
HAL Id: lirmm-00108867
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108867

Submitted on 12 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Asynchronous Backtracking for Dealing with
Complex Local Problems
Arnold Maestre, Christian Bessiere

To cite this version:
Arnold Maestre, Christian Bessiere. Improving Asynchronous Backtracking for Dealing with Complex
Local Problems. ECAI: Europeen Conference on Artificial Intelligence, Aug 2004, Valencia, Spain.
pp.206-210. �lirmm-00108867�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00108867
https://hal.archives-ouvertes.fr

Improving Asynchronous Backtracking for Dealing with
Complex Local Problems

Arnold Maestre1 and Christian Bessiere1

Abstract. Distributed constraint satisfaction, in its most general
acceptation, involves a collection of agents solving local constraint
satisfaction subproblems, and a communication protocol between
agents, in order to allow the distributed system converge to a global
solution. The literature, however, often concentrates on the reduction
where each agent owns exactly one variable, under the rationale that
the corresponding algorithms are easily extended to the most gen-
eral case. While this is mostly true, the specificities of agents han-
dling local CSPs give way to numerous improvements, since a trade-
off becomes possible between local and distributed search effort. In
this paper, we seek to improve nogood learning and solver cooper-
ation in multi-variables distributed constraint satisfaction problems.
We propose incremental improvements to be implemented on top of
an ABT-like algorithm, and make experimental evaluations of the
performance improvement they bring.

1 INTRODUCTION

Constraint satisfaction is a powerful paradigm for solving combina-
torial problems. It has been widely used for modeling problems in
artificial intelligence and solve real world problems. The increasing
interest in distributed computing has led to distributed approaches of
the constraint satisfaction problem (DisCSP), where the global prob-
lem is naturally distributed among a set of agents, which then have
to communicate in order to match their local solutions.

Those approaches can be classified following a set of characteris-
tics: search control (centralized or distributed), communication pro-
tocol (shared memory or message passing), memory requirements
(polynomial or not), completeness and agent or variable ordering
(static or dynamic). Additionally, DisCSP solvers are said to be
variable-based when each agents cares for a given subset of the vari-
ables, or constraint-based if the focus is put on constraints being dis-
tributed among agents.

In the following, we will focus on complete, statically ordered,
variable-based, message passing distributed CSP algorithms with de-
centralized control. This field is dominated by the algorithms of
Yokoo and colleagues, asynchronous backtracking (ABT) [20], asyn-
chronous weak commitment (AWC) [17] and distributed break-out
(DB) [18]. A pioneer algorithm in the field, ABT is a statically or-
dered, asynchronous protocol in which high priority agents propose
values to lower priority ones, that can refute them with a nogood in
case of inconsistency. It has been shown to be complete under poly-
nomial space constraints.

In AWC, agents communicate with all their neighbors and reorder
themselves dynamically in order to soften the influence of a bad

1 LIRMM-CNRS 161, rue Ada, 34392 Montpellier Cedex 5, France.
Email:maestre|bessiere@lirmm.fr

choice from a high priority agent. Although AWC is incomplete un-
less agents can store a potentially exponential number of nogoods,
Silaghi et al have shown in [14] that it is possible to build a polyno-
mial space algorithm with dynamic reordering as soon as one accepts
to bound the maximum time from start during which an agent can be
reordered.

Finally, DB works in synchronous phases, where agents in a neigh-
borhood agree on the local move bringing the best improvement to
the current state of the system and increase the weight of violated
constraints in order to escape local minima.

All these protocols are applied to variable-based distributed prob-
lems. Although the generic framework for such problems makes it
possible for one agent to own several variables, few works explore
the specificities of complex local subproblems, namely the complex-
ity of agent instantiation, which can no longer be seen as a quasi-
instantaneous operation, the increasing necessity of agent collabo-
ration, and the generation of meaningful nogoods. Instead, most of
these works focus on the ordering of agents and/or variables, which
is typically even more important when the granularity of local agents
increases, and is indeed a good way to improve performance. In [1]
the authors use different heuristics to statically order or dynamically
re-order complex agents running a specialized hybridation of ABT
and AWC. In [19] this concept is pushed further with the multi-
AWC algorithm, based on AWC, and individual variables, rather than
agents, are re-ordered to improve search efficiency. Likewise in [10],
multi-DB, a multi-variable variant of the distributed break-out algo-
rithm is proposed, which performs well compared to multi-AWC on
3-SAT benchmarks.

In [11], the authors evaluate the computational effort and network
load needed to solve distributed 3-coloring problems with varying
numbers of intra-agent and inter-agent constraints. The algorithm
used is a clever extension of ABT, which minimizes the number of
messages sent by avoiding those that are trivially unnecessary, but
doesn’t take into account the issues inherently linked to the com-
plexity of local problems. Silaghi addresses some of these issues in
[15], where he proposes various solutions: interruptible backtrack-
ing, message queues processed by compactors in order to reduce the
number of messages effectively handed to the core agent, and com-
munication policies in order to cool down message bursts.

None of these works, however, insist on producing interesting no-
goods from conflicting multi-variable agents, nor do they explore the
collaboration between complex agents when a new instantiation is
to be chosen. Actually, each new instantiation, if different from the
previous one, produces a new batch of messages to be sent to lower
priority agents, which in turn may have to change their instantia-
tion. In the multi-variable case, the problem is a bit different, since
a carefully chosen instantiation may allow the agent to inform only

a subset of its lower priority neighbors. The cost of message passing
being (in the most general case) prohibitively higher than the cost of
local computation, it seems interesting to make a bit more local com-
putation to save some messages (akastay and play) rather than going
with the first feasible local solution (akascoop and run). In particu-
lar, if a solution exists which allows the agent to satisfy all constraints
while minimizing the number of changes to variables linked to lower
priority agents, it should be preferred over a more disturbing one.

In the following, we will explore those issues, and provide ways to
produce high quality nogoods and cooperative instantiations in a dis-
tributed constraint satisfaction problem with multiple variables per
agent. We will then present an experimental framework, as well as
an empirical evaluation of our work.

2 PRELIMINARIES

In a centralized setting, a constraint network is defined by a triple
(X ,D, C), whereX is a set ofn variables,D is the set of their
respective finite domains whose size is at mostd, andC is a set
of constraints. A constraint is a relation over a subset of variables,
which defines the combinations of values deemed acceptable for
those variables. In the following, we will restrict our attention to
constraints involving two variables, namelybinary constraints. A
constraint among the variablesxi and xj will be denoted bycij .
A solution is an assignment of values to variables which satisfies
every constraint. The constraint satisfaction problem (CSP) is gener-
ally formulated as finding a solution to the constraint network. This
is usually done by a combination of tree-search with backtracking,
look-ahead and backjumping techniques.

A distributed constraint satisfaction problem (DisCSP) is a
CSP where the variables, domains and constraints of the net-
work are distributed over a set of autonomous agents. Formally, a
variable-based distributed constraint network is defined by a 5-tuple
(X ,D, C,A, ϕ), whereX , D andC are as before.A is a set ofp
agents, andϕ : X → A is a function that maps each variable to
its agent. Each variable belongs to one agent. The distribution of
variables dividesC in two disjoint subsets,Cintra = {cij |ϕ(xi) =
ϕ(xj)}, andCinter = {cij |ϕ(xi) 6= ϕ(xj)}, called intra-agent and
inter-agent constraint sets, respectively. An intra-agent constraintcij

is known by the agent owner ofxi andxj , and it is unknown by other
agents. Usually, it is considered that an inter-agent constraintcij is
known by the agentsϕ(xi) andϕ(xj) [21, 8]. As in the centralized
case, a solution of a DisCSP is an assignment of values to variables
satisfying every constraint. The agents are ordered, as it is the case
in ABT. An agentAk beforeAl in the ordering is said to have higher
priority thanAl. We suppose the variable ordering is consistent with
the agent ordering: ifxi belongs to agentAk andxj belongs toAl, xi

is beforexj in the ordering ifAk is beforeAl. Γ−(k) (respγ−(k))
is the set of agents (resp. variables) constrained with variables be-
longing to agentAk and appearing before it in the agent ordering.
Conversely,Γ+(k) (resp.γ+(k)) is the set of agents (resp. variables)
constrained with variables inAk and appearing after it in the agent
ordering. In the case of non-trivial, ordered agents, the subproblem
Πk to be solved byAk is composed of all variables belonging toAk,
its intra-agent constraints as well as inter-agent constraints linking it
to higher priority agents.

DisCSPs are solved by the collective action of agents inA, which
asynchronously run a process of distributed constraint satisfaction,
and send messages to other agents in the system in order to have all
local solutions converge to a global one. Considering message pass-
ing, it is currently assumed that the delay in delivering a message is

finite but random. For a given pair of agents, messages are delivered
in the order they were sent.

Let us denoteS(k) the set of variables belonging to agentAk.
S(k) can be partitioned in two disjoint subsets,Si(k) = {xj ∈
Ak|∀cjm, xm ∈ Ak} andSo(k) = {xi ∈ Ak|∃cij , xj /∈ Ak}. In
a nutshell,Si(k) is a set of private variables, which only share con-
straints with variables insideAk. Conversely,So(k) is a set of vari-
ables linked to the outside world and sometimes referred to asnegoti-
ation variables. MoreoverSo(k) can be seen as the union of two (not
necessarily disjoint) sets,S+

o (k) = {xi ∈ Ak|∃cij , xj ∈ Al, l > k}
and S−o (k) = {xi ∈ Ak|∃cij , xj ∈ Al, l < k}. S+

o (k) is the
set of variables constrained with variables belonging to agents lower
thanAk in the ordering, similarlyS−o (k) is the set of variables con-
strained with variables belonging to higher priority agents. Finally,
we will denoteSj

o(k) the set of variables inAk constrained with
variables inAj .

The instantiation of variables inS(k) will be denotedI(k), and
the instantiation of a subsetu thereof,I(k)|u.

Some distributed constraint satisfaction algorithms make heavy
use of nogoods to exchange data about unfeasible partial assign-
ments. Adirected nogoodfor a valuec of variablexk is an expres-
sion of the form,(xi = a) ∧ (xj = b) ∧ . . . ⇒ (xk 6= c) mean-
ing that the assignment ofc to xk is inconsistent with the assign-
ments ofa, b, . . . to xi, xj , This nogood explains the deletion
of valuec, and is relevant as long as valuesa, b, . . . are assigned to
variablesxi, xj , . . ., and is equivalent to its non-directed counterpart,
¬((xi = a) ∧ (xj = b) ∧ . . . ∧ (xk = c)). The left-hand and right-
hand sides (abbreviated aslhs and rhs respectively) of the directed
nogood are defined from the position of the “⇒” symbol.

When together several nogoods yield an inconsistency, they are
resolved into a new nogood, following the method exposed in [7].
Let (xj = b) be the lowest priority assignment in the left-hand sides.
The lhs of the resolvent will have the conjunction of the left-hand
sides of all inconsistent nogoods, barring references toxj . The right-
hand side is then (xj 6= b). The new nogood should be stored by
the process owningxj to explain the deletion of(xj , b), while all
nogoods referring to(xj = b) become irrelevant and can be deleted.

3 BASE ALGORITHM

3.1 Asynchronous Backtracking

ABT is one of the first complete algorithms proposed to solve DisC-
SPs [20]. Although early publications focus on agents owning ex-
actly one variable, [11] extends its purpose to complex local agents.
We will use this algorithm as a base for our work.

In this protocol, agents are ordered statically and inter-agent con-
straints are directed from high priority agents to low priority ones to
build an acyclic graph. Each agent runs a similar process, and stores
information about the outside world, in the form of anagent viewand
a nogood store. The agent view of an agentAj is the set of values
that it believes to be assigned to variables belonging to higher prior-
ity agents and constrained with a variable inAj . The nogood store is
a list of nogoods which are either generated locally to reflect the im-
pact of some higher priority agent’s decision on the local problem, or
received from lower priority agents to forbid some unfeasible value
combination. A choice has been made to store at most one nogood
per value, in order to keep the storage space requirements reasonable.

Each agentAj solves its own subproblem and communicates
asynchronously with neighboring agents to build a global solution by
matching local ones. Agents generally exchange assignments from

top to bottom usinginfo messages and nogoods (from the bottom up)
usingbackmessages. When receiving an assignment, an agent has
to check its local solution for consistency and, if it is not consistent,
it must find a new feasible assignment. When receiving a relevant
nogood (that is, one that is not obsolete considering the local agent
view),Aj has to remove the corresponding value, store the nogood as
a justification of this deletion and again find a new assignment. If the
lhs of the nogood received includes a variablexk yet unconstrained
with Aj , a request is sent via a third type of message,addlink, to the
higher priority agentAi owningxk. Ai must then add a communica-
tion link betweenAi andAj regardingxk and informAj if the value
of xk changes in the future.

Finding a solution to the local subproblem is done the same way
as in the centralized case, with a tree search. Whenever an agentAi

cannot find a consistent assignment to one of its variablesxk, either
because of the original constraints or because of the stored nogoods,
a new nogood is generated from those emptying the domain forxk.
Let xj be the lowest priority variable in the nogood. Ifxj belongs
to Ai, it is a local back-jump, otherwise the nogood is sent to the
agent owningxj . If an empty nogood is produced, the problem is
unsolvable. In fact, no superset of a nogood can be part of solution.
The agent exits after sending astopmessage to all its neighbors.

Yokoo, Sycara and Hirayama propose a number of enhancements
for their algorithm. First, the agent and variable orderings follow a
max-degree heuristic. Second, as explained above, they use nogood
learning inside the agent in order to be able to backjump instead of
simply backtracking on the local subproblem. Additionally, they try
as much as possible to keep the internal variables to their previous
values. Finally, an agent keeps all external nogoods generated during
its instantiation phase in a stack, and sends them all at once when
done. It also sends the values of changed variables to its neighbors
when the instantiation is complete.

3.2 Discussion

In order to keep internal and external knowledge separated, and free
ourselves from considering the algorithm to be used for solving inter-
nal subproblems, we will not derive nogoods inside agents. Thus, the
nogood store for a given agentAk will contain nogoods derived from
the values of variables inγ−(k), concerning variables inS−o (k),
and nogoods received from agents inΓ+(k), concerning variables
in S+

o (k). This way, the local solver can be completely indepen-
dent from the communication protocol, since it will be called after
the necessary domain reductions have been operated. This allows the
use ofad hocsolvers, including local propagation and consistency
maintenance.

Moreover, when an agentAi is successfully instantiated, it is
not necessary to send all changed values to all neighbors, since
only agents ofΓ+(i) need to be informed, and the only notewor-
thy changes are those occurring inS+

o (i). Let Ip(i) be the previous
instantiation, andIc(i) the current one. Then, for each agentAk in
Γ+(i), if {Ic(i)|Sk

o (i) − Ip(i)|Sk
o (i)} 6= ∅, this set difference should

be sent toAk. This allowsAi to avoid sending useless messages to
agents on which its new instantiation has no impact, while keeping
the actual messages as terse as possible.

4 IMPROVED NOGOOD LEARNING

4.1 Nogood Selection

In a perfect world, each agent would be able to store an arbitrary
number of nogoods, and select the best resolvent when failing to find

a consistent set of assignments for its variables. Unfortunately, in the
most general case, storage space is in limited quantity, and select-
ing the most suitable nogood with respect to one particular criterion
(or set thereof) means generating all possible candidates in order to
extract the best one, which could be prohibitively costly.

The nogood store keeps at most one nogood per value, that is,
even if there are several relevant justifications to the deletion of one
particular value inSo, only one is stored. This behavior defaults to
storing the first justification met during the search, and discarding all
subsequent justifications, since only one is stored. Hence, only one
nogood can be generated upon failure, and it mostly depends on the
timing of events during search (different timings yielding different
resolvents).

However, if several justifications are valid for some values, ac-
tively selecting the one to store could allow agents to see past the ran-
domness of message delivery. When comparing two nogoods elim-
inating the same value, a heuristic criterion could be to select the
nogood withthe highest possible lowest variable involved. This way,
the resolvent nogood would be sent as high as possible in the agent
ordering, thus saving unnecessary search effort [3].

As seen in section 2, agents store two types of nogoods: those gen-
erated locally, which are the consequences ofinfo messages on the
domains of variables belonging toS−o , and those received through
back messages to forbid values on variables inS+

o .
ABT accepts aback message if the incoming nogood is consis-

tent with its whole agent view, including its own assignment. Once
this nogood is stored, the local value it refers to is eliminated, which
makes the nogood consistent with the whole agent view except for
the local assignment. Following the definitions in [2, 5] the nogood
is 1-relevant. If this agent receives a 1-relevant nogood for the same
variable in aback message, where the only discrepancy with this
variable’s assignment, this nogood deserves to be considered be-
cause it brings interesting information: it gives a valid justification
to discard a value, even though that value may already have been dis-
carded. As a matter of fact, given a different timing, this very nogood
could be the one stored, and the other one would be in the incoming
message list. Thus, both have to be compared from a heuristic point
of view, and the best one should be selected.

Consideringinfo messages, the situation is a bit different, since
the information they are derived from is stored locally. Actually,
each agent is supposed to know the inter-agent constraints relevant
to its subproblem, as well as the values of variables inγ−, which are
stored in its agent view. So there is no need to aggressively challenge
stored nogoods each time the agent view is updated with a newinfo
message. Instead, the agent can wait until it really needs an optimal
nogood store – that is, when a failure is detected and aback mes-
sage must be sent – and then only, check each value inS−o against
each variable inγ−, replacing existing nogoods with potentially bet-
ter ones in the process. As a result, the resolvent nogood should be
more efficient.

4.2 Nogood minimization

It has been hinted in [9], following [12], that it is possible to min-
imize the nogoods resolved upon failure, in order to improve their
efficiency, this process being in the most general case a very time-
consuming one. This issue is even more dramatic in the case of com-
plex local problems. Indeed, inconsistency becomes harder to prove
as local problems grow bigger, and in the same time, it becomes
harder to sort out which of the stored nogoods really cause said in-
consistency. Checking whether a subset of the resolved nogood is a

conflict set or not was a linear test in the single variable setting. With
multiple variables per agent, it becomes full-fledged coNP-complete.
If we want to be able to minimize our resolvent-based nogoods, we
should at least find a way to optimize the subset exploration.

To this end, when the failure is detected, we will resolve a nogood
Ng as shown above. Then, we will try and determine which exter-
nal assignments, if any, are redundant inNg, by repeatedly solving
the local problem while activating only a subset of stored nogoods,
corresponding to a subset of assignments inNg.

Let N be the set of nogoods selected byAi upon failure, and
K the resolvent ofN (the set of assignments appearing in the left-
hand sides). Nogoods, as well as assignments, can be seen as addi-
tional constraints. Let thenΠK,N (i) beΠ(k) + N + K. SinceAk

failed to instantiate, we know thatΠK,N (i) is inconsistent. Hence,
Solve(ΠK,N (i)) returns false. We are now looking for a smaller set
κ ⊂ K, such thatΠκ,N (i) is still inconsistent. We can easily build
such a set by ordering the assignments inK. Starting fromκ = ∅,
we just have to add assignments fromK into κ until Πκ,N (i) returns
false. This function is calledShortenResolvent.

De Siqueira and Puget propose a polynomial algorithm to reduce
a conflict-set (in the sense of arc-inconsistent subset of constraints)
until it is minimal wrt inclusion in [4]. Although we won’t be able to
claim polynomial performance in the case of resolvent minimization,
we can propose an adaptation of their algorithm.

The first step involves generating a subset ofK that ren-
ders the subproblem inconsistent, if such a subset exists. The
ShortenResolvent algorithm is then called recursively with the
previous list of assignment in which the last assignment becomes
the first. This process is repeated until the last element of the new list
is equal to the last element of the initial list. The list now contains
the assignments of a minimal resolvent nogood.

5 AGENT COOPERATION

In [13], Petcu and Faltings evaluate the usefulness of local contention
techniques to avoid spreading conflicts among agents running the
distributed breakout algorithm. Using interchangeability techniques,
they manage to repair conflicts with a number of neighboring agents
without involving other, still non-conflicting, nodes.

5.1 Solution stability

A similar idea can be applied in ABT-like algorithms, by avoiding
unnecessaryflips, or value changes, during the instantiation phase.
Since a satisfied agent only propagates itsflips, keeping the new solu-
tion to the subproblem as close as possible to the previous one looks
like a valid heuristic.

Each local subproblem can be seen as a dynamic CSP, with each
incoming message adding or removing constraints dynamically. If
we consider it so, we can benefit from the conclusions of [16]. In this
paper, Verfaillie and Schiex analyze the respective benefits of various
methods for maintaining an existing solution in a CSP subject to dy-
namic changes. To this end, they measure the number of constraints
checks needed by each type of algorithm in function of the size of the
change, for various types of problems (under-constrained, critically
constrained and over-constrained). Among these methods are a no-
good recording algorithm very similar to the one used in [11], and a
simple backtracking, restarting from scratch with a simple value or-
dering heuristic: use thelatest successful assignmentfirst if available.
Noticeably, they show that there is no significant difference between

nogood recording and backtracking on under-constrained and criti-
cally constrained problems, neither in terms of performance nor in
terms of solution stability.

This is interesting, because in the case of distributed CSPs, local
subproblems are likely to be under-constrained. An over-constrained
subproblem is indeed fatal to the system, while a critically con-
strained one probably means that the global problem is unsolvable,
since it can only add constraints to this already critical instance.

When trying to preserve the internal solution across search, it is
important to notice that not all flips deserve the same attention, be-
cause not all of them will be propagated. In fact, only value changes
occurring inS+

o need to be disclosed to lower priority agents. So in-
stead of trying to preserve the former value of every single internal
node, it should be more rewarding to concentrate on the variables
constrained with lower priority agents. To this end, and keeping in
mind the idea of a black-box, independent internal solver, we de-
cided to prioritize variables ofS+

o in the variable ordering.

5.2 Value selection heuristics

It has been noted in [17] that one of the main differences between
ABT and AWC is that AWC uses themin-conflictmetric as a value
ordering heuristic. That is, when selecting a value, if there exist mul-
tiple values satisfying all constraints with higher priority variables,
the one that minimizes the number of constraint violations with lower
priority ones should be preferred. Contrary to the claim that this fea-
ture is easily introduced into ABT, this is only possible because AWC
agents send their values to all neighbors (not just lower priority ones).
In ABT, agents are not aware of lower priority agents’ values, so
min-conflict is not an option. To improve inter-agent cooperation,
we chose to use a variant of Geelen’sPromiseheuristic [6]. This
heuristic selects a value that least reduces the possible assignments
for the remaining uninstantiated variables, by preferring the valuev
that maximizes the product of the number of supports forv in all
neighboring variables. Our value ordering will be a bit different, in
that we only want to maximize the choice forextra-agent, lower pri-
ority neighboring variables, so we’ll only have to use the heuristic
on variables inS+

o , whenever those variables cannot keep their latest
successful assignment, without consideringintra-agentneighboring
variables. Moreover, the effects of the heuristic will be empowered
when used in conjunction with our variable ordering heuristic, which
selects variables inS+

o first.

6 EXPERIMENTS

6.1 Experimental Setting

Experiments in the distributed constraint satisfaction framework dif-
fer mainly on two parameters: the way in which the distribution is
achieved or simulated, and the problems to solve. We chose to have
each agent be an independent process, all agents running on a single
machine and communicating through a loop-back interface. Thus,
agent activity is asynchronous, and the scheduling process is handled
by the OS kernel, which is supposed to be fair and efficient.

We evaluated the different algorithms detailed above on binary
random CSPs. A binary random DisCSP class is characterized by
〈#A, n, d, C, T, iC, iT 〉 where #A is the number of agents,n is
the number of variables,d the number of values per variable,C
(resp.iC) the networkconnectivitydefined as the number of inter-
agent constraints (resp. the number of intra-agent constraints on each
agent), andT (resp.iT) the constrainttightnessdefined as the num-
ber of forbidden value pairs on inter-agent or intra-agent constraints,

respectively. The constrained variables and the forbidden value pairs
are chosen at random. Each agent is assigned all its variables, and the
constraints binding them to the neighboring agents.

The problems generated all had 60 variables with a domain of
size 10 and 180 constraints of tightness 50. In the centralized case,
this problem is situated at the phase transition, with an equivalent
number of solvable and unsolvable instances. We then proceeded to
generate random binary DisCSPs by choosing a number of agents
among which to distribute the problem. When varying the number
of agents, we split variables evenly between agents (i.e.,n/#A vari-
ables per agent), and we modified the relevant parameters in order
to keep an equal number of inter-agent and intra-agent constraints
(i.e., #A · iC = C/2) whenever it was possible. For example, with
15 agents, we used the class〈15, 60, 10, 90, 50, 6, 51〉. Notice we
adjustediT in order to keep the problem at the complexity peak. Us-
ing this scheme, the more agents we generate, the more uniform the
problem structure becomes. With 60 agents, it is a simple mapping
of the uniform random binary CSP to the agents.

6.2 Results

Considering performance evaluation, we report the number of se-
quential messages (#msgs), and sequential constraint checks (#ccks).
The former represents the length of the longest chain of sequential
messages needed to solve the problem, and is a good evaluation of
the distributed performance of the algorithm, while the latter can be
seen as a measure of computational requirement across search.

We compared 4 different protocols. Results are summarized in Ta-
ble 1. Algorithms in the right-hand side of the table use improved
nogood learning, while algorithms at the bottom of the table try and
cooperate with lower priority agents. Hence,ABT is our implemen-
tation of Yokoo’s ABT, shown as a base for comparison. On top of
ABT , ABTnl puts our nogood selection and minimization strategies
to good use,ABTac implements our agent cooperation schemes and
ABTm implements all of this.

ABT #ccks #msgs ABTnl #ccks #msgs
#A=5 39,901 1,697 #A=5 91,244 1,512
#A=10 51,954 2,074 #A=10 106,517 2,050
#A=15 57,931 5,637 #A=15 118,742 4,587
#A=20 88,841 8,517 #A=20 179,238 7,351
#A=30 135,614 12,204 #A=30 257,411 10,621

ABTac #ccks #msgs ABTm #ccks #msgs
#A=5 42,217 1,544 #A=5 107,807 1,442
#A=10 53,954 2,051 #A=10 114,240 1,979
#A=15 60,663 4,687 #A=15 127,621 4,509
#A=20 85,006 7,423 #A=20 162,642 7,123
#A=30 119,754 10,948 #A=30 242,981 10,143

Table 1. Results on problems with various agent granularity.

The nogood minimization scheme (ABTnl) is a very effective way
to decrease the number of sequential messages, but it incurs a signif-
icant overhead in terms of constraint checks. Happily, local subprob-
lems are less constrained than the global one, thus they fall in the
under-constrained region for problems at the peak, otherwise, repeat-
edly solving the problem in order to minimize a nogood could prove
counter-productive; in that case, using an anytime approach should
help balance the penalty. Strikingly, the agent cooperation improve-
ment (ABTac) offers comparable savings in #msgs at a fraction of
the #ccks cost. Of course, the penalty for the support counting heuris-
tic is clear on big agents (small number of agents), as well as the bur-
den of using a locally less than optimal variable ordering. Still there

is a significant payoff, andABTac ends up making less constraint
checks than plainABT on problems with lots of small agents.

Unsurprisingly,ABTm improves over all other methods in terms
of message passing, but needs a powerful CPU in order to do so. Like
its brethrenABTnl, it would be best used if message passing is very
slow and/or very costly when compared to CPU cycles (which we
believe is often the case).

7 CONCLUSION

In this paper, we presented incremental enhancements for solving
distributed CSPs with complex local problems using ABT-like pro-
cedures. Those enhancements are in the fields of nogood learning,
through careful selection of stored nogoods and minimization of lo-
cally generated resolvents, and agent cooperation, through helpful
attitude towards lower priority agents and increased stability of lo-
cal solutions. The experimental results show consistent performance
improvements in terms of sequential message passing and global net-
work load, with various agent granularity, although this comes at the
cost of local computation.

REFERENCES
[1] A. Armstrong and E. Durfee, ‘Dynamic priorization of complex agents

in distributed constraint satisfaction problems’, inProc. IJCAI 1997.
[2] R.J. Bayardo and D.P. Miranker, ‘A complexity analysis of space-

bounded learning algorithms for the constraint satisfaction problem’,
in Proc. AAAI 1996.

[3] C. Bessiere, I. Brito, A. Maestre and P. Meseguer, ‘The ABT Family’,
Technical Report LIRMM-CNRS, 2003.

[4] N. de Siqueira and J. F. Puget, ‘Explanation-based generalisation of
failures’, inProc. ECAI 1988.

[5] R. Dechter, ‘Constraint networks’, inEncyclopedia of Artificial Intelli-
gence, Wiley and Sons, (1992).

[6] P.A. Geelen, ‘Dual viewpoint heuristics for binary constraint satisfac-
tion problems.’, inProc. ECAI 1992.

[7] M.L. Ginsberg, ‘Dynamic backtracking’,Journal of Artificial Intelli-
gence Research, 1, (1993).

[8] Y. Hamadi, C. Bessière, and J. Quinqueton, ‘Backtracking in distributed
constraint networks’, inProc. ECAI 1998.

[9] K. Hirayama and M. Yokoo, ‘The effect of nogood learning in dis-
tributed constraint satisfaction’, inProc. ICDCS 2000.

[10] K. Hirayama and M. Yokoo, ‘Local search for distributed sat with com-
plex local problems’, inProc. AAMAS 2002.

[11] K. Hirayama, M. Yokoo, and K.P. Sycara, ‘The phase transition in
distributed constraint satisfaction problems: First results’, inProc. CP
2000.

[12] D. Mammen and V. Lesser, ‘Problem structure and subproblem sharing
in multi-agent systems’, inProc. ICMAS 1998.

[13] A. Petcu and B. Faltings, ‘Applying interchangeability techniques to the
distributed breakout algorithm’, inProc. IJCAI 2003.

[14] M.C. Silaghi, ‘Abt with asynchronous reordering’, inProc. IAT 2001.
[15] M.C. Silaghi, Asynchronously solving distributed problems with pri-

vacy requirements, Ph.D. dissertation, EPFL, Lausanne, 2002.
[16] G. Verfaillie and T. Schiex, ‘Maintien de solution dans les prob-

lèmes dynamiques de satisfaction de contraintes: bilan de quelques ap-
proches’,Revue d’Intelligence Artificielle, 9(3), 1995.

[17] M. Yokoo, ‘Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems’, inProc. CP 1995.

[18] M. Yokoo, K. Hirayama, ‘Distributed Breakout Algorithm for Solving
Distributed Constraint Satisfaction Problems’, inProc. ICMAS 1996.

[19] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, ‘Distributed con-
straint satisfaction algorithm for complex local problems’, inProc. IC-
MAS 1998.

[20] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, ‘Distributed
constraint satisfaction for formalizing distributed problem solving’, in
Proc. DCS 1992.

[21] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara, ‘The distributed
constraint satisfaction problem: Formalization and algorithms’,IEEE
Trans. Knowledge and Data Engineering, (1998).

