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Abstract

We present a multiscale MDS method extending
Chalmers’ Pivot-based MDS algorithm [14]. Our multi-
scale strategy is itself based on a O(N log N) hybrid MDS
approach. Our algorithm clearly improves over its prede-
cessors with respect to time, while producing layouts of a
comparable quality.

1. Introduction

Multidimensional scaling (MDS) is concerned with the
representation of multi-variate data sets as sets of 2D or 3D
euclidean points.That is, high dimensional distances ordis-
similarities between pairs of data elements are used to com-
pute a 2D or 3D view. Although most of the MDS literature
focuses on the analysis of the representation and of itsob-
jective quality [12, 3], efforts have been devoted to the de-
sign of methods and algorithms used to actually embed the
data in a euclidean space.

Among different approaches, force based placement al-
gorithms have recently gained popularity, partly because of
their underlying intuitive model and their ease of implemen-
tation. The quality of the drawings they produce can also be
accounted for their popularity (see [1, Section 3.5.4]). Al-
though originally designed to produce a drawing of a graph
in 2D or 3D space [5, 10, 6], force based placements gener-
alize to abstract datasets, where they can be seen as varia-
tions of simulated annealing algorithms. When dealing with
a graph, attractive forces correspond to actual links between
nodes. Nodes usually are seen as charged masses and re-
pulse each other. A placement algorithm simply runs a sim-
ulation of the corresponding physical system, until the over-
all system reaches astable state which is usually admitted to
provide a good view of the data. Algorithms defining varia-
tions of the physical model and of the simulation have been
published in the past two decades (see [2, 11]).

These approaches can be used when dealing with ab-
stract data where forces are defined according to dissim-
ilarities between data elements, where dissimilarities can
be computed from contextual attributes or from any other
source. Authors frequently compute dissimilarities as high-
dimensional distance between vectors of attributes associ-
ated with data elements. As a particular case, nodes of a
graph can be embedded in euclidean using this approach, by
making the dissimilarity between two nodes coincide with
their distance in the graph.

More recent efforts on force-based placements have ad-
dressed scalability. Indeed, a straightforward implementa-
tion of the simulation requires to iterate a visit of allN2

pairs of data elements leading to aO(N3) time complex-
ity for the whole simulation (since most algorithms run the
simulation overO(N) iterations). These costly solutions are
obviously not relevant as soon as data sets comprise thou-
sands of elements.

Fruchterman and Reingold [7] were among the first to
observe that the full visit of theN2 pairs of elements at
each iteration could be avoided, by limiting the computa-
tion of the forces to the close neighborhood of nodes, argu-
ing that distant nodes had but a small effect on the overall
displacement induced from the repulsive force. Chalmers,
Morrison and Ross have fully exploited this avenue in a
series of papers on MDS [4, 13, 14]. Their contribution
adds to the ideas introduced by Fruchterman and Reingold
by restricting the simulation to a subset of randomly cho-
sen elements in a first phase before opening the process to
the full data set. Chalmers had already proposed a force-
based MDS algorithm running in timeO(N2). The 2002
and 2003 MDS algorithms by Chalmers, Morrison and Ross
both used a same idea: run Chalmers’ 1996 algorithm on a
subset of sizeO(

√
N) (thus takingO(N) time) and incre-

mentally add all other elements. By astutely selecting the
initial positions and active neighborhoods of the added ele-
ments, Chalmerset al. were able to bring the complexity of
their MDS force-based approach as low asO(N5/4) [14].
(More detailed comments on the work by Chalmers and his



collaborators are provided in the forthcoming sections.)
The algorithms presented here are in continuity with the

improvements brought by Chalmers, Morrison and Ross.
First, we describe a hybrid MDS approach inspired from
their work running inO(N log(N)) and producing output
of comparable quality. However, the major contribution of
our work is a multiscale hybrid MDS algorithm. Indeed, the
sampling approach introduced by Chalmerset al. naturally
leads to a multiscale schema: instead of applying Chalmers’
1996 algorithm on the subset of sizeO(

√
N), we recur-

sively apply ourO(N log N) algorithm. As we will show,
this approach reveals to be significantly faster and provides
output of a quality that compares well with previous ap-
proaches.

2. Data sampling, dissimilarities and parent-
finding strategies

The 1996 paper by Chalmers [4] had already decreased
the complexity of traditional MDS force-based algorithms
by designing a linear time iteration approach. This first im-
provement compared to Fruchterman and Reingold [7], in
that at each iteration the placement of a data element de-
pended on a constant number of close neighbors, thus mak-
ing the overall algorithmO(N2). The 2002 and 2003 pa-
pers by Chalmers, Morrison and Ross [13, 14] introduced
a new idea. In a first phase, the computation of the place-
ment is limited to a subsetS containingO(

√
N) randomly

selected data elements. Applying Chalmers’ 1996 quadratic
MDS algorithm to the sampled elements thus induced a cost
of O(N) for this first phase. The remaining elements were
then added iteratively, their position being refined through a
series of neighborhood restricted force-based simulations.

Algorithm 1 Chalmers et al. 2002 and 2003 algorithms
main steps :
Data : A set of data elements V (of size N )

A dissimilarity measure δ(u, v)
for all pairs u, v ∈ V

Result : Euclidean coordinates (xu, yu)
for each element u ∈ V

Randomly select a subsetS ⊂ V of sizeO(
√

N)
EmbedS in euclidean space using Chalmers 1996
linear time per iteration MDS algorithm.
For eachu ∈ V \ S do :

Findv ∈ S such that δ(u, v) is minimum.
Placeu according to v’s location.

The quality of the placement is partly insured by ad-
equately choosing where to initially position elementsu

not in S (u ∈ V \ S). The 2002 strategy of Chalmerset
al. was to search for the candidate element inS closest

to u (with respect to the dissimilarity measures), introduc-
ing aO(N

√

(N)) phase dominating the overall complex-
ity. Their 2003 paper modified this parent-finding strategy.
Instead of going through the whole setS they first orga-
nized it into smaller components to improve the search. The
setS was itself sampled to extract a constant size subset of
pivots, all elements ofS being assigned to buckets associ-
ated with pivots. Each pivotp had thus a list of associated
buckets,b(1)

p , b
(2)
p , . . . , b

(k)
p , naturally ordered according to

the dissimilarity measuresδ(−, p) or high-dimensional dis-
tances fromp.

The search for the elements inS being closest tou ∈ V \
S could then be performed by selecting for each pivotp, a
candidate elementup that competed against all others to act
as the closest element tou. A search through all emerging
candidatesup, astutely using the bucket structure, allowed
to elect the element declared asclosest to u.

Remark. Others have suggested improvements of force-
directed placements based on similar approaches. Kobourov
et al. [8], for instance, divide the original data set into lay-
ers (subsets) that are iteratively taken into account when em-
bedding elements in euclidean space. In another paper [9],
Kobourovet al. also promoteintelligent placement of nodes
when they are initially introduced in the simulation, as op-
posed to a simple random initial placement, to improve the
overall behaviour of the algorithm.

2.1. Further improving the parent-finding
strategy

It is the parent-finding strategy we suggest to change in
order to reach aO(N log N) complexity. Instead of orga-
nizing the setS into a subset of pivots with associated buck-
ets, we suggest to associate with each pivotp the list Lp

of all sampled elements ordered according to the dissim-
ilarity δ(−, p) or high-dimensional distance fromp. The
cost of sorting the list associated with a pivot elementp is
O(

√
N log(N)) on average andO(N) in the worst case.

The number of pivots being constant, the worst case com-
plexity for this preliminary step is inO(N). Note that,
as Chalmerset al. admit, their strategy 2003 has a worst
case complexity ofO(N

√

(N)) thus falling back onto their
original 2002 algorithm, which happens in the rare case
where all data elements merge into a single bucket.

Using ordered lists as we suggest, the search for the clos-
est candidate tou can be performed by going through each
ordered listLp to find a best candidateup, which is done
in O(log N) time. At this point, our strategy differs from
that of Chalmerset al. Indeed, the candidateup is selected
by comparing its dissimilarity top, δ(up, p) to the dissimi-
larity δ(u, p). That is, we select the elementup which is as
dissimilar top asu is. Chalmerset al. use a different crite-



rion and select the candidateup having a smallest dissimi-
larity δ(u, up).

Thus, our algorithm can be summarized as follows.

Algorithm 2 Main steps of our O(N log N) algo-
rithm:
Data : A set of data elements V (of size N )

A dissimilarity measure δ(u, v)
for all pairs u, v ∈ V

Result : Euclidean coordinates (xu, yu)
for each element u ∈ V

Randomly select a subsetS ⊂ V of sizeO(
√

N)
EmbedS in euclidean space using Chalmers 1996 algorithm
Selectk pivot elements p in S (put them in P ).
For eachelement p ∈ P do :

Sort all s ∈ S in a list Lp according to δ(s, p)
For eachu ∈ V \ S do :

Find up in Lp such that |δ(u, p) − δ(u, up)|
is minimum.
Placeu according to up’s location.

The two strategies actually bear some similarity, as we
now explain. Assume for a moment that the dissimilarity
mapδ satisfies the triangular inequality. Assume also that
d(up, p) compares well withδ(up, p). Then havingδ(up, p)
close toδ(u, p) is equivalent toδ(u, up) being small, as il-
lustrated in Figure 1. The assumptions we make actually
are reasonable as soon as there are reasons to expect agood
placement of the data set in the euclidean space. Experimen-
tal results presented in the next section confirm that these
two strategies produce output of comparable quality.

p

up

u

d(up, p) ~ δ(up, p)

δ(u, p) ~ δ(up, p)

δ(u, up) ~ ε 

Figure 1. Selecting up such that δ(u, p) ap-
proaches δ(up, p) is similar to selecting up

such that δ(u, up) ∼ ǫ.

3. Comparison

As expected, our O(N log N) strategy improves
on Chalmerset al. Figure 2 compares the two theo-
retical curves and exhibits a clear advantage for the
O(N log N) algorithm asN increases. A closer examina-
tion of the two curves on a smaller scale indicates that the

curves actually meet whenN ∼ 5500, temporarily giv-
ing the lead toN5/4.
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Figure 2. Comparison of the N5/4 and N log N

curves on the scale 103 − 106.

Clearly, an experimental study is mandatory in order to
assess of these theoretical predictions. Indeed, a compar-
ison of the actual running time of the algorithm showed
that Chalmerset al. 2003 hybrid MDS and ourO(N log N)
behave similarly. In other words, the real benefits of a
O(N log N) parent-finding strategy only appear for ex-
tremely largeN . The actual running time of the three al-
gorithms are reported in Figure 9 (section 4). (They corre-
spond to the three intertwined curves at the top of the fig-
ure. The curve drawn in the lower part reports the running
time of the multiscale variant described in the next section.)
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This can be explained. The two algorithms we consider
here (Chalmers’ et al. 2003 pivot-based MDS and our’s)
mainly differ on the parent-finding phase. All the other steps
of the algorithms behave similarly. Hence, what we ought to
compare is the time spent by each algorithm on the parent-
finding phase. Incidentally, Chalmerset al. made a simi-
lar remark and observed that roughly 40% of the time is
devoted to the parent-finding process. Now, Chalmerset
al. parent-finding strategy is inO(N1/4) while ours is in
O(log N). Consequently, looking at the curvesN1/4 and
log N is more relevant when comparing the two algorithms,
since these curves predict the time the algorithms respec-
tively spend on the parent-finding process. As Figure 3
shows, thelog N strategy ultimately provides better perfor-
mance. However, the benefits of thelog N search strategy
reveal themselves only for rather large datasets (∼ 7×105).

This prediction is confirmed by our experiments. Figure
4 reports the actual time spent on the parent-finding process
of the O(N5/4) andO(N log N) algorithms. As one can
see, the curves grow similarly but start to separate when the
datasets reach the predicted size.
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Figure 4. Comparing the actual time spent on
the parent-finding phase.

As we will see in a later section, the improvement in time
becomes clear and acts as well for smaller dataset when ap-
plied through a multiscale schema.

3.1. Quality of the output

The improvement offered by theO(N log N) algorithm
requires that we can assess of the quality of its output. In-
deed, improving the running time of force-based MDS only
makes sense if we remain able to producenice views of the
data. The MDS theory relies on an objective measure to as-
sess of the quality of a placement. This measure is tradition-
ally called theStress of a configuration (or placement) and

is defined as:

σ(X) =

∑

u,v(δu,v − du,v)
2

∑

u,v d2
u,v

(1)

whereX : V → R2 denotes the map defining the embed-
ding of the dataset in euclidean space and where the sums
run over all pairs of distinct data elementsu, v. Intuitively,
the lower the stress of a placementX is, the better the algo-
rithm outputtingX was able to satisfy the constraints given
by the dissimilaritiesδu,v.
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Figure 5. Comparison of Stress for the
O(N3/2), O(N5/4) (grayed) and the O(N log N)
(darker) MDS strategies.

Our experiment showed that ourO(N log N) algo-
rithm behaves similarly to the 2002 and 2003 algorithms by
Chalmerset al., as shown in Figure 5. We used as a bench-
mark a set of randomly generated small world networks of
sizes ranging from 500 to 80000 nodes. The algorithm used
to generate those graphs randomly selects points in a 2D eu-
clidean space according to a multiple gaussian distribution.
More precisely, the distribution used is such that it se-
lects groups of closely situated points1. What should be
observed is the organization of the points in loosely con-
nected clusters.

Thus, each point in the original data comes equipped
with its own 2D coordinates, which moreover determines
how it links with its close neighbours and optionally with
more distant points. Thus, a MDS algorithm can be fed
with dissimilarities exactly equal to the 2D euclidean dis-
tance between the points. This type of data clearly acts as a

1 See Figures 6 and 7. The size and resolution of the images are
clearly inadequate. Moreover, giving an example of a 10000 nodes
network is useless here. Other images can be found at the URL
http://www.lirmm.fr/∼fjourdan).



benchmark for any MDS algorithm which should be able
to recover the initial positions of the points, up to obvi-
ous symmetries (local combinations of rotations and reflec-
tions). Figure 7 illustrates the result of ourO(N log N) al-
gorithm on the 500 elements network of Figure 6. Each of
the clusters in the original map can be easily identified by
visual inspection2.

Figure 6. Small world network induced from
randomly selected points in 2D (500 node el-
ements).

4. Multiscale MDS

Chalmerset al. algorithms and theO(N log N) algo-
rithm described above are two-steps algorithms. They con-
centrate on a subset of randomly sampled elements, em-
bed it in euclidean space, before developing different strate-
gies to agglomerate the remaining data elements around this
kernel configuration. As the kernel configuration is com-
puted using Chalmers’ 1996 algorithm, and because this al-
gorithm is inO(N2), the size of the sampled subset must
necessarily be of sizeO(

√
N) (thus insuring aO(N) cost

for this first phase).
In our view, these choices follow a basic assumption :

a simulation taking into account a larger range of dissim-
ilarity values produces output of a better quality. Hence,
that Chalmers’ 1996 algorithm performs better on that as-
pect than the 2002 and 2003 variants, or the one presented

2 The experiments were run using the GVF Java API (see
http://gvf.sourceforge.net). Using the framework we
were able to test the whole algorithm and compute the Stress of con-
figurations for dataset of size up to 10000. The framework allowed us
to run the parent-finding phase of the algorithms with datasets hav-
ing a size up to 80000.

Figure 7. MDS output obtained from the net-
work in Figure 6.

in the previous section, for instance. This assumption is ob-
viously hard to verify and, in our opinion, is incorrect. De-
pending on the original dataset, it might well be better to
first limit the number of dissimilarities defining the forces
acting in the simulation, and incrementally expand the sim-
ulation to a larger set of dissimilarities. Intuitively, itera-
tively displacing elements among a crowd may be coun-
terproductive whether incrementally assigning and updat-
ing positions may produce good quality output, as our work
and that of Chalmerset al. assess. Indeed, Chalmerset al.
had already observed that theirO(N3/2) strategy gave out-
put showing a lower stress than that of the 1996 algorithm.
Figure 7 corroborates our claim and shows the stress val-
ues reached by all four algorithms. Clearly, the Stress of
our multiscale MDS is lower than that of all three other al-
gorithms (darker curve at the bottom).

Hence, there are evidence that a multiscale (hybrid)
force-based MDS can produce output of a quality at least
equal if not better than any other force-based MDS. The
second benefit we observed from the multiscale schema is
a significant improvement in time. Recursively calling the
multiscale MDS strategy to compute the kernel configura-
tion clearly improves the performance of the algorithm. As
illustrated Figure 9, the improvement brought by the multi-
scale schema increases with the size of the dataset. Our ex-
periments indicate a ratio stabilizing around 0.4 in favor of
the multiscale schema (thus being 60% faster than the two-
phase approaches).

Conclusion and future work

The O(N log N) hybrid MDS algorithm we presented
turns out to be faster than Chalmerset al. 2002 and 2003
variants for large datasets. The improvement we suggest
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mainly concerns the parent-finding process involved in the
second phase of those hybrid MDS approaches, while all
other subroutines show similar performance.

However, when embedding data through a multiscale
schema, the improvement in time of the overall algorithm
becomes clearer. Furthermore, our experiments enabled us
to verify that the output produced both from the simple
two-phaseO(N log N) and the multiscale approach are of
a quality similar to Chalmerset al. 2002 and 2003 hybrid
MDS algorithms.

The multiscale approach should be further examined.
Indeed, at the top level, the multiscale schema is recur-
sively applied to embed theO(

√

(N)) sampled elements
into a kernel configuration. The placement of the remain-

ing elements is then accomplished just as in the simple
O(N log N) algorithm. Parameters such as the size of the
kernel configuration should also be studied in order to
”measure” their impact on the overall quality of the layout.
Finally, a comparative study of Stress, normalized Stress
and Energy [1, Section 3.1] could eventually lead to finer
conclusions about the relative behavior andobjective qual-
ity of all those hybrid, simple and multiscale MDS ap-
proaches.
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