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Abstract

We study the computational complexity of reasoning
with global constraints. We show that reasoning with
such constraints is intractable in general. We then
demonstrate how the same tools of computational com-
plexity can be used in the design and analysis of spe-
cific global constraints. In particular, we illustrate how
computational complexity can be used to determine
when a lesser level of local consistency should be en-
forced, when decomposing constraints will lose prun-
ing, and when combining constraints is tractable. We
also show how the same tools can be used to study
symmetry breaking, meta-constraints like the cardinal-
ity constraint, and learning nogoods.

Introduction
Global constraints are one of the factors central to the suc-
cess of constraint programming. See, for example, (Régin
1994; 1996; Bessiere & Régin 1997; Régin & Rueher 2000;
Beldiceanu & Contegean 1994; Frisch et al. 2002). Global
constraints specify patterns that occur in many problems,
and exploit efficient and effective constraint propagation al-
gorithms for pruning the search space. For instance, we of-
ten have sets of variables which must take different values
(e.g. activities in a scheduling problem requiring the same
resource must all be assigned different times). Most con-
straint solvers therefore provide a global all-different con-
straint which is propagated efficiently and effectively (Knuth
& Raghunathan 1992; Régin 1994).

What are the limits of reasoning with global constraints?
In this paper, we show how the basic tools of computational
complexity can be used to uncover many of the basic lim-
its. We will show that reasoning with global constraints is
intractable in general. We therefore need to focus on spe-
cific constraints like the all-different constraint which are
tractable. We then show how these same tools of compu-
tational complexity can be used to analyse specific global
constraints proposed in the past like the number of values
constraint (Pachet & Roy 1999), as well as to help design
new global constraints.
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Formal background
A constraint satisfaction problem (CSP) is a set of variables,
each with a domain of values, and a set of constraints that
specify allowed combinations of values for subsets of vari-
ables. We assume a constraint C is given intensionally by a
function of the form fC : D1× . . .×Dn 7→ {True, False}
where Di are the domains of the variables in the scope
of the constraint C. We cannot permit any sort of func-
tion. For example, suppose domains are integers of size
m and fC(X1, X2, X3, . . .) is the function that halts iff
X1 + X2 ∗ m + X3 ∗ m2 + . . . is the Gödel number of
a halting Turing machine. Testing if an assignment satisfies
the constraint C is then undecidable. We therefore insist that
fC is computable in polynomial time.

A solution to a CSP is an assignment of values to the
variables satisfying the constraints. To find such solutions,
we often use tree search algorithms that construct partial as-
signments and enforce a local consistency like generalized
arc consistency to prune the search space. A constraint C is
generalized arc consistent (GAC) iff, when a variable in the
scope of C is assigned any value, there exists an assignment
of the other variables in C such that C is satisfied (Mohr &
Masini 1988). This satisfying assignment is called support
for the value. An algorithm like GAC-Schema (Bessiere &
Régin 1997) removes values from the initial domains of vari-
ables till we have the maximal generalized arc consistent
subdomains. That is, the set of subdomains that are GAC
and any larger set of subdomains are not GAC.

We have derived very similar results to those presented in
this paper for other local consistencies. For example, many
of these results map over to bounds consistency on finite do-
main, set or multiset variables. For reasons of space, how-
ever, we are only able to present the results here for general-
ized arc consistency.

Complexity of global constraints
Reasoning with global constraints is intractable in general.
We consider two decision problems at the heart of reason-
ing with global constraints. The first is GACSUPPORT, the
problem of deciding if a value for a variable has support on
a constraint. In general, this is NP-complete to decide.

Theorem 1 GACSUPPORT is NP-complete.

Proof: Clearly it is in NP as a support is a polynomial wit-
ness which can be checked (by definition) in polynomial



time. To show completeness, we transform the satisfiabil-
ity of the Boolean formula ϕ into the problem of determin-
ing if a particular value has support. We simply construct
the global constraint C involving the variables of ϕ plus an
additional variable X , and defined by fC = (X → ϕ). If
X = True has support then ϕ is satisfiable. ♥

The second decision problem we consider is MAXGAC.
Given a constraint and initial domains for its variables, this
is the problem of deciding if a given set of subdomains is the
maximal GAC set of subdomains. This is in the complexity
class DP . This contains problems which are the conjunction
of a problem in NP and one in coNP (Papadimitriou & Yan-
nakakis 1984). The class DP is also known as the second
level of the Boolean hierarchy, BH2. A typical example of a
DP -complete decision problem is the EXACT TRAVELING
SALESPERSON PROBLEM. Given a distance matrix and an
integer B, EXACT TSP decides if the shortest tour is equal
to B. By comparison, TSP decides if there is a tour of length
B or less, which is NP-complete. We show that MAXGAC
is DP -complete.

Theorem 2 MAXGAC is DP -complete.

Proof: A problem Q is in DP if there exist a NP prob-
lem Q1 and a coNP one Q2 such that Q answers “yes” iff
Q1 and Q2 answer “yes”. If Q1 is NP-complete and Q2 is
coNP-complete, then Q is DP -complete. We use 3COL and
UN3COL as Q1 and Q2. We suppose without loss of gener-
ality that Q1 and Q2 both involve the same set X of vertices.
Ei is the set of edges in Qi.

We introduce a variable for each vertex with domain
{R1, G1, B1, R2, G2, B2}. We then define a global con-
straint as follows. For each pair (xi, xj) of vertices with
an edge between in both Q1 and Q2, we permit pairs of
values that are different but have the same subscript (i.e.,
the set {(R1, G1), (R1, B1), (G1, R1), (G1, B1), (B1, R1),
(B1, G1), (R2, G2), (R2, B2), (G2, R2), (G2, B2),
(B2, R2), (B2, G2)}). For each pair (xi, xj) of vertices
with an edge between in Q1 and not in Q2, we permit
pairs of values that are different for the subscript 1, and
any combination for subscript 2 (i.e., the set {(R1, G1),
(R1, B1), (G1, R1), (G1, B1), (B1, R1), (B1, G1)} ∪
{R2, G2, B2}

2). Similarly, for each pair (xi, xj) of vertices
with an edge between in Q2 and not in Q1, we permit
pairs of values that are different for the subscript 2, and
any combination for subscript 1. Finally, for each pair
(xi, xj) of vertices with no edge between in Q1 or in Q2,
we permit any pairs of values with the same subscript (i.e.,
the set {R1, G1, B1}

2 ∪ {R2, G2, B2}
2). By construction,

Ri, Gi and Bi are GAC iff (X, Ei) is 3-colorable. Hence,
{R1, G1, B1} is the maximal GAC subdomain for each
variable iff (X, E1) is 3-colorable, and (X, E2) is not
3-colorable. ♥

Corollary 1 Enforcing GAC is NP-hard.

Proof: Enforcing GAC directly answers both the GACSUP-
PORT and MAXGAC problems. ♥

Reasoning with global constraints is thus not tractable in
general. Global constraints which are used in practice are
therefore usually part of that special subset for which con-
straint propagation is polynomial. For example, GAC on an

n-ary AllDifferent constraint can be enforced in O(n
3

2 d)
time (Régin 1994). In the rest of this paper, we show how
we can further use the tools of computational complexity in
the design and analysis of specific global constraints.

Local consistency
Computational complexity results can indicate what level
of local consistency to enforce on a constraint. If achiev-
ing a given local consistency on a constraint is NP-hard,
then enforcing a lower level of consistency is usually ad-
visable. For example, the number of values constraint,
NValue(X1, . . . , Xn, N) (Pachet & Roy 1999; Beldiceanu
2001) ensures that N values are used by the n finite do-
main variables Xi. Note that N can itself be an integer vari-
able. The AllDifferent constraint is a special case of the
NValue constraint in which N = n. The NValue constraint
is useful for reasoning about resources. For example, if the
values are workers assigned to a particular shift, we may
have a NValue constraint on the number of shifts that some-
one can work. Enforcing GAC on the NValue constraint is
intractable in general. We therefore look to enforce a lower
level of consistency.

Theorem 3 Enforcing GAC on a NValue(X1, . . . , Xn, N)
constraint is NP-hard, and remains so even if N is ground
and different to n.

Proof: (Sketch) Reduction from 3SAT. Given a Boolean
formula in k variables (labelled from 1 to k) and m clauses,
we construct the NValue(X1, . . . , Xk+m, N) constraint in
which Xi = {i,−i} for all i ∈ [1, k], and each Xi for i > k
represents one of the m clauses. If the jth clause is x∨¬y∨z
then Xk+j = {x,−y, z}. If N = k, the constructed NValue
constraint has a solution iff the original 3SAT problem has
a satisfying assignment. Hence testing a value for support is
NP-complete, and enforcing GAC is NP-hard. ♥

Decomposing constraints
Computational complexity results can tell us more than just
what level of local consistency to enforce. It can also indi-
cate properties that any possible decomposition of a con-
straint must possess. We say that a decomposition of a
global constraint is GAC-poly-time if we can enforce GAC
on the decomposition in polynomial time. A decomposition
is GAC-poly-time when, for example, the number of decom-
posed parts is polynomial, and each decomposed part either
is a specific constraint that has a polynomial GAC algorithm
(like AllDifferent) or has a bounded arity. The following
result tells us when such decomposition hinders constraint
propagation.

Theorem 4 If enforcing GAC on a constraint C is NP-hard,
then there does not exist any GAC-poly-time decomposition
of C that achieves GAC on C (assuming P 6= NP).

Proof: By definition, enforcing GAC on a GAC-poly-time
decomposition is polynomial. Hence, if GAC on the decom-
position was equivalent to GAC on the original constraint,
then P would equal NP. ♥

For example, (Sadler & Gervet 2001) introduce the
Atmost1 constraint. This ensures that n set variables of a



fixed cardinality intersect in at most one value. To fit this
within the theoretical framework presented in this paper, we
consider the characteristic function representation for each
set variable (i.e. a vector of 0/1 decision variables). Enforc-
ing GAC on such a representation is equivalent to enforcing
bounds consistency on the upper and lower bounds of the
set variables (Walsh 2003a). The Atmost1 constraint can be
decomposed into pairwise intersection and cardinality con-
straints. That is, it can be decomposed into |Xi∩Xj | ≤ 1 for
i < j and |Xi| = c for all i. On the characteristic function
representation, this is

∑
k Xik · Xjk ≤ 1 and

∑
k Xik = c,

which are both GAC-poly-time. Such decomposition hin-
ders constraint propagation.

Theorem 5 GAC on any GAC-poly-time decomposition of
the Atmost1 constraint is strictly weaker than GAC on the
undecomposed constraint (assuming P 6= NP).

Proof: We show that enforcing GAC on an Atmost1 con-
straint is NP-hard, and apply theorem 4.

To show that enforcing GAC on the Atmost1 constraint
is NP-hard, we consider the case when the cardinality c = 2.
For c > 2, we can use a similar construction as in the c =
2 reduction but add c − 2 distinct values to each set. The
proof uses a reduction from 3SAT. For each clause σ, we
introduce a set variable, Xσ. Suppose σ = xi ∨ ¬xj ∨ xk ,
then Xσ has the domain {mσ} ⊆ Xσ ⊆ {mσ, iσ,¬jσ , kσ}.
If the intersection and cardinality constraint is satisfied, Xσ

takes the value {mσ, iσ}, {mσ,¬jσ}, or {mσ, kσ}. The first
case corresponds to xi being True (which satisfies σ), the
second to ¬xj being True, and the third to xk being True.

We use additional (at most quadratic) set variables to en-
sure that contradictory assignments are not made to satisfy
other clauses. Suppose we satisfy σ by assigning xi to True.
That is, Xσ = {mσ, iσ}. Consider any other clause, τ
which contains ¬xi. We construct two set variables, Yστi

and Zστi with domains {mσ} ⊆ Yστi ⊆ {mσ, iσ ,¬iτ} and
{¬iτ} ⊆ Zστi ⊆ {mσ, mτ ,¬iτ}. Since Xσ = {mσ, iσ},
then Yστi = {mσ,¬iτ} and Zστi = {mτ ,¬iτ}. Hence,
Xτ 6= {mτ ,¬iτ}. That is, τ cannot be satisfied by ¬xi be-
ing assigned true. Some other literal in τ has to satisfy the
clause.

The constructed set variables thus have a solution which
satisfies the intersection and cardinality constraints iff the
original 3SAT problem is satisfiable. Hence testing a value
for support is NP-complete, and enforcing GAC is NP-hard.
♥

A similar result can be given for the Distinct constraint
introduced in (Sadler & Gervet 2001). This constraint en-
sures that n set variables of a fixed cardinality intersect in
at least one value. Again, GAC-poly-time decomposition of
such a constraint hinders constraint propagation (assuming
P 6= NP).

Combining constraints
Global constraints specify patterns that reoccur in many
problems. There are, however, only a limited number of
common constraints which repeatedly occur in problems.
One strategy for developing new global constraints is to

identify conjunctions of constraints that often occur to-
gether, and developing constraint propagation algorithm for
their combination. For example, (Régin & Rueher 2000)
propose a propagation algorithm for a constraint which com-
bines together sum and difference constraints. As a second
example, (Carlsson & Beldiceanu 2002) combine together a
chain of lexicographic ordering constraints. As a third ex-
ample, (Hnich, Kiziltan, & Walsh 2004) combine together a
lexicographic ordering and two sum constraints.

We can use results from computational complexity to de-
termine when we should combine together constraints. For
example, scalar product constraints occur in many matrix
models like the balanced incomplete block design, template
design and social golfers problems (Walsh 2003b). Of-
ten such problems have scalar product constraints between
all pairs of rows in a 0/1 matrix. We can enforce GAC
on a scalar product constraint between two rows in linear
time. Should we consider combining together all the row
scalar product constraints into one large global constraint?
Such a matrix ScalarProduct constraint would ensure that
∀i < j

∑
k Xik ·Xjk = m. The following result shows that

enforcing GAC on such a composition of constraints is in-
tractable.

Theorem 6 Enforcing GAC on a matrix ScalarProduct

constraint is NP-hard, even when restricted to 0/1 variables.

Proof: (Sketch) We consider the case when the scalar prod-
uct m = 1. For m > 1, we use a reduction that adds m − 1
additional columns to the matrix, each column containing
variables that must take the value 1.

We reduce 1IN3-3SAT on positive formulae (which is
NP-complete (Garey & Johnson 1979)) to testing GAC on
a matrix ScalarProduct constraint over 0/1 variables. The
first row of the matrix represents the model which satisfies
the 1IN3-3SAT problem. There is a column for each oc-
currence of a literal in a clause. This is assigned 1 iff the
corresponding literal is True. There is also a column for
the negation of each literal. This is assigned 1 iff the corre-
sponding literal is False. There are also “dummy” columns
to ensure each pair of rows has the required scalar product.

The remaining rows are divided into two types. First,
there is a row for each clause. The columns correspond-
ing to literals in the clause have 0/1 values. Columns corre-
sponding to literals not in the clause only have the value 0.
The scalar product constraint between a row representing a
clause and the row representing the model ensures that only
one of the literals in the clause is True. Second, there are
rows for each occurrence of a positive literal to ensure that
the row representing the model does not assign both a literal
and its negation to True.

The 1IN3-3SAT problem has a model iff the constructed
matrix has a solution. Hence testing a value for support is
NP-complete, and enforcing GAC is NP-hard. ♥

Special cases of the matrix ScalarProduct constraint
are tractable. For instance, if the scalar product is zero
and variables are 0/1 then the constraint is equivalent to
the pairwise Disjoint constraint on set variables, which
is tractable (Walsh 2003a).



Symmetry breaking
Like global constraints, symmetry is an important aspect of
constraint programming. Computational complexity results
can indicate how difficult it is to deal with particular sym-
metries. For example, symmetric rows and columns occur in
many matrix models (Flener et al. 2002). Lexicographical
ordering constraints can be posted between the rows to break
all such row symmetry, and between all rows and columns
to break some (but not all) such row and column symme-
try (Frisch et al. 2002). Why don’t we identify additional
constraints to post that will break the remaining symmetry?

Some simple complexity analysis suggests that it will be
intractable to do so. We define a symmetry breaking con-
straint, MatrixSymmetry which ensures that all permuta-
tions of the rows or columns give “smaller” matrices when
the matrices of decision variables are ordered by conjoin-
ing their rows and comparing the resulting one-dimensional
vectors lexicographically. This constraint eliminates all
row and column symmetry from the matrix. Note that
the MatrixSymmetry constraint implies that the rows and
columns are lexicographically ordered (but not vice versa).

To demonstrate the intractability of computing symmetry
breaking constraints in general, (Crawford et al. 1996) prove
that the MAXIMUM INCIDENCE MATRIX problem is NP-
complete. This result can be used immediately to show that
the MatrixSymmetry constraint is intractable. For a graph
(V, E), an incidence matrix can be constructed by taking
any ordering on V and E and constructing the matrix A in
which Aij = 1 iff the ith vertex in V is connected by the jth
edge in E. Given a graph (V, E) and an incidence matrix
A for (V, E), the MAXIMUM INCIDENCE MATRIX prob-
lem is to determine if there is another incidence matrix B
for (V, E) such that B >lex A. It follows immediately that
determining if an assignment satisfies the MatrixSymmetry
constraint is coNP-complete. This is beyond our assumption
that checking if an assignment satisfies a constraint is poly-
nomial. Therefore, on such a ”super” constraint, GACSUP-
PORT and MAXGAC would definitely be NP-hard. In addi-
tion, assuming P6=NP, there cannot exist any GAC-poly-time
decomposition of the MatrixSymmetry constraint since on
such a decomposition, satisfiability testing of an assignment
would obviously be polynomial. As a result, whilst we may
post symmetry breaking constraints in addition to the lex-
icographical ordering constraints, we cannot break all row
and column symmetry in polynomial time.

Meta-constraints
Computational complexity can also be used to study “meta-
constraints” that combine together other constraints. For
example, the Cardinality constraint (Van Hentenryck &
Deville 1991) is provided by many constraint toolkits. It en-
sures that N constraints from a given set are satisfied, where
N is an integer decision variable. The cardinality constraint
can be used to implement conjunction, disjunction, nega-
tion, as well as a host of other useful constraints. Only a
limited form of consistency is enforced on a Cardinality

constraint. It is easy to show why this is necessary in gen-
eral.

Theorem 7 Enforcing GAC on the Cardinality con-
straint is NP-hard, and remains so even if all the constraints
are identical and binary and no variable is repeated more
than three times.

Proof: (Sketch) We use a reduction from the special case of
3SAT in which at most three clauses contain a variable or its
negation. Each Boolean variable x is represented by a CSP
variable X with domain {0, 1}. Each clause σ is represented
by three CSP variables, Uσ, Vσ and Wσ , and five binary
constraints posted on these variables. The domain of Uσ

is a strict subset of {8, . . . , 15}, of Vσ is a strict subset of
{16, . . . , 23} and of Wσ is a strict subset of {24, . . . , 31}.
The domain values serve two purposes. First, the bottom
three bits indicate the truth values taken by the variables that
satisfy the clause. We therefore have to delete one value
from each domain. This is the assignment of truth values
which does not satisfy the clause. For example, if σ is x ∨
¬y∨ z then the only assignment to X , Y and Z, which does
not satisfy the clause is 0, 1, 0. We therefore delete the value
26 from Wσ as 26 mod8 is 2 (or 010 in binary). Similarly,
we delete the value 18 from Vσ as 18 mod8 is 2, and 10
from Uσ . Second, the top two bits of the values of Uσ, Vσ

and Wσ point to one of the three positions in the clause.
We add three binary constraints to the cardinality constraint:
C(Uσ, X), C(Vσ , Y ) and C(Wσ , Z).

We also need to ensure that Uσ , Vσ and Wσ take con-
sistent values. We therefore add two binary constraints:
C(Uσ, Vσ), and C(Vσ , Wσ). Finally, we define C(X, Y ) as
follows. If Y ∈ {0, 1}, there are three cases. If 8 ≤ X ≤ 15
then C is satisfied iff (X mod 8) div4 = Y (i.e., the third bit
of X agrees with Y ). If 16 ≤ X ≤ 23 then C is satisfied iff
(X mod4) div 2 = Y (i.e., the second bit of X agrees with
Y ). If 24 ≤ X ≤ 31 then C is satisfied iff X mod 2 = Y
(i.e., the first bit of X agrees with Y ). Otherwise Y ≥ 8 and
C is satisfied iff X mod8 = Y mod8.

The constructed cardinality constraint has a solution iff
there is an assignment to the Boolean variables that satisfies
all of the clauses. Hence enforcing GAC is NP-hard. ♥

A more restricted, but nevertheless very useful form of
the cardinality constraint is the cardinality path constraint
(Beldiceanu & Carlsson 2001). This “slides” a constraint
of fixed arity down a sequence of variables and ensures
that it holds N times, where N is itself an integer deci-
sion variable. This constraint can be used to implement
the change, smooth, number of rests, and sliding sum con-
straints. In (Beldiceanu & Carlsson 2001), a greedy algo-
rithm is given for partially propagating the cardinality path
constraint. However, even for binary constraints, the algo-
rithm fails to prune all possible values. Again, it is not hard
to show that this constraint is intractable in general to prop-
agate. It is an open question to prove that it remains in-
tractable when no variable is repeated in the sequence.

Learning nogoods
When we enforce GAC, we are essentially learning unary
nogoods. A nogood is a partial assignment that cannot be
extended to a complete solution. We can also apply the tools
of computational complexity to study the learning of larger



arity nogoods. We consider here two decision problems at
the heart of learning. The first is NOGOOD testing, the prob-
lem of deciding if a partial assignment is nogood. In general,
this is intractable to decide.

Theorem 8 NOGOOD testing is coNP-complete, even for
nogoods of bounded size.

Proof: We consider the complement problem of GOOD test-
ing. This is determining if an assignment can be extended to
a solution. A polynomial witness to this is a solution that
extends this assignment. To show completeness, we reduce
SAT to GOOD testing. We construct a CSP with two disjoint
parts. The first part accepts the partial assignment whatever.
The second part uses disjoint variable names and encodes
the SAT problem using a reduction of SAT to CSPs. Note
that, even if the nogoods are of bounded size, the second part
of the construction is large enough to perform the reduction
of SAT to CSPs. ♥

The second problem we consider is MINIMALNOGOOD
testing, the problem of determining if a (partial) assignment
is nogood, whilst all strict subsets of the assignment are not.
This is again DP -complete.

Theorem 9 MINIMALNOGOOD testing is DP -complete,
even for nogoods of bounded size.

Proof: Recall that a problem Q is in DP if there exist a
NP problem Q1 and a coNP one Q2 such that Q answers
“yes” iff Q1 and Q2 answer “yes”. If Q1 is NP-complete and
Q2 coNP-complete, then Q is DP -complete. We use SAT
and UNSAT as Q1 and Q2. Let ϕi be the formulae in Qi

being tested for (un)satisfiability. We suppose without loss
of generality that ϕ1 and ϕ2 have disjoint sets of Boolean
variables. Let x and y be two new Boolean variables. We
construct the formula (x → ϕ1) ∧ ((x ∧ y) → ϕ2). Then
x ∧ y is a minimal nogood iff ϕ1 is SAT and ϕ2 is UNSAT.
♥

Connections exist between the complexity of NOGOOD
and MINIMALNOGOOD testing. For example, if NOGOOD
testing is polynomial then MINIMALNOGOOD testing must
also be polynomial. Connections also exist between the
complexity of constraint propagation and that of testing no-
goods. For example, if NOGOOD testing is polynomial then
enforcing GAC is also. The reverse does not hold.

Theorem 10 There exist a class of global constraints on
which GAC is polynomial but NOGOOD testing is coNP-
complete and MINIMALNOGOOD testing is DP -complete.

Proof: We construct a class of global constraints which en-
code the 3COL problem but on which GAC is polynomial.
Each of the n nodes in the graph is represented by a vari-
able. The domain of each variable contains the three colors
and one don’t care value. The global constraint is satisfied
iff variables representing adjacent nodes in the graph take
different colors, or n− 1 of the variables have the don’t care
value. This encoding is always GAC (even if the graph is
not 3-colorable) since no single value can be removed. How-
ever, testing whether an assignment of two different colors to
two variables representing adjacent nodes is good is equiv-
alent to determining if the graph can be 3-colored, which

is NP-complete. Thus, NOGOOD testing is coNP-complete,
and MINIMALNOGOOD testing is DP -complete. ♥

Space prevents us from listing in detail some of the other
applications we are exploring related to nogood learning.
For example, we have identified a number of special cases
where nogood learning is tractable. As a second example,
we have studied the computational complexity of size and
relevance bounded nogood learning. A related, yet different
problem, the number of minimal nogoods, is addressed in
(Dechter 1986).

Related work
For constraints of bounded arity, asymptotic analysis has
been extensively used to study the complexity of constraint
propagation both in general and for specific constraints. For
example, the GAC-Schema algorithm of (Bessiere & Régin
1997) has an O(dn) time complexity on constraints of ar-
ity n and domains of size d, whilst the GAC algorithm of
(Régin 1994) for the n-ary AllDifferent constraint has
O(n

3

2 d) time complexity. By comparison, we have consid-
ered here what happens when we let the arity of global con-
straints grow. This happens in many real world problems.
For instance, in the balanced incomplete block design prob-
lem (prob028 in CSPLib), the arity of the constraints grows
with the problem size.

For global constraints like the Cummulative and Cycle

constraints, there are very immediate reductions from the
bin packing and Hamiltonian circuit which demonstrate that
reasoning with these constraints is intractable in general. It
is therefore perhaps not surprising that there has been lit-
tle comment in the past about their intractability. However,
as we show here, there are many other global constraints
proposed in the past like NValue and Atmost1 where a re-
duction is less immediate, but the constraint is intractable
nevertheless.

In many constraint problems, the goal is not only to satisfy
all the constraints, but also to minimize (or maximize) an
objective function. Constraint propagation can be enhanced
in these problems by cost-based filtering where we also re-
move values that are proven sub-optimal. Optimisation con-
straints, that combine a regular constraint of the problem
with a constraint on the maximal value the objective func-
tion can take have been advocated in (Caseau & Laburthe
1997). GAC on such a combined constraint will not only
prune the values having no support on the regular constraint,
but also the values that do not extend to any satisfying as-
signment of the constraint improving the given bound. How-
ever, as in the case of combining constraints (see Section on
combining constraints), such compositions have to be han-
dled with care. The optimisation version of a constraint for
which enforcing GAC is intractable obviously remains in-
tractable (e.g., (Sellmann 2003a)). However, the optimisa-
tion version of a constraint for which GAC is polynomial ei-
ther remains tractable (e.g., (Focacci, Lodi, & Milano 2002;
Régin 2002)) or may become intractable. An example of the
latter situation is the shorter path constraint, which is the op-
timization version of the path constraint (Sellmann 2003b).

Beldiceanu has proposed a general framework for de-



scribing many global constraints in terms of graph proper-
ties on structured networks of simple elementary constraints
(Beldiceanu 2000). It is an interesting open question if we
can identify properties or elementary constraints within this
framework which guarantee that a global constraint is com-
putationally (in)tractable. Finally, computational complex-
ity can help us classify constraints wrt the notions of global-
ity proposed in (Bessiere & Van Hentenryck 2003). Indeed,
NP-hardness of enforcing GAC is a sufficient condition for
a constraint to be operationally GAC-global wrt GAC-poly-
time decompositions.

Conclusions
We have studied the computational complexity of reason-
ing with global constraints. We have shown that it is NP-
complete in general to determine if a value has support, and
DP -complete to decide if a subdomain is the maximal gen-
eralized arc consistent subdomain. We have then demon-
strated how the same tools of computational complexity can
be used in the design and analysis of specific global con-
straints like the NValue and Atmost1 constraints. In par-
ticular, we have illustrated how computational complexity
can be used to determine when a lesser level of local con-
sistency should be enforced, when decomposing constraints
will reduce propagation and when constraints can be com-
bined tractably. We have also shown how the same tools
can be used to study symmetry breaking, meta-constraints
like the Cardinality constraint, and learning nogoods. In
the future, we plan an extensive study of the computational
complexity of global constraints on set and multiset vari-
ables. Computational intractability is very common here as
there are, in the worst case, an exponential number of sets or
multisets between the upper and lower bounds on a variable.
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