
HAL Id: lirmm-00108858
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108858

Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Generalization Level in UML Models
Iterative Cross Generalization in Practice

Michel Dao, Marianne Huchard, Amine Mohamed Rouane Hacene, Cyril
Roume, Petko Valtchev

To cite this version:
Michel Dao, Marianne Huchard, Amine Mohamed Rouane Hacene, Cyril Roume, Petko Valtchev.
Improving Generalization Level in UML Models Iterative Cross Generalization in Practice. ICCS
2004 - 12h International Conference on Conceptual Structures, Jul 2004, Huntsville, AL, United
States. pp.346-360, �10.1007/978-3-540-27769-9_23�. �lirmm-00108858�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108858
https://hal.archives-ouvertes.fr

Improving Generalization Level in UML Models
Iterative Cross Generalization in Practice

M. Dao
�
, M. Huchard

�
, M. Rouane Hacène

�
, C. Roume

�
, and P. Valtchev

�
�

michel.dao@francetelecom.com,
France Télécom R&D, DAC/OAT, 38-40 av. Général Leclerc,

92794 Issy-les-Moulineaux cedex 9, France���
huchard,roume � @lirmm.fr,

LIRMM, UMR 5506, 161 rue Ada, 34392 Montpellier cedex 5, France�	�
rouanehm,valtchev � @iro.umontreal.ca

DIRO, Université de Montréal, C.P. 6128, Succ. “Centre-Ville”, Montréal, Canada, H3C 3J7

Abstract. FCA has been successfully applied to software engineering tasks such
as source code analysis and class hierarchy re-organization. Most notably, FCA
puts mathematics behind the mechanism of abstracting from a set of concrete
software artifacts. A key limitation of current FCA-based methods is the lack of
support for relational information (e.g., associations between classes of a hierar-
chy): the focus is exclusively on artifact properties whereas inter-artifact relation-
ships may encode crucial information. Consequently, feeding-in relations into the
abstraction process may substantially improve its precision and thus open the ac-
cess to qualitatively new generalizations. In this paper, we elaborate on ICG, an
FCA-based methodology for extracting generic parts out of software models that
are described as UML class diagrams. The components of ICG are located within
the wider map of an FCA framework for relational data. A few experimental re-
sults drawn from an industrial project are also reflected on.

1 Introduction

Current trends in object-oriented software construction, namely MDA (Model-Driven
Architecture)-based approaches, promote designing high-level models that represent
domain and application concepts (”Platform Independent Models”). These models, typ-
ically described in UML (Unified Modeling Language), are further on mapped to the
target implementation platform (”Platform Specific Models”). Modeling has thus be-
come a key activity within the software process whereas large efforts are currently spent
in developing automated tools to assist it.

Formal Concept Analysis (FCA) has already been successfully applied to the anal-
ysis [1] and restructuring [2–7] of conceptual class models: it helps reach optimal hi-
erarchical organization of the initial classes by discovering relevant new abstractions.
However, providing far-reaching abstraction mechanisms requires the whole feature set
of UML to be covered, inclusive those encoding relational information (e.g., UML as-
sociations), whereas such features clearly outgrow the scope of standard FCA.

Making FCA work on UML models is the global aim of our study. Here, we propose
a new relationally-aware abstraction technique, ICG (Iterative Cross Generalization),

which works on several mutually related formal contexts that jointly encode a UML
class diagram. It performs simultaneous analysis tasks on the set of contexts where
inter-context links are used to propagate knowledge about the abstractions from a con-
text into its related contexts (and thus broaden the discovery horizon on those contexts).

The paper recalls the basics of FCA (Section 2) before providing a motivating ex-
ample (Section 3). Our recent FCA-based framework for processing relational data is
presented in Section 4. In Section 5 we specify ICG while emphasizing the role UML
meta-model plays in data description within ICG. Experiments done in the framework
of industrial projects are then reported (Section 6) with a discussion of benefits and
difficulties in applying ICG.

2 FCA and class hierarchy restructuring

Formal concept analysis (FCA) [8] studies the way conceptual structures emerge out of
observations. Basic FCA considers an incidence relation
 over a pair of sets � (objects,
further denoted by numbers) and � (attributes, denoted by lower-case letters). Binary
relations are introduced as formal contexts �������������
�� . An example of a context,
Foo, is provided in Figure 1 on the left, where a cross in � -th line / � -th column means
that the object � has the attribute � .

c
235

ce
35

3
cde

134
d

25
ac

5
ace

b
124

12
ab

14
bd

1
abd

12345

abcde

a
125

abc
2

1
2
3
4
5

a b c d e
x x x
x x x

x x

x x
x x

x

x

Foo

intent
extent

Fig. 1. A sample context and the Hasse diagram of its concept lattice

A pair of derivation operators, both denoted by � , map sets of elements between
� and � by performing intersections on the corresponding sets of rows/columns. For
instance, �������! "�#�$�&%'�)(& and �"%*��+" "�,�-�.�/�)0! . The � operators define a Galois con-
nection [9] between ��1 and �32 , whereby the component operators � � satisfy the clo-
sure properties. The underlying sub-families of closed sets are bijectively mapped to
each other by � with pairs of mutually corresponding closed sets termed (formal) con-
cepts. More precisely, a concept is a pair �546�879� from ��2;:<�31 with 4=�>7?� and
4@�A�B7 , where 4 is the extent and 7 is the intent. The set C*D of all concepts from
 is partially ordered by the inclusion of extents, while the resulting ordered structureE D �GFHC D �JI DLK is a complete lattice with joins and meets based on intersection of
concept intents and extents, respectively. The lattice of the Foo context is drawn in
Figure 1 on the right (as a Hasse diagram).

Research on applications of FCA has yielded a set of meaningful substructures
of the concept lattice. For instance, in object-oriented software engineering, the as-
signments of specifications/code to classes within a class hierarchy is easily modeled
through a context, and applying FCA to a particular hierarchy may reveal crucial flaws
in factorization [2] and therefore in maintainability. The dedicated substructure that
specifies a maximally factorized class hierarchy of minimal size is called the Galois
sub-hierarchy (GSH) of the corresponding context. Mathematically speaking, the GSH
is made out of all the extremal concepts that contain an object/attribute in their ex-
tents/intents: ����M.� �N�8M.�O�JP M�Q	�9 SR6�!�5%!���8%!� �T�UP %VQ��� .

Moreover, as practical applications of FCA may involve processing of non-binary
data, many-valued contexts have been introduced in FCA. In a many-valued context
W�$�N���8���)XY�JZ[� , each object M is described by a set of attribute - value pairs �5%'�]\/� ,
meaning that Z is a ternary relation that binds the objects from � , the attributes from
� and the values from X . The construction of a lattice on top of a many-valued context
requires a pre-processing step, called scaling, which basically amounts to encoding each
non-binary attribute by a set of binary ones.

3 Improving UML models: a motivating example

A highly simplified example introduces the problem domain. Consider the UML model
in Figure 2. A class Diary is associated to a class Date through the association or-
deredBy. Class Date has three attributes (or variables) day, month and year and
two methods including isLeapYear() and a comparison method ^ (Date). An-
other class Clock is linked to Time class via the association shows. Class Time
is described by the three attributes hour, min and sec, and by a method ^ (Time)
which aims at comparing times.

Clock

Time

hour
min
sec

<(Time)

shows **Diary
orderedBy **

Date

day
month
year

<(Date)
isLeapYear()

Fig. 2. Diary and clock

Current approaches for applying formal context analysis to this UML model would
lead to the formal context of Figure 3: classes are the formal objects while UML at-
tributes, methods and association ends are the formal attributes (names have been re-
duced to their first letters). This formal context does not reveal any new concept, al-
though comparison methods ^ indicate that a magnitude concept is underlying the
model and that diaries and clocks are devices which manipulate magnitudes.

To infer a more elaborate UML model, we apply an approach that may be sum-
marized as follows. On the one hand, we process various sorts of UML entities such

x

x

x

x

orderedBy shows
origin origin destination destination

orderedBy shows

Time

Date

Clock

Diary

x x x

x x x

x

x

d m y h mn s <(D) <(T)

x

isLeapYear()

Fig. 3. Formal context for diary and clock

as attributes, methods and associations, as first-class formal objects and assign a for-
mal context to each entity sort. Moreover, we use relational attributes to express links
between entities and model them as inter-context binary relations.

On the other hand, we use a repeated scaling along the relational attributes to prop-
agate the knowledge about possible generalizations between related contexts. Thus, the
concept construction process amounts to alternating scaling and proper construction
until stability in concept structures is reached.

In Figure 4, three many-valued formal contexts describe classes, associations and
methods as first-level formal objects, respectively. Here, UML class attributes are not
processed as objects for simplicity sake, but in the general case they are. Note that
some formal attributes (e.g. originType) are relational ones while others are not (e.g.
originMultiplicity or name). Figure 5 shows the main relational attributes of
the example.

isOrigin isDestination

{orderedBy}

{shows}

{shows}

{orderedBy}

Time

Date

Clock

Diary

{d,m,y}

{h,mn,s}

isDescribedBy

{<(T)}

has

{<(D),isLeapY}

Class Context

<(Time)

<(Date) {Date}

{Time}

isLeapY()

Method Context

Association Contextshows

originType destType

orderedBy

originMultiplicity destMultiplicity

{Diary}

{Clock}

*

*{Time}

{Date}

*

*

{isLeapY}

{<}

{<}

name typeOfParam(1)

{}

Fig. 4. Formal contexts for classes, methods and associations

Scaling techniques are used to transform many-valued contexts into binary ones.
Values of each many-valued attribute are represented as the objects of scale context
where the formal attributes are important properties of these values. In Figure 6, values
of typeOfParam(1) are scaled considering the specialization order (inheritance) on
classes: a value (a class _) for typeOfParam(1) is associated in the scale with all
super-classes of _ and _ (All represents the top of the class hierarchy). Note that the
available class organization is replicated in the scale lattice (which basically represents
a nominal scale). The concept lattice of the scaled method context (see Figure 7) con-
tains four concepts: m4 represents isLeapYear(); m1 and m2 represent both initial

Classes

Diary
Date

Clock
Time

<(D)

Methods

isLeapY()
<(T)

d
m

y
h

mn
s

Attributes

orderedBy

shows

Associations

has returnType
typeOfParam(i)

hasForType

destType
originType

isDestination
isOrigin

isDescribedBy

Fig. 5. Relations between the formal contexts

comparison methods, respectively, and m3 introduces a generalized method ^ . Bottom
and top are skipped since useless here.

Date

Time

x x

x x
Scale Context for typeOfParam(1)

<=Date <=Time

<=All

Scale for typeOfParam(1)

<=Time <=All<=Date

<(Time)

name

<(Date) {Date}

{Time}

typeOfParam(1)

{<}

{<}

Many−valued Method Context

<(Time)

<(Date) x

x

x

x

name:<

x

x

Scaled Method Context

typeOfParam(1):Date typeOfParam(1):Time typeOfParam(1):All

Fig. 6. Scaling the method context

The method lattice (Figure 7) is now used as a scale for the formal attribute has
owned by classes. Thus, if a class has a method `	aUb]c in the initial many-valued context,
then it owns all the formal attributes has:m in the scaled class context where m stands
for a method concept whose extent contains the formal object representing `	aUb]c . The
resulting scaled class context and its lattice (with top and bottom dropped) are shown in
Figure 8. The lattice includes a new concept c1which obviously represents comparable
objects, hence it could be called Magnitude.

Our knowledge about the concept structure on classes has thus grown and the new
abstractions can be used as descriptors that could, whenever shared, induce poten-
tial abstractions on related contexts. For example, the method context could be fed
with the knowledge about Magnitude thus prompting a re-consideration of its con-

name:isLeapY

isLeapY()

m4

name:<,typeOfParam(1):Date

m1

<(Date)

name:<,typeOfParam(1):Time

m2

<(Time)

name:< typeOfParam(1):All

<(Date) <(Time)

m3

intent

extent

Fig. 7. The first concept lattice on methods

ceptual structure. Thus, three new binary attributes typeOfParam(1):c2, type-
OfParam(1):c3 and typeOfParam(1):c1 replace the initial ones (typeOf-
Param(1):All, typeOfParam(1):Date and typeOfParam(1):Time). The
resulting concept lattice remains isomorphic to that of Figure 7, however its concepts
are explicitly related to existing concepts on classes, e.g., the top concept intent is bound
to c1 via typeOfParam(1):c1.

c1
has:m3

Diary Clock

c4

Diary
isOrigin:orderedBy

d,m,y,has:m1,has:m3has:m4,,isDest:orderedBy

c2

Date

h,mn,s,has:m2,has:m3,isDest:shows

c3

Time

Clock
isOrigin:shows

c5

Time

Date

Clock

Diary

x x x

x x x

d m y h mn s

x

x

x

x

orderedBy shows orderedBy shows
isOrigin: isDestination:

x x

x

m2m1 m3 m4

x

x

has:

Fig. 8. Scaling the class context (up), class concept lattice (down) without the top and the bottom

The same procedure can be applied for scaling the association context, revealing
that the two formal objects can be generalized by a new association which ends into the
c1 concept. The scaling of isOrigin and isDestination from the class context,
using the augmented association lattice, introduces a new generalization of Diary and
Clock (representing devices which manipulate magnitudes). The resulting set of ab-
stractions, re-interpreted in UML, is shown in Figure 9. The associations orderedBy
and shows are linked to the new association manipulate by the constraint subset
which indicates a specialization relationship. Because of this constraint, their names
are now prefixed by the symbol ”/”, used in UML for highlighting elements that derive
from others.

To sum up, we may claim that the apparent commonalties between the classes Time
and Date have led to the constitution of common superclass, Magnitude. The dis-
covery of this class has been propagated to both method and association contexts where
new abstractions have been created to reflect the existence of Magnitude. Finally,
these new abstractions reflected reversely on classes where a superclass of Diary and
Clock emerged. New generalizations are especially useful in design: e.g. new general
classes given with their abstract methods can serve as type for writing generic code; new
general associations clarify the model as specializations like orderedBy and shows
can disappear in overviews of the model; new classes can factorize attributes, methods,
associations added in further development, etc.

Time

hour
min
sec

<(Time)

Clock

Diary

manipulate **
DeviceForMagnitudes

Magnitude

<(Magnitude)

*

*

*

* /shows

<<subset>>

<<subset>>

Date

day
month
year

<(Date)
isLeapYear()

/orderedBy

Fig. 9. Diary and clock after iterative cross generalization

4 Bringing relational concepts to core FCA

In the following, we summarize the key elements of our relational FCA framework. A
detailed description could be found in [10].

As in classical FCA, heterogeneous datasets, i.e., ones made out of several sorts of
individuals, are introduced through a family of contexts, one per sort of formal objects.
Here, a set of binary relations (or set-valued functions) is added to data description,
which map objects from a context to sets of objects from another one.

Definition 1 (Relational context family).
A relational context family d�e is a pair ��f	g���higj� where f	g is a set of k multi-
valued contexts mlm�����nl8���ol]��X*l]�JZ�lN� and h�g is a set of p relational attributes (set-
valued functions) q[r such that for each � , �sIt�@Iup there exist v and w in xy�3��kJz with
q ri{ �n|o}~��2�� .
For instance, the data in our running example (see Section 3) constitute a RCF with four
contexts and nine relations.

Conceptual scaling [11] is a FCA technique that transforms a many-valued context
�������������X#��Z[� into binary one ?�j���������n����
��"� by replacing non-binary attributes
from � by a set of binary ones, called scale attributes. Scale attributes basically describe
meaningful features of the values of the initial attribute, say % , and therefore induce a
lattice of concepts, called the scale lattice, on top of the value set Xs�5%/� . By bringing
those attributes to the objects from � , conceptual scaling allows new concepts to oc-
cur in which the members of the extent share abstractions of the initial values rather
than values themselves. Clearly, the choice of scale attributes has a direct impact on
the structure of the target concept lattice: different attribute sets may lead to different
lattices.

The same principle may be applied to the processing of relations which are basi-
cally object-valued attributes: given a relation q { � | }���2�� and MsQ�� | the set qA�5M��
could be replaced by a collection of binary attributes that characterize it. As the entire
process is ultimately aimed at detecting commonalties in the abstractions that conceptu-
ally describe the target objects, the scaling binds scale attributes to existing concepts on
the co-domain context rather than to formal attributes of this context (see the attributes
typeOfParam(1):cX from Section 3). Moreover, as we argued in [10], the most
natural choice for the scale lattice of q is the lattice of the context ?� since it embeds
the most precise knowledge about the meaningful abstractions on the set ��� . However,
in specific situations smaller structures, such as the GSH, may be more appropriate.

Consider an object M�l from | and its encoding in terms of concepts from � .
Thus, given a concept +�r from

E � , the corresponding binary attribute F�q { +�r K will
be incident to M.l depending on the way the image set of objects q,��M3l�� compares to�i� b�a&��b��5+)r&� . Two different encoding schemes are possible, i.e., M�l gets F�q { +�r K when-
ever: �"�[qA�5M.l���� ��� b�a&��b��5+�r&� (”narrow”) or ���[qA�5M�l���� �i� b�a&��b���+�r&�m���� (”wide”). The
”narrow” scheme clearly fits lattice-shaped scales whereas the ”wide” one suits also
less extensive concept structures.

To sum up, the encoding by concepts rather than by formal attributes from the des-
tination context � eases the interpretation of the formal concepts discovered in the
source context | . Moreover, such an encoding fits a step-wise discovery of the scale
concepts as illustrated in Section 3: the formation of some new concepts within � ,
e.g., through refining of the descriptions of the context objects, results in the addition
of new scale attributes in the encoding of � | along q .

Given a relational context family d e , our aim will be to construct k lattices of formal
concepts

E l , ����I��,Iuk"� , one per context l , such that the concepts reflect both shared
attributes and similarities in object relations, i.e., common concepts in the co-domain
context. Obviously the relational scaling helps to reduce the lattice construction on rela-
tional data to the binary case so that the same algorithmic procedures could be applied.
However, unlike conventional constructions, some RCF may require a step-wise con-
struction process due to the mutual dependencies between contexts, as it was shown in
the UML model analysis. Indeed, having aligned scales with actual concept hierarchies
on the destination contexts, an apparent deadlock occurs whenever two contexts are
connected both ways by a pair of relational attributes (or chains of such attributes). For
instance, in Figure 5, the class context is doubly connected to the method one by the
initial attribute pair (typeOfParam(i), has).

To resolve the deadlocks resulting from circularity in the relational structure of
a RCF, we apply a classical fixed-point computation mechanism that proceeds step-
wise. Its grounding principle lies in the gradual incorporation of new knowledge gained
through scaling: the computation starts with uniformly nominal scales for all relational
attributes and at each subsequent step uses the previously discovered concept structures
within the respective co-domain contexts as new and richer scales.

Technically speaking, the global lattice extraction process associated with a RCF
alternates between relational scaling and lattice construction (see Algorithm 1). At the
initial step, relations are ignored (line 5), hence the lattices at this stage (line 6) are
not impacted by the relational information and rather reflect common non-relational
attributes. At the following step these lattices are used as new scales for a first-class
relational scaling thus providing new possibilities for generalizations (lines 10-11). The
scaling (line 10) / construction (line 11) steps go on until the global set of concepts sta-
bilizes, i.e., for each context r the lattice � l x �3z at the � -th step is isomorphic to the one
of the �'��� -th, � l�� � x �3z where � l denotes the array of contexts at step � . Stabilization of
the process can be deduced from the fact that the formal objects do not change over the
steps; the concept number of the lattice associated with ��W���������)XY�JZ�� is bounded
by �3� ly�! N¡ 2 ¡ ¢£¡ 1#¤¦¥ ¡ § , which gives a bound to the scaling of relational attributes.

1: proc MULTI-FCA(In: ¨�©Yª¬«�9®o¯�°�®A± a RCF,
2: Out: ² array of lattices)
3: ³µ´ 0 ; halt ´ false
4: for ¶ from · to ¸ do
5: ¹Sº» ´ SCALE-BIN(¹ »)
6: ²½¼�¾ ¶U¿�´ FCA(¹ º»)
7: while not halt do
8: ³/À@À
9: for ¶ from · to ¸ do
10: ¹ º» ´ EXTEND-REL(¹ º» , ²Á¼�Â �)
11: ² ¼ ¾ ¶U¿�´ FCA(¹ º»)
12: halt ´ÄÃ »8Å ��Æ © «�²½¼�¾ ¶U¿¦ªÇ²½¼HÂ

� ¾ ¶U¿T±
Algorithm 1: Construction of the set of concept lattices corresponding to a RCF.

Once the lattices of all contexts are available, a post-processing step clarifies the
links between concepts induced by relational scale attributes. In fact, many concept
intents will present redundancies: a concept + from | related, via F�q { + � K , to + � from
 � will necessarily be related to all the super-concepts of + � . Thus, for each super-
concept + � of + � , + will possess the attribute F5q { + � K . As the latter reference does not
add new information with respect to F5q { + � K to + � , it may be deleted. This means that
in the intent of + , among all the binary attributes F5q { + lNK , only those corresponding
to minimal + l will be preserved. For instance, in Figure 8, the attribute has:m3 is
redundant in the intent of class concept c2 since c2 also owns has:m1, whereas m3
is a super-concept of m1 in the method lattice.

5 Specifying the Iterative Cross Generalization Process

UML class diagrams (models) in more details In class diagrams, classes are associated
to structural features (attributes) and behavioral features (operations and methods). In
Figure 10 (top) the main elements of attribute and method description are presented:
visibility (+, - and #); attribute types e.g. String, Point or Color which can be
classes; return type; parameter type list; multiplicity for many-valued attributes (like
color), the multiplicity is a set of integer intervals restricting the value number (for
color, multiplicity 1..* expresses the fact that color has one or more value); static
status (underlined feature); derived status (introduced by /).

Figure 10 (bottom) also illustrates the main aspects of UML associations. An asso-
ciation is composed of at least two association ends. When it has a name (for example
place order), the name is followed by a triangle which establishes the direction for
reading this name: a person places an order and not the other way round. An association
end is typically characterized by: a type (the class _ involved in this end), for example
Person and Order are the two end types of the association place order; a vis-
ibility; a multiplicity; a navigability (shown through an arrow next to the type end); a
white or black diamond which indicates an aggregation or a composition. An associa-
tion end is sometimes provided with a role name which gives more accurate semantics
to objects when they are involved in the link, e.g. role a&`�p*È5M"É/a"a for a person in as-
sociation `	%���%�Ê/a . When the association owns variables and methods it is considered
as an association class, e.g. Access is an association class that supports the variable
passwd.

+ move(in np:Point)
+ paint(in nc:Color[])
+ getserialNb():String {query}

setSerialNb ():String

Person

− birthDate : Date

age =
currentDate −
birthDate

− / age : Integer

Person
manage

director
0..1

employee
*

1
*

Choral Singer**

{ordered}
Document Paragraph

Car

− make : String {in {"Renault","Ford", etc.}}
− color[1..*]:Color=red
− position : Point
− wheelNb:Integer=4{constant}

Person

Access

1..*

1Person Order*place_order

Computer*

passwd

Fig. 10. Classes and associations

Using the UML meta-model to guide the context construction The definition of UML
is established by the UML meta-model, that is a model that defines the language for
models. The UML meta-model is described through a subset of UML, and is given
with well-formedness rules in the formal language OCL (Object Constraint Language),
as well as with semantics in natural language. Part of this meta-model [12] relevant

to our problem, that considers the classes and their features, is shown in Figure 11.
The meta-class Class specializes Classifier, and as such, inherits from the pos-
sibility to own Features (Attribute or Method). An Attribute includes the
meta-attributes initialValue, multiplicity, visibility, changeable;
it has a type via the meta-association that links it to Classifier. A Method has the
meta-attributes body, isQuery, visibility, and is composed of an ordered set
of Parameters. An Association is composed of several AssociationEnds
which have a type which is a classifier. AssociationEnds are described by a type (a
classifier), and several meta-attributes including isNavigable, isOrdered, ag-
gregation and multiplicity.

As a meta-description of UML, the meta-model naturally contains the good abstrac-
tions for determining the right formal contexts: meta-classes are straightly interpreted
as formal objects, while meta-attributes and ends of meta-associations are their formal
attributes. Nevertheless, such an approach can lead to the manipulation of many tables
of data, and to the use of descriptors that generate too numerous uninteresting concepts.
Parameter for example is preferably included in the description of methods. Associ-
ations should be described by an ordered set of association ends, but if we consider only
binary and directed associations, as often suggested in modeling [13], we can avoid hav-
ing a specific formal context for association end description. Conversely, if we want to
inspect all possible generalizations of associations in the general case, a formal context
describing association ends would be relevant.

Attribute

initialValue:Expression

Operation Method

body:ProcedureExpression

Classifier

StructuralFeature BehavioralFeatureClass

visibility:VisibilityKind

changeable:ChangeableKind
multiplicity:Multiplicity isQuery:Boolean

Parameter

kind:ParameterDirectionKind

owner feature

type

1

*

feature
*

parameter
*

0..1

type
type

1

1
defaultValue:Expression

{ordered}

Feature

name:String
type

1

1

AssociationAssociationEnd

isNavigable:Boolean
isOrdered:Boolean
agregation:AgregationKind
multiplicity:Multiplicity
changeable:ChangeableKind

AssociationClass

2..*

{ordered}

1
connection

associationEnd

name:String
visibility:VisibilityKind

Fig. 11. Extracts from the UML meta-model

In the context of the MACAO project4, we have considered the relational context
family �5 g �8h g � defined as follows. g �Ë�UmÌÍ�] 1ÏÎ �]iÐ@�8 1 e . jÌ¬�Ñ���nÌ����oÌÍ�
X¦ÌÍ�JZ�Ì#� is the formal context on classes; �jÌ is empty in our current experiments.
 1ÏÎ �-�N� 1ÏÎ ��� 1ÏÎ ��X 1ÏÎ ��Z 1ÏÎ � corresponds to the formal context on attributes. � 1ÏÎ in-
cludes the formal attributes ��%�`	a , `µÒÏÈ�b��Op'È���+��Ób�É , �Ó���Nb���%!È�Xj%!È�ÒÏa corresponding to the
UML meta-attributes. X 1ÏÎ contains the possible values for these formal attributes, i.e.
possible attribute names, unions of integer intervals, etc. Ð �$��� Ð �8� Ð �)X Ð �JZ Ð �
describes methods. � Ð includes the formal attributes ��%�`	a , (�M.Ô�É , while X Ð con-
tains possible method names, and expressions that represent method bodies. 1 e ���� 1 e �8� 1 e ��X 1 e ��Z 1 e � is the formal context on associations. As we have chosen in our
first experiments to consider binary directed associations, the two association ends are
called M"v"��Ê!�Ó� and Ô�a.kUb��Ó��%�b��ÓM"� and their description is integrated into the formal con-
text for associations. Formal attributes are then ��%�`�a , ��%�`�a.�jv"�NÊ��Ó� , ��k&Õ6%�\/�jv"��Ê!�Ó� ,
��k"�jv.Ô�aUv.a"Ô!�jv&�NÊ!�Ó� , `�Ò'È5b]�jv"��Ê!�Ó� , and symmetrical attributes for destination end. h g
is the set of relational attributes that relate the previous contexts. They are found using
the meta-associations between meta-classes Classifier and Attribute, Clas-
sifier and Association, or Classifier and Method (going through Pa-
rameter). They have been presented on the edges in Figure 5. For example we have
c¦%/k { � Ì }Ö� 2�× or M"v"��Ê!�Ó��Ø�É"p*a { � 1 e }Ö� 2�Ù .

6 Experiments

The ICG procedure has been implemented in the Java-based Galicia5 platform [14] and
connected to the UML CASE tool Objecteering as part of the MACAO project, thus
enabling application of ICG to class diagrams designed within Objecteering. Thus, for
a given UML class diagram, RCF is exported6 in a format which is readable by ICG,
which is run and its results are imported back in Objecteering in order to create a new
class diagram which can then be studied and compared to the original one. We present
here some results of the application of ICG on several medium sized projects of France
Télécom. Three different projects have been used for these experiments [15]: project 1
deals with the management of an information system, ICG was applied to the design
model of this project (the model used for Java code generation); project 2 concerns an
intranet software that was also in its design stage; project 3 is a prospective project re-
garding the elaboration of a common user data model for several telecommunication
services. We have applied ICG to several class hierarchies of project 3: four class hier-
archies of service-specific models and the class hierarchy of the common model being
specified.

The results of the ICG implementation were shown to the designers of the class hier-
archies who gave an appreciation regarding the relevance of the proposed restructuring
with respect to the semantics of the underlying data model. The class hierarchies of
those projects consist of a few dozens of classes and the number of new UML elements

4 A joint project of France Télécom, SOFTEAM and LIRMM supported by the French depart-
ment of research and industry (RNTL); http://www.lirmm.fr/˜macao.

5 See the web site at: http://www.iro.umontreal.ca/ Ú galicia.
6 A limited configuration of RCF is possible within Objecteering.

created by ICG (attributes, methods, classes, inheritance links) may vary from a few to
several hundreds in some cases, involving a tedious work of selection and interpretation.

Several new factorization classes or associations proposed by ICG were found ab-
solutely relevant by the class diagram designers. For instance, Figure 12 shows the

Û�ÜNÝ ÞNß�à�Ý á âäãHÝ á å�à�âäå�à�Ý ßOæHÝ

Û�Ü�Ý ÞNß�àNÝ á âäãHÝ á åHà3ç�ßHÝ ÞNåHè

é8ßHêäêëá åHà

ì�íOîäï ð�ñyò

ó�ô�õëöäöy÷ øHù

ó3ú8û ï ü õäù ï ÷ îäíOï ÷ ø�ù î øHù ï õ ý ï

ó3ú]û ï ü õäù ï ÷ îäíHï ÷ øHùUþJõ ï ü øOÿ

��� � �

��� � �
��� � �

�

î øHù ï í ÷ ùHö��
î øHù ï í ÷ ùOö��

��� � �

��� � �
�	� � �

�

� ��� � �

î øHù ï í ÷ ùOö�� î øHù ï í ÷ ùHö��

î øHù ï í ÷ ùHö��

Fig. 12. Factorization of an association

factorization of an association. Left part shows the initial state of the few classes in-
volved and the right part shows the proposed restructuring. The ICG algorithm properly
proposes to factorize both associations named containsˆ through the creation of a
new class Fact109 connected to the class @Authentication context through
a new association with the same name. Notice that the algorithm may propose to factor-
ize role names depending on the way the designer has named the associations: associa-
tion names, role names or both. This corresponds to the formal attributes name, name-
Origin and nameDestination of the formal context on associations. The multiplicity on
the side of the class @Authentication context is also properly factorized into a
1..* multiplicity. On the other hand, one may question the factorization of 0..1 and
1 multiplicities into * (it could have been factorized into 0..1) but this is an internal
choice of the algorithm that could be fine-tuned.

7 Conclusion

We presented a new FCA-based technique (ICG) which processes several mutually re-
lated formal contexts and sketched its application to UML class diagram restructuring.
Experiments on industrial-scale projects established the feasibility of our approach (ex-
ecution time and semantic relevance of the results) and highlighted the crucial role of
parameter tuning and appropriate user interface. A key track of improvement is the sep-
aration of formal attributes that guide the construction of new abstractions (e.g. names,
types of attributes, association ends, etc.) from secondary ones that only help to increase
the precision (e.g., multiplicity or navigability). Another current concern is the integra-
tion of a domain ontology into the ICG framework that should enable the comparison

of symbolic names used by the designer. This is crucial for any automated reconstruc-
tion technique such as our, because terms are not uniformly used over UML diagrams,
many synonymy, homonymy or polysemy situations occur. Although Objecteering of-
fers an operational user interface for ICG there is a large space for improvement. First,
designers that are FCA neophytes would benefit from an automated assistance in tool
fine-tuning. Second, navigation and edition tools should help make the entire ICG pro-
cess more interactive and thence more purposeful, e.g., by supporting run-time filtering
of the discovered abstractions.

References

1. Snelting, G., Tip, F.: Understanding class hierarchies using concept analysis. ACM Trans-
actions on Programming Languages and Systems 22 (2000) 540–582

2. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using Galois
lattices. In: Proceedings of OOPSLA’93, Washington (DC), USA. (1993) 394–410

3. Dicky, H., Dony, C., Huchard, M., Libourel, T.: On Automatic Class Insertion with Over-
loading. In: Special issue of Sigplan Notice - Proceedings of ACM OOPSLA’96. (1996)
251–267

4. Godin, R., Mili, H., Mineau, G., Missaoui, R., Arfi, A., Chau, T.: Design of Class Hierarchies
Based on Concept (Galois) Lattices. Theory and Practice of Object Systems 4 (1998)

5. Huchard, M., Leblanc, H.: Computing Interfaces in Java. In: Proc. IEEE International confer-
ence on Automated Software Engineering (ASE’2000), 11-15 September, Grenoble, France.
(2000) 317–320

6. Yahia, A., Lakhal, L., Cicchetti, R., Bordat, J.: iO2 - An Algorithmic Method for Building
Inheritance Graphs in Object Database Design. In: Proceedings of the 15th International
Conference on Conceptual Modeling ER’96. Volume 1157. (1996) 422–437

7. Yahia, A., Lakhal, L., Bordat, J.: Designing Class Hierarchies of Object Database Schemas.
In: 13 ièmes journées Bases de Données Avancées. (1997) 371–390

8. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin
(1999)

9. Barbut, M., Monjardet, B.: Ordre et Classification: Algèbre et Combinatoire. Volume 2.
Hachette (1970)

10. Valtchev, P., Rouane, M.H., Huchard, M., Roume, C.: Extracting Formal Concepts out of
Relational Data. In SanJuan, E., Berry, A., Sigayret, A., Napoli, A., eds.: Proceedings of the
4th Intl. Conference Journées de l’Informatique Messine (JIM’03): Knowledge Discovery
and Discrete Mathematics, Metz (FR), 3-6 September, INRIA (2003) 37–49

11. Ganter, B., Wille, R.: Conceptual Scaling. In: Applications of combinatorics and graph
theory to the biological and social sciences. Volume 17 of The IMA volumes in Mathematics
and its applications., New York (1989) 139–167

12. Rational Software Corporation: UML v 1.3, Semantics. version 1.3 edn. (1999)
13. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object Oriented Modeling

and Design. Prentice Hall (1991)
14. Valtchev, P., Grosser, D., Roume, C., Hacene, M.R.: GALICIA: an open platform for lattices.

In B. Ganter, A.d.M., ed.: Using Conceptual Structures: Contributions to 11th Intl. Confer-
ence on Conceptual Structures (ICCS’03), Aachen (DE), Shaker Verlag (2003) 241–254

15. Dao, M.: Validation sur de grands projets, Projet MACAO (RNTL). Technical Report sous-
projet MACAO 5.1, France Télécom R&D (2003)

