize, MASs must provide support for cooperative concur-
rency, as collaboration is a fundamental principle of the agent paradigm (be-
cause of the social abilities of agents). As a consequence, the execution model
of MASs must provide a means to explicitly represent and control the collective
activities of agents.

MASs using supervisors in their EHS [20,21] support a form of activity co-
ordination: a supervisor can be associated to a group of collaborating agents to
monitor the global activity of the group. MASs that do not provide a specific EHS
must use the exception handling capabilities of their underlying programming
language. Those written in Java can use an advanced notion to coordinate the
threads of agents: thread groups. A thread can be attached to a thread group.
When an exception is raised inside a thread, that is not caught and reaches
the top-level of the call-stack of the thread, the exception is propagated to the
thread group to which the thread belongs. The exception can then be caught by
handlers associated to the thread group so that the impact of this exception on
other threads of the group can be managed (such as to stop the threads that are
dependant on some result that the faulty thread has not produced). The thread
group acts as a coordinator for the activities of its belonging threads. A thread
group can in turn be part of a larger thread group. This allows large, hierachical
thread structures to be build, in order to control collective activities at differ-
ent nested levels. Thread groups are an interesting Java construct to coordinate
concurrent thread activities but:

1. they are not used in the EHSs of the MASs we surveyed,
2. they do not provide a direct support for distribution or asynchronous mes-

saging. Therefore, they are not sufficient, as is, to manage the coordinated
activities of agents (see Point 1 in Sect. 3.1).

Concerted Exception Support. Once activity coordination is supported and
exception handling mechanisms are integrated, a second step is to define a man-
agement policy that determines the impact of the co-occurrence of minor failures
while completing a global activity. [3] and then [23] suggest the integration of a
mechanism to concert exceptions. Exceptions concurrently signaled by the enti-
ties participating to a collective activity are composed together, by a resolution
function, as a unique exception (called a concerted exception) that reflects the
global state of the collective activity. This concerted exception is used instead
of the individual exceptions raised by the participants to trigger handlers at the
collective activity level. This is a general principle that can be adapted, through

different implementations of its basic concepts (concerted exception and resolu-
tion function) to the exception handling mechanism of any system supporting
cooperative concurrency: the entity that is responsible for a collective activity is
able to collect the exceptions that are propagated from the participant entities
and then to compute a unique, pertinent global exception. Another advantage of
this scheme is the versatile support for exception management policy definition
it provides. A redefinition of the resolution function associated with a collective
activity is enough to change its policy.

The next Sect. depicts how these concepts are adapted and used in our EHS
proposal for MASs.

4 Sage: An Exception Handling System Dedicated
to Multi-agent Systems

This Sect. presents our proposal: an EHS that tackles the two issues stressed in
the previous section. We will use a unique comprehensive example to illustrate
our model throughout the remaining of the paper. It is based on a classical travel
agency case study (see Fig. 1) in which:

1. A Client agent contacts a Broker agent in order to organize a travel and get
the best offer for its plane or train tickets (the transport means is chosen
randomly during initialization).

2. Depending on the request made by the Client, the contacted Broker sends
a request to train providers or plane providers to collect their bids.

3. Then, the Broker selects the best offer and requests both the Client and the
selected Provider to establish a contract.

4.1 An Execution Model That Allows
Concurrent Activity Coordination

The MAS we use for our experimentation, MadKit, is a generic MAS that does
not prescribe any predefined, fixed execution model: it only provides a framework
of versatile communication and management mechanisms for agents. Thus, the
execution model presented in this Sect. is the one we designed for MadKit agents
because we need cooperative concurrency between agents. Intra-agent concur-
rency is also mandatory in our system in order to preserve the responsiveness of
agents to critical events such as exception signaling. Though initially designed
for MadKit, the execution model presented here is generic and we propose it
as a solution to manage the coordination of concurrent activities that could be
transposed to any MAS.

Exception handling in MASs requires a rather sophisticated execution model.
Indeed, agents must always remain responsive to messages, particularly to criti-
cal messages such as interruption calls (a client agent signals to one of its provider
agents that it does not need the service it requested anymore) and exception
signaling (a client agent signals to one of its provider agent that it cannot suc-
cessfully treat a request because of some failure). To ensure its responsiveness,

Fig. 1. Execution resulting from a request to a travel agency

every agent owns a thread dedicated to actively scanning its message-box in or-
der to be able to trigger actions as soon as a message is received. The model we
propose is built on the service concept.

Services. When a request sent by a client agent is received and accepted by
the recipient agent, the execution of the corresponding service is initiated by
the recipient agent which then acts as a provider agent. In Sage, a service is
a reified concept; it is executed in its own thread and it defines an execution
context. The execution of services can explicitly be controlled by their owner
agents (for example, to interrupt them). Figure 2 shows how services are created
in the Sage system.

These services fall into two categories:

– atomic services, the execution of which does not depend on other services.
For example, in the travel agency study case, the Get price service (see Fig.
1) that returns a Provider ’s bid is atomic because it needs no subservice.

– complex services, the execution of which requires other services to be
achieved. For example, in the travel agency study case, the Organize a travel
service (see Fig. 1) which handles a Client ’s initial request is complex as it
sends requests that trigger additionnal service executions.

public class Broker extends SaGEAgent
{
Service s = new Service ("Search for a travel", getAddress(), serviceID)
{
public void live ()
{

// body of the service
}

public SaGEException concert (Vector subServicesInfo)
{

// body of the exception resolution function
}

public void handle (NetworkException exc)
{

// handler for NetworkException
}

public void handle (NoProviderException exc)
{

// handler for NoProviderException
}

};
}

Fig. 2. Service definition and association of handlers to services in Sage

The nature of these two kinds of services is very different. An atomic ser-
vice can be implemented by a simple thread that executes the corresponding
treatment and, then, sends back to its client the corresponding answer. A com-
plex service has to be implemented by an entity that is able to send requests
and recieve responses. Consequently, implementing complex services as agents
is necessary and natural, as complex services need the same communication
capabilities and cooperative concurrency support as those of agents. Cascaded
requests result in cascaded service executions that form a logical structure (tree)
of execution contexts. Figure 1 shows the graph of execution contexts that re-
sults from the cascaded requests in the travel agency example. This structure is
comparable to the call-stack in procedural or object-oriented programming: it
provides an explicit representation of both the individual (atomic services) and
collective (complex services) activities of agents that enables the management
of cooperative concurrency.

Every time a provider agent receives and accepts a request, it logs the ID of
the client agent for which it is executing the corresponding service. Accordingly,
every time a client agent successfully sends a request, it logs the id of its de-
manding service, the id of the request, and the id of the provider agent. This log
is used to return responses, propagate exceptions and manage the termination
of subservices.

Managing Collective Requests. Section 2.2 introduced the concept of role
which allows the broadcasting of messages to a set of agents that share a common
ability. In order to manage such collective requests, the execution model has
to be extended with entities that represent and manage roles. As for services,
such entities must be able to send and receive asynchronous messages. In our
proposition, we choose to consider these entities as dedicated agents called role
agents that:

– maintain a list of its participating agents (those which play the corresponding
role),

– define a generic treatment for the recieved requests that consist in broad-
casting messages to all its member agents,

– and, collect answers and exceptions from its member agents and combine
them into a pertinent collective response or concerted exception.

The execution model described in this subsection provides a means to co-
ordinate the activities of agents as illustrated by the example of Fig. 1. In this
example, Broker is an agent, ProviderRole is a role agent to which three Provider
agents have subscribed. This execution model is used to integrate the exception
handling system presented below.

4.2 An Exception Handling System Dedicated to MASs

Definition of Handlers. In Sage, exception handlers can be associated with
services, agents or role agents.

1. Handlers associated with a service are designed to catch and treat ex-
ceptions that are raised, either directly or indirectly, while executing the
service. This enables a precise, contextual, definition of handlers: the ob-
jective of the service, its current state and the impact of exceptions on its
completion can be taken into account when coding the handler.

2. Handlers associated with an agent are a practical means to define a
single handler for all the services of this agent at a time. For example, the
death of an agent or the coherence maintenance of agent-specific data can
be dealt with such exception handlers.

3. Handlers associated with a role are designed to treat exceptions that
concern all agents which play a given role. For example, when exceptions
occur during the handling of a broadcasted request, partial results or QoS
statistics can be returned by handlers at the role level.

These handlers are distinct from the handlers provided by the underlying
implementation language. They are triggered by the signaling or the propagation
of an agent-level exception. A handler is classically defined by the set of exception
types it can catch and by an associated treatment (as illustrated by Fig. 2). Sage
provides a termination model that allows a handler to:

– execute some treatments, in order to manage the consequences of the abrupt
interruption of a service execution, such as restoring the agent in some co-
herent state, sending some partial results, etc.,

– send in turn an exception that signals that it has not been able to successfully
manage the exception,

– re-launch a complete execution when associated with a service, after having
possibly modified the execution context in order to re-try to successfully
achieve it.

Exception Signaling. Agent-level exceptions are signaled, during the exe-
cution of services (or their associated handlers), thanks to calls to a specific
primitive (see Fig. 3). Both exception systems are compatible: language level
exceptions, caught by language-level handlers, can be turned into agent-level ex-
ceptions by calling the Sage exception signaling primitive within the language-
level handlers. As other exception signaling primitives, ours takes the exception
to be signaled as a parameter. A call to this function internally triggers the
exception handling mechanism of Sage.

signal (new SaGEException ("Bad client address", getOwnerAddress ());

Fig. 3. Exception signaling in Sage

Handler Search. The heart of an exception handling system is the way han-
dlers are searched for. When an exception is signaled, the execution of the defec-
tive service is suspended. First, a handler for this type of exception is searched
for locally, i.e. in the list of handlers associated with the service. If such a han-
dler is found, it is executed. If not, the search carries on among the handlers
associated with the agent that executed the defective service. In all the above
cases, the defective service is terminated.

If no adequate handler is found in the previous step, it means that the service
failed and that the consequences of its failure must be dealt with by the client.
Thus, the exception is propagated to the client agent that forwards it to its
concerned service. The search carries on there, first in the service itself and,
then, in the agent for which it executes. This client agent can either be an agent
or a role agent.

If no handler is found, the search process iterates (the whole process is illus-
trated in Fig. 4) until an adequate handler is found or the top-level is reached.
In the latter case, the whole computation is aborted.

Concerted Exception Support. Inspired by [23] and [24], Sage integrates
concerted exception support in its exception propagation mechanism. This mech-
anism allows:

– not to react to under-critical situations,
– to collect exceptions to reflect a collective or a global defect.

Fig. 4. Handler search process in Sage

The concerted exception mechanism is available both at the service and the
role level. No concerted exception handling is required at the agent level. Indeed,
the association of handlers to agents is provided as a facility to define handlers
that are common to all the services of the agent. As such, they are managed
as handlers associated with services. Thus, the exceptions that trigger these
handlers are concerted at the service level by the exception resolution functions
associated with the services.

Concerted Exception Support at the Service Level. An exception that is prop-
agated to a service is not always critical for the service completion. Indeed,
a request can be redundantly sent to several agents to increase reliability and
performance. This is, for example, the case when a Provider-RoleAgent sends
n requests to n Provider agents: the failure of few providers is not critical. In
such a case, only the failure of a significant proportion of the requested service
providers might be critical. This example is illustrated on Fig. 5.

To enable concerted exception support, propagated exceptions are not di-
rectly handled by the recipient service. Such exceptions are stored in a log which
is associated to the recipient service. This log maintains the history of the so far
propagated exceptions (along with information such as the sources of the excep-
tions). Whenever a new propagated exception is logged, the concerted exception
function associated to the recipient service is executed to evaluate the situation.
This function acts as both a filter and a composition function. Depending on
the nature or the number of logged exceptions, this function determines if an
exception is to be effectively propagated. If so, the propagated exception can be
the last propagated one (in case it is critical enough) or a new exception that
is calculated from a set of logged exceptions, the conjunction of which creates a
critical situation (represented by a concerted exception).

As for handlers, resolution functions are associated with services and each
resolution function is specific to a service. To write such functions (see Fig. 5),
programmers have access to the exception log – in order to decide if an exception

Fig. 5. Exception resolution function associated to the TravelProviders RoleAgent role
agents

is to be propagated – and to the exception signaling primitive – to effectively
signal the chosen concerted exception.

Concerted Exception Support at the Role Level. The set of requests emitted by a
role agent to manage a collective request is transparent for the client agent that
sends a request to a role agent. The role agent acts as a collector for responses
and sends back a single (composite) response to its client. A comparable scheme
is used to concert exceptions.

Whenever an exception is propagated from an agent belonging to the role, the
exception resolution function, associated to the role agent, is invoked. It logs the
exception and, when the cumulative effects of the under critical exceptions be-
comes critical, it computes the concerted exception to be effectively propagated
to reflect the actual global situation.

In the travel agency example, there are cases where concerted exceptions
are required. The Poll Providers service of the Broker agent broadcasts a re-
quest to get prices from Provider agents. None of these requests is individually
critical. Thus, the exception resolution function (see Fig. 5) associated with
the ProviderRole RoleAgent role agent will collect the exceptions signaling the
failures of Provider agents without signaling any exception until a critical pro-
portion of these agents fails. There are also cases where individual exceptions

public SaGEException concert (Vector subServicesInfo)
{

int failed = 0;
int pending = 0;

// count the number of exceptions raised in subservices and the number of
// subservices that are still running
for (int i=0; j<subServicesInfo.size (); i++)

{
if ((ServiceInfo) (subServicesInfo.elementAt (i)).getRaisedException () != null)

failed++;
else ((ServiceInfo) (subServicesInfo.elementAt (i)).isFinished () == false)

pending ++;
}

// if more than 30% failed, there are two many bad providers
if (failed > (0.3*subServicesInfo.size()))

return new SaGEException("too_many_bad_providers",getAddress());

// if not, at the end, only few providers failed
if (failed != 0 && pending ==0)

return new SaGEException("few_bad_providers",getAddress());

// computing still running - no critical situation
return null;

}

are critical. Services like Select an offer or Contact parties are critical for the
successful completion of the Search for a travel service: their failure immediately
results in the failure of the client service (the concerted exception function asso-
ciated with the Search for a travel service does not filter exceptions propageted
from the Select an offer or Contact parties services nor delay their handling).

5 Overview of the Implementation of Sage for MadKit

For this first implementation of the Sage model, we did not modify the kernel
of the MadKit platform but choose to specialize classes from its core imple-
mentation (AbstractAgent, Agent, ACLMessage) along with the standard Java
Exception class (see Fig. 6).

Fig. 6. Class Diagram of the Sage model

5.1 Communication

In MadKit, agents are referenced by their logical AgentAddress adresses. These
addresses are used to route ACLMessage messages to the recipient agents
through the middleware. The class ACLMessage has been specialized in order
to encapsulate data which is specific to our execution model:

– identifiers used to manage the internal message forwarding from agents to
their services,

– standard definition of message categories (such as request, finish, terminate,
exception) [25].

5.2 Exceptions

We have extended the standard Java Exception class in order to:

– differentiate agent-level exceptions from language-level ones,
– encapsulate information which may be useful for programmers such as the

address of the agent which signals or propagates the exception,
– remain compatible with the standard Java EHS (agent level exceptions can

thus be, if required, simply considered as standard Java exception and finally
caught and treated by classical Java handlers).

5.3 Agents and Services

The AbstractAgent class is the base class of the communicating entities in the
system: every AbstractAgent instance has an address, can send messages to an-
other AbstractAgent and read the received messages in its message box. The
Agent class is the base class for all the active entities in the system. It extends
the AbstractAgent class by adding the live method, the method that is first ex-
ecuted after an agent is created and a thread is attached to it by the kernel
of the system. This method is to be overridden in subclasses in order to define
the main behavior of the agents in a given execution model. The live method
in the SaGEAgent class implements a loop that actively scans the message box
of the agent. When a message is received, it is handled by the handleSaGEMes-
sage method that calls more specific methods depending on the category of
the message (request, exception, etc.). Though they are active entities too, the
base class of services, Service, is not implemented as a subclass of Agent, not to
be mistaken with agents (services are internal entities, encapsulated in agents).
Howerver, Service is a subclass of AbstractAgent in order to inherit of the same
communication capabilities as agents2.

The SubServiceInfo class is used by services to reference the services they re-
quest along with management data such as their significance and their execution
status.

5.4 Broadcasting

Roles agents (introduced in Sect. 4.1) are implemented as a specialized class
of SaGEAgent agents by the RoleAgent class. They handle the broadcasting of
the requests they receive with the generic broadcastService method. It is to be
noticed that the RoleAgent class is defined in such a way that defining a role in
a Sage application only implies defining which role the corresponding RoleAgent
manages (see Fig. 7) and, optionally, associating handlers and a dedicated reso-
lution function with it (see Fig. 5).

2 In the current implementation, we do not differentiate atomic services from complex
services.

public class TrainProviders_RoleAgent extends TravelProviders_RoleAgent
{

public TrainProvider_RoleAgent ()
{

super("train-provider");
}

}

Fig. 7. Definiton of the Train-Providers RoleAgent

Fig. 8. A typical MadKit window with launched SageAgents

6 Experimentation

After having implemented Sage, we experimented it with the travel agency
example (see Fig. 8).

6.1 Definition of the Agents of the Travel Agency Example

In order to implement this example with Sage, we had to implement three
agents (Client, Broker and Provider) and two role agents which handle collective
requests for both transport means (see Fig. 9): the TrainProviders RoleAgent
role agent and the PlaneProviders RoleAgent role agent.

Fig. 9. Class Diagram of the SageTravel demo

In addition, in order to allow the debugging of Sage agents, we provide two
extra agents (see Fig. 8):

– the Logger, which logs into a text file actions related to services (instantia-
tion, initiation, termination, exception signaling, etc.),

– and, the ServiceTracer which visually and dynamically represents the service
tree, the root of which is the service initiated by the last launched Client
agent (see Fig. 10).

6.2 Concerting Exceptions

In the travel agency example, concerting the exceptions propagated from
Provider agents at the role level allows pertinent actions to be performed. If
few providers signal exceptions, partial results may still be send to the client as
shown in Fig. 10(a). On the contrary, if too much Provider agents signal excep-
tions, an exception is to be propagated to the client in order to notify it of a
global problem as shown in Fig. 10(b). This behavior is implemented in the ex-
ception resolution function (see Fig. 5) and the handler (see Fig. 11) associated
with TravelProviders RoleAgents role agents.

6.3 Termination

A service which terminates its execution (either standardly or exceptionally)
forces the termination of all its pending subservices (see Sect. 4.1). For example,
in Fig. 10(b), a concerted exception is propagated up to the root of the service
tree. Each service which propagates the concerted exception has exceptionally
finished. In particular, the handle ticket request service, during its exceptional
termination, forces the termination of its init contract pending subservice as
it becomes useless. The logical tree structure that is formed by the cascaded

(a) using partial results (b) signaling a concerted exception

Fig. 10. Examples of concerted exceptions in the travel agency case study

service requests is thus used upward to manage the propagation of exceptions to
dependant services and downward to manage the termination of pending useless
requested services.

7 Conclusion and Future Work

In this paper we propose an original exception handling system for MASs. It
distinguishes itself from previous work because it does not rely on the use of
entities external to agents but fully integrates exception handling mechanisms
to the execution model of the agents. It allows in-context, pertinent handlers
to be defined that can directly be associated with the services provided by an
agent, as part of its behavior. The execution model supports cooperative concur-
rency and manages the propagation of exceptions between cooperating agents.
Moreover, individual exceptions propagated from agents that contribute to a
collective activity can be concerted into more pertinent exceptions regarding
the management of those global activities. Handlers and exception resolution

public void broadcasthandle (SaGEException exc, BroadcastService bs)
{
if (exc.getMessage ().equals ("few_bad_providers"))
{
bs.setalive (true);
bs.broadcastavailablereponses ();

}
else
{
sendMessage (bs.getparentowneraddress (), new SaGEMesage ("exception",

exc.getMessage (), bs.getrequestID ()));
bs.terminate ();

}
}

Fig. 11. Handler associated to the TravelProviders RoleAgent role agents

functions can be associated with different kind of execution model entities (ser-
vices, agents, roles) in order to support exception handling in different contexts
(from the local behavior of agents to the collective activities in roles, through
one-to-one collaborations between agents).

We implemented and successfully experimented this model: the experimen-
tation is available as an applet3.

Various perspectives are considered, such as to extend our EHS in order to
be able to resume the execution of a service to some chosen point after the
successful treatment of an exception. Another perspective is to transpose Sage
to component-based platforms (such as J2EE/JMS technologies) [26] or to other
message-oriented middlewares (WebServices).

Acknowledgments

The authors thank Jacques Ferber, creator of the MadKit system [1,16] for his
contribution to this work, and for many profitable discussions.

References

1. Ferber, J.: Les systèmes multi-agents, vers une intelligence artificielle distribuée.
InterEditions (1995)

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press and Addison-Wesley, New York, NY (1998)

3. Campbell, R., Randell, B.: Error recovery in asynchronous systems. IEEE Trans-
actions on Software Engineering (SE) SE-12 number 8 (1986) 811–826

4. Gärtner, F.C.: Fundamentals of fault tolerant distributed computing in asyn-
chronous environments. ACMCS 31 (1999) 1–26

3 http://www.lgi2p.ema.fr/˜fsouchon/sage applet/sage applet.html

5. Knudsen, J.L.: Fault tolerance and exception handling in beta. In Romanovsky,
A., Dony, C., Knudsen, J.L., Tripathi, A., eds.: Advances in Exception Handling
Techniques. LNCS (Lecture Notes in Computer Science) 2022, Springer-Verlag
(2001)

6. (MADKit) http://www.madkit.org.
7. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Commu-

nications of the ACM 18 (1975) 683–696
8. Anonymous: Rationale for the design of the ada programming language. ACM

SIGPLAN Notices 14 (1979) 1–139
9. Dony, C.: Exception handling and object-oriented programming : towards a synthe-

sis. ACM SIGPLAN Notices 25 (1990) 322–330 OOPSLA ECOOP ’90 Proceedings,
N. Meyrowitz (editor).

10. Koenig, A.R., Stroustrup, B.: Exception handling for C++. In: Proceedings “C++
at Work” Conference. (1989) 322–330

11. Liskov, B.: Distributed programming in argus. Communications of the ACM 31
(1988) 300–312

12. Meyer, B.: Disciplined exceptions. Technical report tr-ei-22/ex, Interactive Soft-
ware Engineering, Goleta, CA (1988)

13. Weinreb, D.L.: Signalling and handling conditions. Technical report, Symbolics,
Inc., Cambridge, MA (1983)

14. J.Ichbiah, Barnes, J., Héliard, J., Krieg-Brueckner, B., Roubine, O., Wichman,
B.: Rationale for the design of the ada programming language. ACM SIGPLAN
Notices 14 (1979)

15. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering. Handbook
of Software Engineering and Knowledge Engineering. World Scientific Publishing
Company (1999)

16. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organiza-
tions in multi-agent systems. In: Third International Conference on Multi-Agent
Systems (ICMAS98). (1998) 128–135

17. Klein, M., Rodriguez-Aguilar, J.A.: Using role commitment violation analysis to
identify exceptions in open multi-agent systems, ases working paper ases-wp-2000-
04 (2000)

18. Klein, M., Dellarocas, C.: Towards a systematic repository of knowledge about
managing multi-agent system exceptions, ases working paper ases-wp-2000-01
(2000)

19. Ricordel, P.M., Demazeau, Y.: From analysis to deployment: A multi-agent plat-
form survey. In: Engineering Societies in the Agents World. Volume 1972 of
LNAI., Springer-Verlag (2000) 93–105 1st International Workshop (ESAW’00),
Berlin (Germany), 21 August 2000, Revised Papers.

20. Klein, M., Dellarocas, C.: Using domain-independent exception handling services
to enable robust open multi-agent systems: The case of agent death. Journal for
Autonomous Agents and Multi-Agent Systems 7 (2003)

21. Tripathi, A., Miller, R.: Exception handling in agent oriented systems. In Ro-
manovsky, A., Dony, C., Knudsen, J.L., Tripathi, A., eds.: Advances in Exception
Handling Techniques. LNCS (Lecture Notes in Computer Science) 2022, Springer-
Verlag (2000)

22. Romanovksy, A., Kienzle, J.: Action-oriented exception handling in cooperative
and competitive object-oriented systems. In Romanovsky, A., Dony, C., Knudsen,
J.L., Tripathi, A., eds.: Advances in Exception Handling Techniques. LNCS (Lec-
ture Notes in Computer Science) 2022, Springer-Verlag (2001) Also available as
Technical Report (EPFL-DI No 00/346).

23. Issarny, V.: Concurrent exception handling. In Romanovsky, A., Dony, C., Knud-
sen, J.L., Tripathi, A., eds.: Advances in Exception Handling Techniques. LNCS
(Lecture Notes in Computer Science) 2022, Springer-Verlag (2001)

24. Lacourte, S.: Exceptions in Guide, an object-oriented language for distributed
applications. In Springer-Verlag, ed.: ECOOP 91. Number 5-90 in LNCS, Grenoble
(France) (1990) 268–287

25. FIPA: FIPA 97 Specification Part 2 : Agent Communication Language. (1997)
26. Souchon, F., Urtado, C., Vauttier, S., Dony, C.: Exception handling in component-

based systems: a first study. In: Exception Handling in Object Oriented Systems:
towards Emerging Application Areas and New Programming Paradigms Workshop
(at ECOOP’03 international conference) proceedings. (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

