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Defect-Aware SOC Test Scheduling

In this paper we address the test scheduling problem for system-on-chip designs. Different from previous approaches where it is assumed that all tests will be performed until completion, we consider the cases where the test process will be terminated as soon as a defect is detected. This is common practice in production test of chips. The proposed technique takes into account the probability of defectdetection by a test in order to schedule the tests so that the expected total test time will be minimized. We investigate different test bus structures, test scheduling strategies (sequential scheduling vs. concurrent scheduling), and test set assumptions (fixed test time vs. flexible test time). We have also made experiments to illustrate the efficiency of taking defect probability into account during test scheduling.

Introduction

The cost of developing electronic systems is increasing and a significant part of the cost is related to the testing of the systems. One efficient way to reduce the total cost is therefore to reduce the testing cost. Test cost reduction can be achieved by minimizing the testing time of the system. An efficient ordering, test scheduling, of the execution of the test sets will minimize the total testing time.

The core-based design technique is another approach to reduce the increasing development costs. With such a technique, pre-designed and pre-verified blocks of logic, so called cores, are integrated to a complete system, which can be placed on a single die to form a system-on-chip (SOC). To test a SOC, a test bus is used for the transportation of test data in the system and its organization often has a great impact on the test schedule. SOC test scheduling can be performed assuming: sequential scheduling, i.e. only one test at a time, or concurrent scheduling, with a possibility to execute several tests at the same time. The testing time for the execution of each test set can be fixed, or flexible where it is possible to adjust the test time for a test.

In a large volume production test for SOC, an abort-onfail approach is usually used, which means that the test sequence is aborted as soon as a fault is detected. This approach is used to reduce the test application time. With the abort-on-fail assumption, the tests should be ordered in such a way that tests with a high probability to fail are scheduled before tests with a lower probability to fail since this will minimize the average testing time.

In this paper we discuss test scheduling considering defect detection probability, which is collected from the production line or generated based on inductive fault analysis. We have defined models to compute the expected test time as well as scheduling heuristic taking the defect probabilities into account and we have performed experiments to show the efficiency of the proposed approach.

The rest of the paper is organized as follows. An overview of related work is in Section 2. Sequential test scheduling is discussed in Section 3 and concurrent test scheduling is described in Section 4. The paper is concluded with experimental results in Section 5 and conclusions in Section 6.

Related Work

Test scheduling determines the execution order of the tests in a system. A common objective is to minimize the test application time while considering test conflicts. In SOC systems, where each core is equipped with a wrapper, an interface to the test access mechanism (TAM), a test conflict is due to the sharing of the TAM or the test bus. The TAM, used for the transportation of test data, is used to connect the test source, the cores and the test sink. The test source is where the test vectors are generated or stored, and the test sink is where the test responses are analyzed or stored. An automatic test equipment (ATE) is a typical example of a test source and test sink.

A TAM can be organized in different ways, which impacts the test scheduling. An example is the AMBA test bus, which makes use of the existing functional bus, however, the tests have to be scheduled in a sequence [START_REF] Harrod | Testing reusable IP-a case study[END_REF]. An alternative is the approach proposed by Varma and Bhatia where several test buses are used. The tests on each bus are scheduled in a sequence, however, since several buses are allowed, testing can be performed concurrently [START_REF] Varma | A Structured Test Re-Use Methodology for Core-based System Chips[END_REF]. Another approach is the TestRail, which allows a high degree of flexibility [START_REF] Marinissen | A structured and scalable mechanism for test access to embedded reusable cores[END_REF].

The TestRail approach has recently gained interest and several scheduling techniques for scan tested SOCs have been proposed [START_REF] Huang | Resource Allocation and Test Scheduling for Concurrent Test of Core-based SOC Design[END_REF][START_REF] Iyengar | Test wrapper and test access mechanism co-optimization for system-on-chip[END_REF][START_REF] Koranne | On Test Scheduling for Core-Based SOCs[END_REF]. The objective is to arrange the scan-chains into wrapper chains, which then are connected to TAM wires. Iyengar et al. made use of integer-linear programming [START_REF] Iyengar | Test wrapper and test access mechanism co-optimization for system-on-chip[END_REF] and Huang et al. used a bin-packing algorithm. Both these approaches assume that the tests will always be performed until completion. Koranne proposed an abort-on-fail technique to minimize the averagecompletion time by scheduling tests with short test time early [START_REF] Koranne | On Test Scheduling for Core-Based SOCs[END_REF]. For sequential testing, several abort-on-fail test scheduling techniques considering the defect probability have been proposed [START_REF] Huss | Optimal Ordering of Analog Integrated Circuit Tests to Minimize Test Time[END_REF][START_REF] Jiang | Defect-Oriented Test Scheduling[END_REF]. Huss and Gyurcsik made use of a dynamic programming algorithm to order the tests [START_REF] Huss | Optimal Ordering of Analog Integrated Circuit Tests to Minimize Test Time[END_REF]. Milor and Sangiovanni-Vincentelli proposed a technique for the selection and ordering of the test sets [START_REF] Milor | Minimizing Production Test Time to Detect Faults in Analog Circuits[END_REF], which is based on the dependencies between the test sets. For SOC testing with cores in wrappers, however, there is no dependency between the testing of different cores. In the approach proposed by Jiang and Vinnakota the actual fault coverage is extracted from the manufacturing line [START_REF] Jiang | Defect-Oriented Test Scheduling[END_REF]. The technique minimizes the average completion time by ordering of the tests based on the failure probability.

Sequential Test Scheduling

In sequential testing, all tests are scheduled in a sequence, one test at a time. When the abort-on-fail approach is assumed, if a defect is detected, the testing should be terminated at once. In order to account for the case when the test responses are compacted into a single signature after a whole test set is applied, we assume that the test abortion occurs at the end of a test set even if the actual defect is detected in the middle of applying the test set. This assumption is also used in our formula to compute the expected test time. Note, this means that the computational results are pessimistic, or the actual test time will be smaller than the computed one, in the case when the tests are actually aborted as soon as the first defect is detected.

Given a core-based system with n cores, for each core i there is a test set t i with a test time τ i and a probability of passing p i (i.e. the probability that test t i will detect a defect at core i is 1-p i ). For a given schedule, the expected test time for sequential testing is given by: For illustration of the computation of the expected test time, we use an example with four tests (Table 1). The tests are scheduled in a sequence as in Figure 1. For test t 1 , the expected test time is given by the test time τ 1 and the probability of success p 1 , τ 1 ×p 1 =2×0.7=1.4. Note if there is only one test in the system, our above formula will give the expected test time to be 2 since we assume that every test set has to be fully executed before we can determine if the test is a successful test or not.

The expected test time for the completion of the complete test schedule in Figure 1 is:

τ 1 ×(1-p 1 ) + (τ 1 +τ 2 )×p 1 ×(1-p 2 ) + (τ 1 +τ 2 +τ 3 )×p 1 ×p 2 ×(1-p 3 ) + (τ 1 +τ 2 +τ 3 +τ 4 )×p 1 ×p 2 ×p 3 ×(1-p 4 ) + (τ 1 +τ 2 +τ 3 +τ 4 )×p 1 ×p 2 ×p 3 ×p 4 = 2×(1-0.7) + (2+4)×0.7×(1-0.8) + (2+4+3)×0.7×0.8× (1-0.9) + (2+4+3+6)×0.7×0.8×0.9×(1-0.95) + (2+4+3+6)× 0.7×0.8×0.9×0.95 = 9.5
As a comparison, for the worst schedule, where the test with highest passing probability is scheduled first, the order will be t 4 , t 3 , t 2 , t 1 , and the expected test time is 13.6. In the case of executing all tests until completion, the total test time does not depend on the order, and is τ 1 +τ 2 +τ 3 +τ 4 =15.

The algorithm for test scheduling based on defect probability in the sequential case is straight forward, it sorts the tests in descending order based on τ i ×(1-p i ) and schedule the tests in this order (Figure 2).

Concurrent Test Scheduling

The total test time of a system can be reduced by executing several tests at the same time, concurrent testing. Concurrent testing is for instance possible in systems with several test buses. In this section, we analyze concurrent scheduling with fixed test time per test set and flexible test time per test set.

A concurrent test schedule of the example system used in Section 3 with data as in Table 1 assuming 3 TAMs (test buses) is in Figure 3. The test schedule (Figure 3) consists of a set of sessions, S 1 , S 2 , S 3 , and S 4 . Test session S 1 consists of test t 1 , t 2 and t 3 ; S 1 ={t 1 ,t 2 ,t 3 }. The length of a session S k is given by l k . For instance l 1 =2. We assume now that the abortion of the test process can occur at any time during the application of the tests. To simplify the As can be observed in Figure 3, only test t 1 is fully completed at the end of session 1. For a test t i that is not completed at the end of a session, the probability p ik for it to pass all test vectors applied during session k is given by: It can be seen that for a test set t i , which is divided into m sessions, the probability that the whole test set is passed is equal to: since: For example, the probability for the tests in session S 1 are (Figure 3): p 11 = p 1 = 0.7 p 21 =0.8 2/4 = 0.89 p 31 =0.9 2/3 = 0.93. The formula for computing the expected test time for a complete concurrent test schedule is given as:

τ j j 1 = i ∑       p j j 1 = i 1 - ∏       × 1 p i - ( ) ×       τ i i 1 = n ∑       p i i 1 = n ∏ × + i 1 = n ∑ 1 
As an example, the computation of the expected test time for the test schedule in Figure 3 is given below. First we compute the probability for each test set in each session.

The probabilities p 11 , p 21 , p 31 are computed to 0.7, 0.89, and 0.93, respectively (see above). p 22 = 0.7 1/4 = 0.91. p 32 = 0.9 1/3 = 0.96. p 23 =0.8 As a comparison, if all tests are assumed to be executed until completion, the total test time will be 9.

In concurrent scheduling with fixed test times, we sort the tests based on τ i ×(1-p i ) and select n tests for the n TAMs based on the sorted list. The selected tests are scheduled and removed from the list. As soon as a test terminates, a new test from the list of unscheduled tests is selected. The process continues until all tests are scheduled (sketch of the algorithm is given in Figure 4.) A way to further reduce the test application time is to modify, if possible, the test times of the individual test sets. For instance, in scan tested cores the test times at each core can be modified by loading several scan chains in parallel. The scan-chains and the wrapper cells are to form a set of wrapper chains. Each wrapper chain is then connected to a TAM wire. If a high number of wrapper chains are used, their length is shorter and the loading time of a new test vector is reduced. However, the higher number of wrapper chains requires more TAM wires.

In Figure 5 the TAM bandwidth |W| is 4, there are four wires in W={w 1 , w 2 , w 3 , w 4 }. The testing of each core is performed by transporting test vectors on the assigned TAM wires to a core and the test response is also transported from the core to the test sink using the TAM. The testing of cores sharing TAM wires cannot be executed concurrently. For instance, the testing of core 1 and core 2 cannot be 1). select tests from list in order and reduce f accordingly 8. End 9. τ=time when first test terminates. 10. End performed concurrently due to the sharing of TAM wire w 3 (Figure 5). A test schedule for the system is given in Figure 6 and the computation of the expected test time can be done using formula 3 in Section 4. In the case with flexible test times, the number of assigned TAM wires will affect the expected test time.
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Experimental Results

We have compared three approaches to demonstrate the importance of considering the defect probability during test scheduling. We have implemented (1) sequential scheduling where the tests are ordered in a sequence, (2) one where a fixed test time is assigned to each test prior to scheduling (for details see [START_REF] Pouget | An Efficient Approach to SoC Wrapper Design, TAM Configuration and Test Scheduling[END_REF]), and (2) one where the testing time versus the number of used TAM wires is flexible (for details see [START_REF] Pouget | SOC Test Time Minimization Under Multiple Constraints[END_REF]). For all three approaches, we have included the consideration of defect probabilities.

We have used the ITC'02 designs [START_REF] Marinissen | A Set of Benchmarks for Modular Testing of SOCs[END_REF] and for all experiments we have used an AMD 1800 machine (1.53 GHz, 512 MB RAM) and the computational cost is usually a few seconds, and never exceeds 15 seconds. The defect probability for each core is collected in Table 2.

The experimental results are collected in Table 3. We have for each of the benchmarks made experiments at various TAM bandwidths. We have compared the three approaches. The results indicate that an efficient ordering taking the defect probabilities into account can reduce the average testing times up to nearly 90% compared to sequential testing (also taking the defect probabilities into account).

Conclusions

In this paper we have discussed test scheduling techniques for system-on-chip (SOC) that take into account the defect probability of each test. The advantage with our approach is that by considering defect probabilities during the test scheduling process, the expected test time can be minimized, which is important in large volume production of SOC where the testing process is terminated as soon as a defect is detected (abort-on-fail).

We have analyzed several different test bus structures and scheduling approaches, and defined models to compute the expected test times and test scheduling algorithms for several types of test buses. We have also performed experiments to demonstrate the efficiency of our approach. 
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Table 1 . Example data. Figure 1. Sequential schedule of the example (Table 1).
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	Core i	Test t i	Test time τ i	Probability to pass, p i	
	1	t 1	2	0.7	
	2	t 2	4	0.8	
	3	t 3	3	0.9	
	4	t 4	6	0.95	
	t 1	t 2	t 3	t 4	
	τ 1	τ 2	τ 3	τ 4	τ

Figure 2. Sequential test scheduling algorithm.

  computation of expected test time, it is assumed that the test process will terminate at the end of a session (note this is again a pessimistic assumption). The probability to reach the end of a session depends in the concurrent test scheduling approach not only on a single test, but on all tests in the session. For instance, the probability to complete session 1 depends on the tests in session 1 (S 1 ): t 1 , t 2 and t 3 .

1. Compute the cost c i =(1-p i )×τ i for all tests t i 2. Sort the costs c i descending in L 3. until L is empty (all tests are scheduled) begin 4. select, schedule and remove the first test in L 5. end

  1/4 = 0.95. p 43 =0.95 1/6 =0.99. p 44 =0.95 5/6 =0.96. From the formula we get: l 1 ×(1-p 11 ×p 21 ×p 31 )+ (l 1 +l 2 )×p 11 ×p 21 ×p 31 ×(1-p 22 ×p 32 )+ (l 1 +l 2 +l 3 )×p 11 ×p 21 ×p 31 ×p 22 ×p 32 × (1-p 23 ×p 43 )+ (l 1 +l 2 +l 3 +l 4 )×p 11 ×p 21 ×p 31 ×p 22 ×p 32 ×p 23 ×p 43 ×(1-p 44 )+ (l 1 +l 2 +l 3 +l 4 )×p 11 ×p 21 ×p 31 ×p 22 ×p 32 ×p 23 ×p 43 ×p 44 =

	2×(1-0.7×0.89×0.93)+
	(2+1)×0.7×0.89×0.93×(1-0.91×0.96)+
	(2+1+1)×0.7×0.89×0.93×0.91×0.96× (1-0.95×0.99)+
	(2+1+1+5)×0.7×0.89×0.93×0.91×0.96×0.95×0.99×
	(1-0.96) + (2+1+1+5)×0.7×0.8×0.9×0.95 = 5.66.

Figure 4. Concurrent test scheduling algorithm for tests with fixed test times.

  

1. Compute the cost c i =τ i × (1-p i ) for all tests t i 2. Sort the costs c i descending in L 3. f=number of TAMs 4. τ=0 // current time, 5. Until L is empty (all tests are scheduled) begin 6. at time τ Until f=0 Begin 7.

Table 1 ).

 1 

										Design
						Core			
							d695	h953 g1023 t512505 p22810 p34392 p93791
						1	9 8	9 5	9 9	9 9	9 8	9 8	9 9
						2	9 9	9 1	9 9	9 5	9 8	9 8	9 9
						3	9 5	9 2	9 9	9 7	9 7	9 7	9 7
						4	9 2	9 2	9 8	9 3	9 3	9 1	9 0
						5	9 9	9 7	9 4	9 0	9 1	9 5	9 1
						6	9 4	9 0	9 5	9 8	9 2	9 4	9 2
						7	9 0	9 4	9 4	9 8	9 9	9 4	9 8
						8	9 2	9 6	9 7	9 6	9 6	9 3	9 6
						9	9 8		9 2	9 2	9 6	9 9	9 1
						10	94		92	91	95	99	94
		W				11			96	91	93	91	93
	w 4 w 3	t 1	t 2			12 13			92 93	92 91	91 92	91 90	91 91
	w 2	t 4				14			96	91	93	95	90
	w 1			t 3	τ	15				99	99	94	99
		l 1	l 2	l 3	l 4	16				95	99	96	98
						17				97	99	96	97
						18				95	95	97	99
						19				94	96	92	99
						20				99	97	90	99
						21				91	93	92	90
						22				99	99	99	99
						23				91	96	96	90
						24				97	98	98	98
						25				92	99	92
						26				96	92	96
						27				95	91	95
						28				92	91	91
						29				90	93	90
						30				91	94	96
						31				95

Table 2 . The pass probability in percentage for cores in the systems. Design TAM Width Expected Test Time Comparison 1 -Sequential Testing 2 -Fixed Testing Times [13] 3 -Flexible Testing Times [12] (3) vs (1) (3) vs (2)

 2 

		128	41 807	24 878	17 904	-57,2%	-28,0%
		96	43 289	23 443	18 741	-56,7%	-20,1%
		80	44 395	23 112	18 229	-58,9%	-21,1%
		64	44 395	27 358	20 773	-53,2%	-24,1%
	g1023	48 32	46 303 55 562	27 997 27 662	21 501 26 867	-53,6% -51,6%	-23,2% -2,9%
		24	56 711	29 410	28 795	-49,2%	-2,1%
		20	60 609	36 979	35 431	-41,5%	-4,2%
		16	75 100	44 728	44 657	-40,5%	-0,2%
		12	95 679	67 549	60 239	-37,0%	-10,8%
		128	31 113	10 884	9 468	-69,6%	-13,0%
		96	31 158	14 716	11 712	-62,4%	-20,4%
		80	31 158	14 881	14 509	-53,4%	-2,5%
		64	40 586	25 483	16 652	-59,0%	-34,7%
	d695	48 32	40 692 70 411	27 388 50 998	23 983 33 205	-41,1% -52,8%	-12,4% -32,9%
		24	70 598	62 367	42 165	-40,3%	-32,4%
		20	70 696	68 611	50 629	-28,4%	-26,2%
		16	131 178	123 164	61 473	-53,1%	-50,1%
		12	131 465	131 465	82 266	-37,4%	-37,4%
		128	104 382	87 339	82 358	-21,1%	-5,7%
		96	104 466	82 733	82 437	-21,1%	-0,4%
		80	104 466	85 307	82 448	-21,1%	-3,4%
		64	104 466	87 349	82 466	-21,1%	-5,6%
	h953	48 32	104 508 104 549	87 443 92 245	82 495 84 169	-21,1% -19,5%	-5,7% -8,8%
		24	104 591	99 888	104 290	-0,3%	+ 4,4%
		20	104 633	125 262	92 159	-11,9%	-26,4%
		16	159 657	137 089	135 438	-15,2%	-1,2%
		12	189 740	185 016	183 359	-3,4%	-0,9%
		128	423 852	71 628	50 484	-88,1%	-29,5%
		96	423 968	93 921	59 177	-86,0%	-37,0%
		80	423 993	122 641	71 995	-83,0%	-41,3%
		64	443 459	141 999	92 218	-79,2%	-35,1%
	p22810	48 32	510 795 535 586	213 995 355 646	121 865 160 237	-76,1% -70,1%	-43,1% -54,9%
		24	707 813	480 480	294 612	-58,4%	-38,7%
		20	836 491	756 138	328 270	-60,8%	-56,6%
		16	877 443	855 355	383 034	-56,3%	-55,2%
		12	1 341 549	1 336 251	401 720	-70,1%	-69,9%
		128	9 724 227	1 073 413	889 677	-90,9%	-17,1%
		96	9 724 227	1 217 641	894 924	-90,8%	-26,5%
		80	9 724 227	1 269 333	928 499	-90,5%	-26,9%
		64	9 724 227	2 810 847	1 062 112	-89,1%	-62,2%
	t512505	48 32	14 883 557 14 883 609	8 938 649 8 940 193	1 828 281 1 955 361	-87,7% -86,9%	-79,5% -78,1%
		24	25 202 194	16 090 266	2 891 241	-88,5%	-82,0%
		20	25 202 230	16 308 884	3 652 388	-85,5%	-77,6%
		16	25 202 298	21 716 978	3 961 341	-84,3%	-81,8%
		12	46 296 336	27 526 848	5 394 939	-88,3%	-80,4%

Table 3 . Experimental results comparing three approaches
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